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Surface Proximity Effect, Imprint 
Memory of Ferroelectric Twins, and 
Tweed in the Paraelectric Phase of 
BaTiO3
C. Mathieu1, C. Lubin1, G. Le Doueff1, M. Cattelan2, P. Gemeiner3, B. Dkhil 3, E. K. H. Salje  4 

& N. Barrett 1

We have used energy-filtered photoemission electron microscopy (PEEM) at the photoemission 
threshold to carry out a microscopic scale characterization of the surface charge and domain structure of 
the (001) surface in BaTiO3. Signatures of ferroelectric and ferroelastic domains, and tweed, dominate 
the surface structure of BaTiO3 at room temperature. The surface ferroic signatures are maintained on 
heating to temperature (~550 K), well above the transition temperature (393 K). This surface proximity 
effect provides the mechanism for memory of the bulk ferroelectric domain arrangement up to 150 K 
above TC and thus can be considered as a robust fingerprint of the ferroelectric state near the surface. 
Self-reversal of polarization is observed for the tweed below TC and for the surface domains above TC. 

Annealing at higher temperature triggers the dynamic tweed which in turn allows a full reorganization 
of the ferroic domain configuration.

�e paraelectric (PE) to ferroelectric (FE) phase transition in the model ferroelectric BaTiO3 (BTO) is mainly 
abrupt and of �rst order from the high cubic symmetry (Pm3m) to the lower tetragonal symmetry (P4mm) 
structure at 393 K1. Defects and high domain wall concentrations can so�en the transition. �e permittivity and 
the domain size depends on the grain size of the ceramic making the transition di�use2. Within the framework 
of the order-disorder model the transition may also so�en slightly3. BaTiO3 is also ferroelastic, characterized by 
180° and 90° domains, with c/c as well as a/a and a/c domain walls4–9. Microscopic �uctuations in the strain order 
parameter, called tweed, are observed at temperatures above 393 K and can give rise to polarity10,11. Local FE 
distortions in the cubic phase have been highlighted by quasielastic neutron scattering12,13, X-ray absorption �ne 
structure14 and by resonant ultrasonic spectroscopy15. Polar precursor ordering prior to a stepwise transition at 
the Curie temperature in BaTiO3 was also detected by resonant piezoelectric spectroscopy16. Dul’kin et al. showed 
the presence of a relaxor-like behavior with polar nanoregions in the same phase17. Tweed has been predicted for 
any ferroic material and is commonly observed both in displacive18 and order/disorder systems19.

Twinning and tweeding are hence well established as bulk ferroic phenomena but little is known of these 
e�ects at surfaces20. �e intersection of twin boundaries with the surface have been shown to lead to singularities 
of the surface strain which re�ect directly the thickness of the twin boundaries21 while equivalent investigations 
of tweed structures are still in their infancy10.

�e ferroic surface patterns are expected to transform at much higher temperatures than the bulk phase 
transitions as electrostatic and elastic boundary conditions significantly alter the thermodynamic stability 
�elds22. Indeed, phase transitions at the surface may occur at much higher temperatures than in the bulk and 
domain-like ordering have been seen in ferroic materials at the surface well above the transition point of the 
bulk23,24. Morozovska et al. have shown how surface ionic charge can couple with bulk ferroelectric states to 
create speci�c ferroionic domain patterns at the surface of thin �lms. �ese patterns may persist well above the 
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bulk Curie temperature (TC)25. Höfer et al. showed that the signature of these surface charges can persist up to 
510 K. Rumpling, reconstruction and relaxation, associated with the FE state, can be considerably altered at the 
surface26,27. However, although enhanced surface tetragonality due to the outward movement of oxygen ions 
may favor polarity24 it does not necessarily explain the persistence of di�erent polarization states. �e tempera-
ture reproducibility of these states above TC is key to understanding their origin. Surface and interface proper-
ties are crucial for applications, particularly in nanoelectronics where they may dominate the bulk ferroelectric 
behavior28–32 Yet none of the surface studies reported the domain pattern when cooling back down to room 
temperature.

