J. Fluid Mech. (1995), vol. 282, pp. 1-20 1
Copyright © 1995 Cambridge University Press

Surface quasi-geostrophic dynamics

By ISAAC M. HELD!, RAYMOND T. PIERREHUMBERT?
STEPHEN T. GARNER! aAND KYLE L. SWANSON?
1 Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton,
NJ 08542, USA
# Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA

(Received 2 March 1994 and in revised form 14 July 1994)

The dynamics of quasi-geostrophic flow with uniform potential vorticity reduces to the
evolution of buoyancy, or potential temperature, on horizontal boundaries. There is a
formal resemblance to two-dimensional flow, with surface temperature playing the role
of vorticity, but a different relationship between the flow and the advected scalar
creates several distinctive features. A series of examples are described which highlight
some of these features: the evolution of an elliptical vortex; the start-up vortex shed
by flow over a mountain; the instability of temperature filaments; the ‘edge wave’
critical layer; and mixing in an overturning edge wave. Characteristics of the direct
cascade of the tracer variance to small scales in homogeneous turbulence, as well as the
inverse energy cascade, are also described. In addition to its geophysical relevance, the
ubiquitous generation of secondary instabilities and the possibility of finite-time
collapse make this system a potentially important, numerically tractable, testbed for
turbulence theories.

1. Introduction
The two-dimensional flow of an incompressible fluid is governed by the vorticity

equation 0,¢= — I, 0, (la)
where {=(0,,+0,)¥, (1b)
J(4,B) =[(©,A4)0,B—(0,B)0, A]. (1¢)

This equation and its variants have proved useful in meteorology, oceanography and
magnetodynamics. But interest has also been generated for more abstract reasons: the
‘turbulent’ flows that it produces have a flavour that is quite distinct from those
produced by the three-dimensional Euler equations; and it is much more com-
putationally tractable than its three-dimensional counterpart.

This paper is devoted to a fluid dynamical system with a very similar formal
structure, describing the evolution of a surface buoyancy or temperature field in a
rapidly rotating, stratified, uniform potential vorticity fluid. The equations take the

form 2,0 = —J,0), z=0, a)
0 =0y, 2b)

(O +0,, 40,0 =0, z>0, Q0)

Yy—-0 as z-o0. 2d)

A scalar is once again advected in two dimensions by a non-divergent flow whose
structure is determined by that scalar, but with a different relation between the flow and
the scalar field. Here this relationship is determined by solving Laplace’s equation for
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z > 0 with the Neumann boundary condition along z = 0 provided by the advected
scalar. In the following, we refer to the solutions to (1) as two-dimensional Euler, or
simply two-dimensional, flows, and the solutions to (2) as surface quasi-geostrophic, or
SQG, flows.

Our motivation for studying (2) is partly geophysical, in that there are potential
meteorological and oceanic applications. But it is again partly mathematical, in that
SQG flows have characteristics that are sharply distinguished from the solution to (1)
while retaining the computational advantages of a two-dimensional system. Some of
these characteristics, such as nonlinear interactions that are more local in the spectral
domain, and the potential for the formation of finite-time singularities, give SQG
flows a flavour that is intermediate between the two- and three-dimensional Euler
equations. Thus, study of this system can be justified on physical grounds as well as by
the hope that it will provide a useful testing ground for turbulence theories more
generally. Our approach in this paper is to touch upon a series of problems that
illustrate some of the characteristics of SQG flows, without detailed analysis, so as to
motivate more detailed studies.

2. Basic equations

Quasi-geostrophic (QG) theory describes the evolution of the departures from solid-
body rotation in a rapidly rotating, stably stratified fluid. In its Boussinesq version, the
flow evolves according to the coupled vorticity () and buoyancy (@) equations:

0,{=—JW,O+f0.w, (Ga)
0,0 = —J(y,0)— N?w, (3b)
O =f0,y. o)

Here i is the streamfunction for the horizontal geostrophic flow, (u,v) = (—v,, ¥,),
w is the vertical motion, f is the constant vorticity due to the background rotation,
while N(z) is the buoyancy frequency of a reference state. The vorticity is defined
as in two-dimensional flow (15). Eliminating the vertical motion, one obtains the
pseudo-potential vorticity equation

atq=_'](¢-’q); qE(axx+ayy+az€az)¢; GE(f/N)2~ )
If we specialize to the case of constant N, the factor ¢ can be subsumed into a rescaled
vertical coordinate, Nz/f (in which case we retain the notation z for the rescaled
coordinate), and the potential vorticity is now simply the three-dimensional Laplacian
of the streamfunction.
At a flat lower boundary, the condition of no normal flow is

2,0 =—J,0), z=0. (5)

In the presence of a surface with elevation A(x, ), vertical advection across the mean
density gradient leads to the modification

0,0 = —J(y, O + N*?h), (6)

but consistent with quasi-geostrophic scaling this boundary condition is still applied at
z = 0. If a flat upper boundary is imposed, then (5) also holds at z = H.

The familiar special case of two-dimensional flow is obtaining by assuming that the
streamfunction is independent of z and, if 4 + 0, setting N2 = 0. A less familiar special
case is that of SQG flow, in which it is assumed that ¢ = 0, so that the interior equation
is identically satisfied, and the flow is driven entirely by the surface @-distribution. If
the surface is flat, if N2 is a constant, and if there is no upper boundary, then the
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resulting equations are as displayed in the introduction, where we have subsumed
the constant f into the definition of &. Solutions are assumed to decay as z— 0. In the
presence of orography, (2a) is replaced by (6). If ¢ = 0, but with non-constant N2, the
dynamics is unaltered qualitatively, but the elliptic equation to be solved, replacing
(2¢), has non-constant coefficients.

One can easily generalize to the case of ¢ = ¢,, a non-zero constant. For example,
in the presence of a uniform horizontal shear, with the total flow described by the
streamfunction 3¢,y*+ 1, one need only incorporate advection by the mean flow,
u = —gq,y, into the buoyancy equation.

Generalization to the non-Boussinesq case is also straightforward. For an ideal gas
over a flat surface, © is now interpreted as the surface potential temperature, which is
again conserved following the non-divergent geostrophic flow, but with

@Eazw_(K/H)¢7 z=0, (70)
0=(0::+0,) ¥y +p 20 (pN?8, %), z>0, (76)
p=exp(—z/H). (7¢)

Here « = (¢, —c,)/c, (~ 2/7 for air), where ¢, and ¢, are the heat capacities at constant
pressure and volume, and H is the scale height of a reference atmosphere.

One can always divide the total flow at any instant into a part induced by the surface
O-distribution and a part induced by the interior g-distribution. There are
meteorological problems for which the former is thought to predominate, motivating
the analysis of this special case. Schar & Davies (1990) use this model to discuss aspects
of cyclone development, while Smith (1984) uses it to analyse the generation of
cyclones by isolated orography. (Schar & Davies actually consider the geostrophic
momentum rather than quasi-geostrophic equations —see §5.) Blumen (1978) has
presented the Kolmogorov-Kraichnan scaling arguments for the spectral shapes
expected in this model’s turbulent inertial ranges, and these have recently been
compared with numerical simulations by Pierrehumbert, Held & Swanson (1994,
referred to as PHS in the following). Hoyer & Sadourny (1982) discuss turbulent
closure theory for the more general Eady problem (with two surfaces), and muiti-
fractal characterization of the inertial range SQG vorticity has been pursued in
Pierrehumbert (1994). Constantin, Majda & Tabak (1994) study singularity formation
in this model.

Introducing an environmental horizontal buoyancy gradient in the flat-bottomed
case, analogous to the g-effect in two-dimensional flow, results in

0,6 = —J(f, 0+ 4y). ®)
The constant A can equivalently be thought of as due to a background vertical shear
in the x-component of the flow, 0, u = — A. As this contributes nothing to the interior

potential vorticity, the interior equation is unaltered. This system now supports linear
waves with the dispersion relation

w=—Ak/K, ()]
where ¢ = Re Pe'*#tlv—oh ' g2 — k24 P (This should be contrasted with the familiar
Rossby wave dispersion relation, w = — fk/K?.) These are edge waves that decay away
from the surface as e %%, The interaction between two such waves, one at the surface
and another at the tropopause, gives rise to baroclinic instability in Eady’s (1949)
classic model of that process. Eady edge waves are identical dynamically to topographic
edge waves, of importance in oceanography, where the buoyancy gradient at the
surface is caused by a sloping lower boundary (as in (6)) rather than a horizontal
temperature gradient. More abstractly, (8) provides a model for the interaction
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between waves and turbulence that can serve as a counterpoint to that provided by
two-dimensional flow.