We use photoemission electron microscopy (PEEM) with in-situ temperature control to investigate the sur-
face polarity of ferroelectric BaTiO3 by probing the local potential modulations at the microscopic scale33. PEEM 
provides parallel imaging in photoemission using electron lenses with a spatial resolution of ~50 nm. Domains 
with di�erent FE polarization present di�erent surface charge, which shi�s the electronic levels and hence the 
work function of the emitted electrons. �e photoelectrons have a small inelastic mean free path (from a few ang-
stroms to a few nanometers, depending on the electron kinetic energy) making the technique inherently surface 
sensitive.

�e present study analyzes local surface charges of a BaTiO3 (001) single crystal through the FE to PE phase 
transition. We demonstrate the persistence of FE-domain patterns at the surface up to 550 K, far above the bulk 
phase transition as measured by Raman spectroscopy. In addition, quasi-static surface tweed also survives up 
to the same temperature. Self-reversal of polarization is observed for the tweed below TC and for the surface 
domains above TC. �e FE domain structure and hence FE memory is lost when the tweed becomes dynamic 
a�er annealing at 975 K while it conserves the �ngerprint of the initial state up to 550 K, i.e. up to 150 K above TC.

Results
Domain and tweed imaging. Figure 1 shows typical PEEM images taken at two di�erent values of E-EF: 
3.00 and 3.45 eV at 300 K. We observe arrays of broad, parallel dark and bright vertical stripes corresponding to 
di�erent ferroelectric domains. �e contrast inversion between 3.00 and 3.45 eV for the stripe domains is a clear 
signature of at least two distinct photoemission threshold values, related to di�erent surface polarization charge. 
Inside these stripes, �ne tweed structure is observed with a distinctive intensity level suggesting a third polariza-
tion at the surface.

Image series have been recorded at four temperatures: 300, 373, 450 and 550 K and the local work function 
distribution calculated using the pixel by pixel analysis described in Methods. �e resulting work function maps 
are shown in Fig. 2).

3.00 eV
(a)

3.45 eV
(b)

[010]

[100]

Figure 1. PEEM images at E-EF = 3.00 and 4.45 eV at 300 K, showing contrast inversion in the intensity of the 
broad vertical stripes due to the di�erence in the local photoemission threshold. Within the stripes �ner, tweed 
structure is observable with di�erent intensity. �e �eld of view is 67 µm and images are recorded at 300 K.

Figure 2. Work function maps obtained from image series below TC at 300, 373, 450 and 550 K. �e �eld of 
view is 67 µm and the work function range spans in each case 0.5 eV. Dark grey corresponds to P↓, intermediate 
grey to Pin and light grey to P↑ polarization directions.
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Room temperature work function map. �e map at room temperature of the initial state (Fig. 2) shows 
two characteristic, superimposed patterns, namely wide vertical stripe domains and �ne-scale tweed. �e orienta-
tion of the spontaneous polarization is revealed by the grayscale. �e narrower vertical stripes have a lower work 
function, while the broader vertical stripes have an intermediate shade of gray on the work function color scale. 
�e thinner stripes contain polarity pointing from the surface to the bulk (P↓). �e intermediate grey is typical for 
polar vectors parallel to the surface (Pin), i.e. zero polarity perpendicular to the surface. �ese patterns, with long 
straight walls along high symmetry directions, are typical for the intersection of 90° ferroelectric stripe domains 
with the surface4,34. �e domain con�guration is hence related to 90° walls inclined by ~45° to the surface. �e 
tweed structure has the highest work function, representing positive surface charge, i.e. with polarization vector 
pointing from the surface into vacuum (P↑).

�us, the broad vertical stripe patterns represent ferroelectric domains with uniform polarization but are 
related to the �ner, tweed like arrays. �e tweed arrays indicate that the surface contains large �uctuations of the 
polarization pointing towards the surface (dark), parallel to the surface (intermediate grey) and away from the 
surface (light grey). �ey form criss-crossed patterns typically observed in transmission electron microscopy and 
in computer simulations of tweed. �ese patterns possess no clearly de�ned length scale but are rather invariant 
over a large range of length scales.

Work function maps as a function of temperature. �e sample was then gradually heated from room 
temperature to 550 K. During heating, image series were recorded at several temperatures. �e Curie temperature 
of the �rst order phase transition was identi�ed from the sudden displacement of the sample in the PEEM image 
(see Supplementary Materials S1).