The model (2) can also be obtained from the full quasi-geostrophic model in a region
removed from any boundaries, in the case that N is a discontinuous function of z, an
approximation that is often made when modelling the tropopause. Assuming that
g = 0 everywhere except at the location of this discontinuity (at z = z,), so that the flow
decays away from z, on both sides, one finds by integrating across the discontinuity
that

0, A =—J,A), (10a)

where A=0,y/N>"—(@,¢/N?". (10%)
Since

Alz) ={(N"+N)K/f} P(z,) (11

for a wave with horizontal wavenumber K, this problem reduces to SQG after rescaling
coordinates. Aspects of linear edge wave dynamics at the tropopause have been
examined by Rivest, Davies & Farrell (1992) and Rivest & Farrell (1992). Juckes (1994)
has recently argued the case for the relevance of SQG for tropopause dynamics. Some
limitations of this model of the tropopause are illustrated in Garner, Nakamura &
Held (1992).

Finally, we note that even if N? is independent of height, one can still generate a
horizontal surface in the interior on which SQG dynamics is obeyed, by assuming that
the vertical shear 0, u is initially a discontinuous function of height.

3. Two-dimensional versus SQG

Some of the distinctions between SQG and two-dimensional flows are immediately
evident from the form of the equations.

In two-dimensional flow, the streamfunction induced by a point vortex, { = 6(x’), in
an unbounded domain is ¥ (x) = —(2n) ' In(|x — x’[). In SQG flow, & = §(x’) results in
the flow ¢(x) = —(2n|x—x’|)"*. The circumferential velocities around the vortex are
proportional to r* for two-dimensional flow and 2 for SQG flow, r being the distance
from the vortex centre.

The more singular SQG Green’s function has several important consequences.
Nearby point vortices rotate about each other more rapidly than in the two-
dimensional case; in consequence, a greater ambient strain is required to pull them
apart, since the rapid rotation averages out the effects of the strain. Conversely,
distant eddies are less tightly bound to each other than in two-dimensional flow.
Taken together, a greater tendency to form localized vortex assemblages is implied.
Since the flow dies away from a point vortex as r? rather than r™! in SQG, the
aggregate effect of distant eddies on the local velocity field is more limited. SQG is
qualitatively characterized by the preponderance of spatially local rather than long-
range interactions.

In terms of spectral amplitudes, if ¥y = Re (¥xe'***) in two-dimensional flow, then
¢ = Re(Z ek *) with

Zy=—|K]® Vg (12)
Since the vertical structure of a sinusoidal disturbance in SQG theory is e the
analogous relation is

O =—|K] ¥ (13)

In both models, the flow can be thought of as determined by a smoothing operator
acting on the conserved scalar, but in SQG there is less smoothing. This implies that
large-scale strain will play a relatively smaller role in the advection of small-scale
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features in SQG, resulting in a cascade of variance to small scales that is more local in
wavenumber. This matter is discussed in Hoyer & Sadourny (1982) and PHS. The sort-
range SQG interactions also suggest that strong deviations from the predictions of
mean field theory (see Miller 1990 for the two-dimensional case) are to be expected.

A step discontinuity of vorticity implies a discontinuity in velocity gradient, but
velocities remain finite and continuous. In consequence, for two-dimensional flow
uniform-vorticity patches are quite well-behaved, and ‘contour dynamics’, in which
the vorticity distribution is approximated by such patches, has proven to be a useful
computational approach (Dritschel 1989 a, and references therein). Homogenization of
potential vorticity figures prominently in many physical problems, with the sharp
vorticity interfaces produced at the edge of mixed regions being rather inactive (see
Rhines & Young 1982 and Pierrehumbert 1991 for oceanic and atmospheric examples,
respectively). Homogenization in the SQG system is expected to proceed differently,
given that the tangential velocity diverges logarithmically in the vicinity of a step
discontinuity in @.

To better appreciate the nature of the singularity, consider a curve I with @ = 1
inside and @ = 0 outside. By integrating the Green’s function over the path, the
velocity at (x = 0,y = 0) on the boundary is

ue,+ve, = (2m)™* f (e,dx" +e,dy)/(x2+y )2, (14)
r

where e, and e, are unit vectors in the x- and y-directions. If the boundary is twice
differentiable, we can adopt local coordinates such that y = 3bx’%. Substituting into
(14), the contribution from the local, singular portion of the integral is, to leading
order,

ue,+ve, = (211:)‘1J dx'(e, /x| + e, bx’ [|x']), (15)

where I’ represents the portion of the curve near (0,0). According to (15), the
tangential velocity u is divergent, but the local contribution to the normal velocity v
(which is what displaces the bounding curve) actually vanishes to leading order. As a
result, the evolution of such a discontinuity can be relatively benign, despite the infinite
tangential velocities. (Waugh & Dritschel 1991 have studied contour dynamics for a
range of Green’s functions, but not with singularities as strong as SQG.)

For smooth initial conditions, the two-dimensional Euler equations cannot form
singular vorticity gradients in finite time (Rose & Sulem 1978, and references therein).
This has also been demonstrated for QG dynamics in the special case when @ is
constant on the boundaries (Bennett & Kloeden 1980, 1982). Bennett & Kloeden point
out, however, that their proof breaks down when there are non-zero boundary
temperature gradients, admitting the possibility of finite-time singularity formation.
SQG is the natural simplest case in which to study the possibilities for breakdown.
Hoyer & Sadourny estimate the breakdown time as fL /8@, where L is the characteristic
lengthscale and 66 the characteristic buoyancy perturbation. Recently, Constantin et
al. (1994) have presented detailed numerical evidence for finite-time collapse in SQG.
They argue that the simple initial condition

6 = cos(y)+sin(x)sin(y) (16)

forms a cusp in the temperature field at ¢t =1, ~ 8.5, with the magnitude of the
temperature gradient oc (r—t,)""*. The SQG system, once desingularized by the
addition of a suitably scale-selective dissipation, should provide a useful model for
examining the interaction of nearly singular structures with large-scale flows.
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FIGURE 1. Growth rates for a Gaussian temperature filament in SQG (——) compared with those for
a vorticity filament in two-dimensional flow (-—). In both cases, the wavenumber is non-
dimensionalized by L. Growth rates are non-dimensionalized by BL™! for SQG and by Z for two-
dimensional flows (see (18)).

It should be emphasized that the formation of a step discontinuity in @ is not
energetically precluded in SQG. The conserved energy in this system is the kinetic plus
available potential energy in the three-dimensional domain, z > 0:

dxdydz (u+ 02+ @2/ N?)/2. 17)
JII..

The logarithmic singularity in the tangential velocities is integrable. Furthermore, if the
discontinuity lies along a line, then it is stable, as is any monotonic distribution O(y).
The stability can be inferred as a special case of the Charney—Stern—Pedlosky criterion
(Pedlosky 1979), which for SQG states that instability is precluded unless 0, @ changes
sign. Hence the singular character of SQG interfaces cannot lead to the large-scale
rollup typical of vortex sheets in two-dimensional flow.

The simplest unstable configuration is that of a temperature filament, analogous to
a vorticity filament in two-dimensional flow. In the two-dimensional case, the parallel

flow defined by ¢ = Zexp(—(y/L)), (18a)

for example, is unstable, with the most unstable wavelength proportional to L, and the
growth rate proportional to the magnitude of the vorticity, Z. The analogous parallel

SQG flow, with
6 = Bexp(—(y/L)?, (185)

is also unstable. (A closely related problem is treated by Schar & Davies 1990.) The
most unstable wavelength again scales with L, but the growth rates are proportional
to BL™1. This is the magnitude of the vorticity in the associated shear flow, which is the
only available timescale. The non-dimensional growth rate spectra for the Gaussian
filament in two-dimensional and SQG flows are compared in figure 1.

The scaling of the growth rates of filamentary instabilities has important
implications. The shedding and stretching of vorticity filaments is a generic feature of
two-dimensional flows (e.g. Dritschel 1988; Pierrehumbert 1991, and references
therein). As a filament is stretched, the growth rate of secondary instabilities on this
filament remains constant, since vorticity is conserved. As a result, the filament is
relatively easily stabilized by larger-scale shears and strains induced by remote vorticity
distributions, as these need only be of the same order of magnitude as the shear induced
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F1GuUre 2. Evolution of ellipse with eccentricity of 4 in SQG. Temperature
is shown at times ¢t = 0, 8, 16, 26.

by the filament itself (see Dritschel 19894; Waugh & Dritschel 1991). In the SQG case,
in contrast, it is the temperature within the filament that is conserved, while the
vorticity, and the growth rate of the instability, increase as the filament ts stretched and
thinned. Whatever environmental strains that exist will eventually be overcome, and
the instability of the filament is inevitable. The inevitability of this secondary instability
provides an alternative way of seeing that the cascade of variance to small scales in
SQG is spectrally local (PHS). These instabilities should in turn lead to further
filamentation and instability, resulting in the ‘curdling’ of the filament on ever finer
scales.