�e work function maps at room temperature, 373, 450 and 550 K show remarkable similarities (Fig. 2). �e 
most important observation is that there is no break in the overall pattern of tweed and domains at the bulk phase 
transition temperature TC = 393 K. Both the wider vertical stripe domains and the tweed are still visible in the 
paraelectric phase. However, an important change in contrast between the tweed and the broader, vertical stripe 
domains is observed at 373 K. Whereas at room temperature the tweed work function is higher than that of the 
surrounding domain surface, at 373 K the tweed work function is less than that of the surrounding domain, i.e. 
surface charge has changed sign and therefore polarization reversal has taken place in the tweed.

�ere are also shi�s in the absolute values of work function with temperature. �is is due to the reduced sam-
ple charging with temperature and represents an o�set but does not a�ect the work function contrast between 
di�erent surface polarizations. It is completely reversible, the work function map obtained at room temperature 
a�er heating at 550 K is identical to that acquired before annealing (Fig. 4, discussed below).

�e stepwise bulk transition is well seen using Raman spectroscopy that probes the BaTiO3 to a thickness of 
500–600 nm (see Supplementary Materials S2). We can contrast, therefore, the bulk transition as identi�ed by 
Raman with the behavior of the surface layer: the bulk does indeed assume the cubic symmetry while the surface 
layer remains tetragonal and conserves the FE pattern formation similar to that in the bulk tetragonal phase. Even 

Figure 4. Surface potential maps of (a) initial surface, (b) a�er heating at 550 K and (c) a�er heating at 
975 K. �e maps are generated from image series recorded as a function of electron kinetic energy at room 
temperature. �e �eld of view is 67 µm in diameter and in each case the work function variation spans 0.5 eV.

Figure 3. �e sketch is a side view of the sample polarization state, for temperature above TC. �e surface is 
represented by a dark line and the invariant plane by a red dashed line. �e bulk is in the cubic (C) phase, while 
the surface remain in the tetragonal (T) phase. �e polarization directions are represented by dark arrows.
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at 550 K the surface conserves the �ngerprint of the bulk FE tetragonal phase. �e low symmetry of the surface 
layer compared with the cubic bulk structure requires an intermediate layer where two-phase coexistence occurs. 
If such layers are narrow, they constitute invariant planes35,36. �e domain con�guration near the invariant plane 
is well studied in alloys37 and consists of arrays of needle domains with tips oriented towards the cubic phase38–41.

We envisage a similar scenario here. �e stripe domains penetrate the bulk at low temperatures and the 
observed patterns in PEEM re�ect their intersections with the surface. As shown by the Raman spectroscopy, 
heating the sample transforms the bulk to a domain-free cubic state above TC while the surface sensitive PEEM 
demonstrates that a few nanometer surface region maintains a ferroelectric domain structure. In this region, the 
remaining stripe domains retract into needle domains. Whereas 90° ferroelectric twin walls should be straight 
and for BaTiO3 lie in {110} planes, curvature is intrinsic to the needle domain wall42. Needle curvature is also 
observed experimentally43. �e sketch in Fig. 3 represents schematically short, curved needle domains in the 
surface tetragonal layer with the bulk transformed into cubic phase. �e depolarizing �eld, Edep, is a signature of 
polarization bound charges and its magnitude is inversely proportional to the sample thickness. When bulk FE 
domains disappear, the nanometer thin surface region naturally experiences a stronger Edep, which was previously 
compensated by the bulk domain structure. �is �nally leads to self-reversal of the polarization in the surface 
layer. Self-switching is well-known in thin �lms, where it is also termed backswitching44.

�is e�ect is observed in Fig. 2 where the narrower vertical stripes (downwards polarization) observed at 300, 
373 and 450 K take on a higher work function than the broader stripes when the temperature is increased to 550 K, 
i.e. they become upwards polarized. A video showing the rapid self-reversal is available with the Supplementary 
Materials (S3). In order to minimize the suddenly strong Edep the surface breaks down into smaller domains. �e 
needles become therefore increasingly shorter and �nally constitute dagger domains pinned to the surface45–47, 
as represented by the sketch in Fig. 3. Short daggers contain fewer charges and thereby reduce the depolarization 
charge at the surface.