4. Examples
4.1. An elliptical vortex

In our first illustrative example of SQG flow, the initial condition is the smooth
elliptical distribution , .
Ol;—o = exp (—x*— (4)"). 19)

As shown in figure 2, filaments are shed by the spinning vortex. By ¢ = 26, instabilities
are clearly seen on the outer filament, with other small-scale structure closer to the



8 1. M. Held, R. T. Pierrehumbert, S. T. Garner and K. L. Swanson

FIGURE 3. Vorticity in two-dimensional flow in which the initial condition in vorticity is identical
to the initial condition for temperature in the SQG flow of figure 1, at r = 20 and 40.

vortex barely resolved. In the two-dimensional flow of figure 3, the same initial
condition is chosen for {. Filaments are again shed from the vortex as it settles into a
more circular shape, but there is no sign of a shear instability along these filaments;
evidently they have not been thrown far enough from the stabilizing adverse shear of
the central vortex. Note also that the two-dimensional vortex has become quite
symmetrical through the filamentation process, while the SQG vortex has retained
more of its eccentricity.

This result and those to follow are obtained with a 512 x 512 doubly periodic spectral
model. In the present case, the domain is square, with sides of length 2r, and small-
scale mixing has been included as vV¥(T or {), with v = 107!°. The details of the
solution would be slightly different in an infinite domain and with a different type of
dissipation. The filamentary instability is still not very well resolved: its wavelength
increases as v is increased.

4.2. Flow over an isolated mountain

As a second example, consider the start-up vortex generated by blowing a uniform
wind over an isolated mountain. The SQG equation is (6). The mountain is specified
by setting

N?h = exp (—(x*—y*)/r"). (20

The initial condition is v = Ue,, with U =0.10 and r=0.5. (Dimensionally,
U/(NH) = 0.10, where H is the height of the mountain.) The domain is once again
doubly periodic with sides of length 2n. The air initially on the mountain warms
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FiGURE 4. SQG flow over a Gaussian mountain, with U/(NH) = 0.1; surface potential
temperature (the conserved quantity in (6)) is shown at r = 5, 10 and 15.

adiabatically as it descends, developing cyclonic vorticity, while the air replacing it
cools, generating anticyclonic vorticity. As the flow evolves (figure 4), not only does the
filament connecting the two vortices develop a well-defined instability, but a rich
assortment of small-scale structures develops over the mountain. (This calculation was
performed with v = 107, and the solution does have a small amount of grid-scale
noise. With a value of 107!, the number of vortices into which the main filament
breaks is smaller.)

In the analogous two-dimensional flow (not shown), the initial evolution is similar,
but the filament does not break up into vortices in the cases, and at the resolutions, that
we have examined. Thompson & Flierl (1993) provide contour dynamics solutions to
the two-dimensional problem for the case of a cylindrical mountain, confirming this
picture.

4.3. Filament instability

As a third example, consider the finite-amplitude evolution of the instability of the
filament (18), for which the linear growth rates have been shown in figure 1. The initial

condition is
O =exp(—y)(1+0.05ycos (kx)) 2n

with k = 0.8, which is close to the most unstable wave.

A secondary instability is seen to develop after ¢ = 100 (figure 5). The e-folding time
and scale of this secondary rollup are consistent with the instability of a filament that
has been stretched and thinned by a factor y of about 100. We presume that a higher-
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t=86.5

FIGURE 5. An unstable temperature filament, with the initial condition (21);
temperatures shown at ¢t = 86.5 and 102.5.

resolution computation would show a tertiary instability generated in an analogous
way by the rollup of these secondary waves, but on time and space scales compressed
by another factor of y. One can imagine an infinite series of these instabilities
developing in a self-similar fashion, with arbitrarily small spatial scales developing in
the finite time obtained by summing the geometric series y '+ x 2+.... In the
analogous two-dimensional problem (not shown) the vortices that form from the initial
instability twist the remnant vorticity filament around themselves, but no secondary
instabilities are seen. The solution is very similar to that for a discontinuous strip of
vorticity, for which we have contour dynamics solutions (e.g. Pozrikidis & Higdon
1985).

We suspect that this ‘curdling’ cascade of filamentary instabilities is a generic feature
of SQG flows. The possibility of generating infinite local strains, as in the example of
Constantin ez al. (1994), as well as infinite secondary instability growth rates, creates
a variety of possibilities. In particular, these secondary instabilities could be suppressed
in regions where the amplifying strain is co-located with the thinning filament. We
expect filament curdling to appear more clearly when the filament thinning is due to
strain associated with remote temperatures.

4.4. Edge wave critical layer

Critical layers, locations where a wave’s phase speed with respect to the ambient flow
vanishes, play important roles in many geophysical flows, as they are locations of wave
breaking and mixing. While Rossby wave critical layers have been studied intensively,
we are unaware of any previous studies of the SQG edge wave critical layer.
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FiGure 6. Evolution of temperatures in the edge wave critical layer (see text),
at ¢t = 14, 16, 18 and 20.

Start with a wave propagating on an environmental temperature gradient 4, and
assume also a constant meridional shear so that the basic state zonal wind is
U= —Az+4vyy. A linear disturbance to this flow satisfies

Oy, ==Vt A, z=0, (22a)
(Ope 8y, +0,)¥ =0, z>0. (22b)
For a stationary wave, 0, = 0, with y" = Re{¥e'*"},
Yy, =AY, z=0. (23a)
(—k*+9,,+0,)¥=0, z>0. (23b)

As the wave approaches its critical latitude at y = 0, the term involving the zonal
wavenumber become negligible in (23), so that to leading-order ¥ satisfies Laplace’s
equation in the ( y, z)-plane. An harmonic function that captures the leading singularity
at (0,0) is

¥ oc tan"'(z/y) +const. (24)
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The streamfunction develops a jump discontinuity at y = 0, while the zonal velocity
and the temperature are é-functions to leading order. This is a more singular behaviour
than occurs at a Rossby wave critical layer, for which ¥ = yIn(y)+ const.

For a first inspection of the nonlinear SQG critical layer using the doubly periodic
spectral model, we choose a rectangular domain (L,, L,) and the initial condition
O = asin(2ny/L,), which produces eastward and westward zonal flows centred at
y =0 and {L, respectively, where « > 0. We then incorporate a mean temperature
gradient, 4 < 0. Since A is negative, edge waves propagate eastward with respect to the
mean flow, so they can be stationary on the westward flow near 3;L,. To force the
stationary edge wave, we also include the topography

h = Acos(2rx/L,)exp(—u(y—L,/2)*) g(0). (25)

The function g(¢) increases linearly from 0 at = 0 to 1 at ¢t = T, after which it is held
constant; instantaneous imposition of the topography would generate transients that
obscure the stationary wave. A linear stationary wave is generated in the vicinity of this
source, which then propagates to the critical latitudes at y = 3L, and 3L,.

The evolution of the temperature field near 3L, is shown in figure 6. The parameters
are A=02,4=—10, u=(0.02)% L, =2, L,=1, T, = 10, and v = 107*°, with V*
diffusivity. The wave has just begun to overturn when it quickly breaks down, and the
layer is then filled with small-scale structures in short order. Examination of the flow
in the linear part of the domain shows that substantial reflection is occurring. Indeed,
if the flow reaches a statistically steady state in which the width of the region of mixing
does not expand in time, one can show, using methods similar to those in Killworth &
MclIntyre (1985), that the incident wave action is perfectly reflected. We see substantial
generation of higher harmonics, more so than we expect from the Rossby wave
analogue. (For an example of an analogous calculation in two dimensions, see Beland
1976.) We postpone an attempt at detailed comparison of nonlinear critical-layer wave
breaking in the two-dimensional and SQG models, which would likely require more
resolution within the critical layer itself.

4.5. Mixing by a perturbed edge wave

The critical-layer problem is a fairly complex setting in which to study edge wave
breaking and mixing of surface temperature. A simpler flow is provided by a free,
finite-amplitude wave perturbed by a smaller-scale disturbance. This example illustrates
the nature of the coexistence of waves and turbulence in SQG, and also allows one to
study how the progress of homogenization is affected by the somewhat singular
dynamics of a step-discontinuity interface in SQG. This class of mixing problems is
discussed at length in the two-dimensional Rossby wave case by Pierrehumbert (1991),
to which the reader is referred for further background.