High temperature annealing. Annealing the sample to higher temperatures leads to changes in the 
domain order at the surface as seen a�er quenching. In Fig. 4, the initial room temperature pattern (le�) is 
compared with the patterns of the samples quenched to room temperature a�er annealing. Quenching from 
550 K leads to essentially the same domain pattern, although some of the �ner details of the tweed patterns have 
changed. �e position of the stripe domains are exactly the same as before the thermal treatment and the tweed 
can be considered as quasi-static. �is can be contrasted with the quench from 975 K where the domain pattern 
has changed. �e dark stripe domains are narrower and have moved. �e tweed, however, is the same as the initial 
pattern but part of the tweed kept the high temperature self reversal, corresponding to upwards polarization, 
whereas the other part has reverted to the original downwards polarization. All detailed positions are altered and 
the overall pattern appears slightly coarser. We observe also larger patches of horizontal orientations of the spon-
taneous polarization. We can assume, therefore, that heating to 975 K erases all memories of the initial domain 
con�guration, possibly leading to a more uniform surface relaxation of the cubic phase.

Discussion
Switching kinetics. We have shown that the stepwise bulk phase transition in BaTiO3 does not occur at TC 
in the surface layer. Here, the surface domain pattern imprinted by the ferroelectric bulk phase, namely stripe 
domains, coincides with a tweed-like pattern, in which the polarization vector can change between the three sym-
metry allowed directions. �e persistence of domain-like ordering above the transition point has already been 
observed in PEEM24, and scanning surface potential microscopy (SSPM)23. Using SSPM, Kalinin and Bonnell 
could observe contrast above TC which decreases with time. �ey attributed this phenomenon to the desorption 
of adsorbates. Adsorbates could pin the FE distortion, as, for example, at the surface of BaTiO3 single crystals26 
and thin �lms23,48. In fact, complete desorption of dissociated water from the BaTiO3 surface only occurs at higher 
temperatures, typically around 675 K48. Residual adsorbates might contribute to the persistence of domain related 
contrast in the paraelectric phase in their case.

�e ultra-high vacuum conditions in our experiment makes this interpretation unlikely. In particular, XPS 
spectra did not show any particular contamination. �e self-reversal of the dagger domains is not related to 
contamination as it happens as a quick jump rather than a slow transport phenomenon23. In fact, we observe two 
self-reversal processes. �e �rst occurs at 373 K and is the self reversal of the tweed in the ferroelectric state. �is 
is consistent with the capacity of tweed to take on di�erent polarization directions and we suggest that the reversal 
happens at temperature which unpins the tweed polarization. �e second polarization reversal occurs well above 
TC, greater than 500 K and represents reversal of the surface domain polarization to compensate the increase in 
the depolarizing �eld.

In terms of the temperature range our results are similar to those of Höfer et al. who observed domain patterns 
up to 510 K and self-reversal of the surface polarization. Above this temperature their sample surface was uniform 
in PEEM. We see a higher contrast between the various domain states with an abundance of �ner tweed structure 
and can follow this contrast to a higher temperature (550 K). Höfer et al. ascribe the above TC contrast to tetrag-
onality favored by the outward movement of oxygen anions. To simulate this they use a bulk tetragonal structure 
and relax the surface layers. �is rumpling e�ect is very common for ABO3 surfaces including non-ferroelectric 
materials SrTiO3, CaTiO3 or SrZrO3

49. Surface tetragonality above TC is likely because of the natural tendency 
for anions to move upwards. We suggest that it persists despite the bulk transition into the cubic structure and is 
in fact stabilized thanks to the existence of dagger domains above the invariant plane rather than being due to an 
underlying tetragonal structure.

�e polarization charges at the surface can be assumed to be screened over a so-called dead layer. Within the 
framework of this model, the work function di�erence is directly proportional to the surface polarization50. For 
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inwards and outwards pointing polarization, the work function di�erence can be written as 2 (e/ε0) PRd, where e 
is the electronic charge, ε0 the permittivity of free space, PR the polarization and d an e�ective distance rumpling. 
�e work function di�erence above TC between domains with up and down polarization is 0.24 eV. Assuming a 
typical d value of 0.1 Å gives 10.6 µC/cm2 for the surface polarization charge, compared with 26 µC/cm2 for bulk 
BaTiO3.

Note that dipolar defects (resulting from oxygen vacancies) can also contribute to imprint the polar tetrago-
nality. Interestingly, the surface keeps the �ngerprint of the bulk ferroelectric state and the surface memory loss 
occurs in our experiments at a higher temperature (≥550 K). �e transition temperature for the memory loss of 
the FE domain structure (without considering desorption)48 occurs within the cubic phase ranges between 506 K 
and 586 K in the literature15,17,24.

Equally, our results are consistent with the phenomenon of self-reversal, although in our case it occurs 
at higher temperatures inside the stability range of the cubic bulk phase rather than just above TC. �e main 
di�erence is the observation and characterization of tweed, which was not reported by Höfer et al., probably 
because of the more than twice bigger FoV (150 µm against 67 µm in our case). Indeed closer inspection of their 
images reveals a similarly mottled texture, which may well be related to our tweed pattern. In addition, recent 
�rst-principles calculations in conjunction with far-infrared measurements51 have demonstrated that two dif-
ferent overdamped modes contribute to the dielectric response of BaTiO3 cubic phase and both modes show an 
in�ection in their temperature dependence at about 550 K. �e second mode (at ~70 cm−1 close to TC) shows the 
strongest in�ection and has been associated to small correlated regions of needle-like shape. �ese results can be 
fully connected with our results above for the ferroelectric surface.

In conclusion, we have used photoemission electron microscopy to study the evolution of surface charges 
through the FE to PE phase transition in BaTiO3 (001) and deep into the PE bulk phase. At room temperature, 
the surface displays arrays of ferroelectric domains superimposed with a clear signature of tweed. �e imprint of 
the initial contrast remains visible well above the bulk transition temperature, up to 550 K. �e domain patterns 
above TC are therefore surface proximity e�ects. �ey represent exactly the same patterns as in the ferroelectric 
phase and are hence a robust �ngerprint of the domain arrangement of the bulk FE state which can conserve the 
domain information up to 150 K above TC. At lower temperatures (below 550 K), the surface domain structure is 
pinned, presumably by a combination of point defects and the quasi-static tweed. Two polarization self-reversals 
occur, �rst the tweed below TC, then the domain polarization above TC. Both reversals minimize the depolarizing 
�eld at the surface. �e FE order changes a�er annealing at high temperatures (975 K), implying that both the 
tweed and the domain structure are unpinned. �e new pattern at room temperature is again fully compatible 
with the FE state of the bulk and microscopic surface �uctuations of the order parameter, leading to tweed.

Methods
Photoemission electron microscopy. �e sample is a BaTiO3 (001) single crystal, supplied by SurfaceNet 
GmbH. Before insertion into the vacuum system, the sample was exposed for 5 minutes to ozone using a UV 
lamp in air to remove surface organic contamination. It was then inserted into a dry load lock and pumped down 
within one minute. �e sample was then annealed in ultra-high vacuum (UHV) several times for 30 minutes at 
temperatures between 975 and 1025 K until no residual charging of the surface was observed in PEEM. UHV 
annealing creates oxygen vacancies to increase surface conductivity and minimize charging during the PEEM 
experiments52. �e surface cleanliness was checked by X-ray photoemission spectroscopy (XPS) and its crystal-
linity by low energy electron di�raction (see Supplementary Materials S4). �e temperature was measured with a 
Pt100 resistor (4-wire connection) which is located next to the heater and the sample plate. �e base pressure for 
all measurements was in the low 10−10 mbar range.

�e PEEM is a NanoESCA (ScientaOmicron) and comprises a fully electrostatic PEEM column, followed 
by an imaging double energy analyzer, as an energy �lter53. �e PEEM images were acquired using a He lamp 
(21.2 eV) and a 67 µm �eld of view (FoV). �e spatial resolution is 50 nm and the overall energy resolution was 
0.2 eV to allow rapid image acquisition during heating and cooling cycles. �e photoelectron kinetic energy (E) is 
measured with respect to the Fermi level (EF) of the sample holder. �us, for a metallic sample, the work function 
is the value of E-EF for the photoemission threshold. Note that the high extractor voltage reduces the threshold 
value via the Schottky e�ect54, in this case by 136 meV. �e image series as a function of energy are corrected 
for non-isochromaticity due to vertical dispersive plane55. �ey directly measure the variation in the local work 
function (i.e. the photoionization potential in the case of a material with non-zero band gap), in the 67 µm FoV. 
A quantitative analysis is performed using the photoemission spectrum extracted from each pixel, �tted with a 
complementary error function. �e procedure generates a 2D map of the work function, corresponding to the 
energy position of the threshold56.

Data Availability
�e datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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