We consider an x-periodic channel of length 2n with walls at y =0 and =n, and
employ the initial condition

Y = Acos(x)sin(y)+ ecos (2x)sin (2y), (26a)

O = Ay—+/2cos(x)sin(¥)—e+/8cos (2x)sin (2y). (26b)

When ¢ = 0, this leads to a travelling edge wave moving with phase speed ¢ = —4/+/2
as discussed in the introduction. It is readily shown from the Jacobian form of the
nonlinearity that the undisturbed wave is an exact solution of the full nonlinear

equations, in the absence of damping. When A is sufficiently large (4 > 4/+/2), the
streamlines for this travelling wave, in the reference frame comoving with ¢, produce
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FiGure 7. Initial evolution of temperatures in the perturbed edge wave, for t = 0.5, 5.0,
7.5 and 10.0.

a closed-streamline region bounded by a separatrix rooted in a pair of stagnation
points; such structures, under perturbation, generically lead to chaotic mixing and
ultimate homogenization of tracers within well-defined mixing regions extending
outward from the separatrix as the strength of the perturbation is increased. The
kinematic case (specified i) is discussed by Knobloch & Weiss (1987), Weiss &
Knobloch (1988), and Pierrehumbert (1991). The dynamical case for two-dimensional
flow is discussed by Pierrehumbert (1991). Here, we see how the dynamical case differs
for SQG. In the dynamical case, the fluctuations necessary for mixing are not imposed
externally, but instead arise naturally from the fact that the flow deviates from a steady
solution (viewed in the comoving frame), when ¢ is non-zero.

We present simulations with 4 =1, 4 =1, and ¢ = 0.2, carried out with 512 x 256
resolution, using V*¢ dissipation with coefficient 1.0 x 107%°, Figure 7 shows the initial
stages of the development of the @-pattern. Rapid gradient intensification is seen along
the bounding streamline emanating from the leftmost stagnation point on the
boundary. Exponential amplification of gradients is always expected in such problems,
but there is indication of actual finite-time collapse to infinite gradients in this case, as
in the simulation of Constantin et al. (1994). With dissipation as described, the
integration proceeds through this time without any curdling. Filamentation and
curdling are seen at later stages of the development.

The longer-term evolution is shown in figure 8. The development is characterized by
the repeated formation of filaments as fiuid is swept through the stagnation point. In
the two-dimensional Euler case discussed in Pierrehumbert (1991), the filaments
elongate and fold, leading ultimately to homogenization within certain mixing regions,
but the folding is governed by the large-scale streamline pattern; there is little tendency
for secondary rollup or small-scale curdling. A frame from the two-dimensional Euler
calculation (case [1 x 2s] of Pierrehumbert 1991) is shown in figure 8. In contrast, as we
have now come to expect, the filaments in the SQG case undergo a variety of secondary
curdling and rollups at the tips.

The secondary instability has a spatially developing character, as can be seen
especially well in figure 9. Filaments are created at the stagnation point, and the initial
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FIGURE 8. Further evolution of the perturbed edge wave, at £ = 15, 20 and 25. Also shown is a
snapshot of vorticity from the analogous calculation in two-dimensional flow, at r = 39.

FIGURE 9. Close up of the perturbed edge wave at ¢ = 25, with streamlines
of the unperturbed wave.

stretch downstream of this point is smooth. Secondary instabilities amplify as they
propagate along the filament. In consequence, there is a very ‘turbulent’ mixing region
on the right-hand side of the eddy which is quite unlike the filamentary structure that
predominates on the left. The cascade of temperature variance to small scales evidently
has a dual character: sufficiently energetic large eddies can still exert a controlling
influence over a range of scales (two orders of magnitude in this case), generating two-
dimensional like filamentation, but with secondary instabilities eventually generating
a local cascade.

Despite the fact that the filaments are less passive in SQG than in the two-
dimensional case, the disposition of the mixing regions is still controlled by the large-
scale streamline geometry. One still finds active mixing regions centred on the lower
and upper eddies, separated by a sinuous mixing barrier that snakes through the
central portions of the domain. Curdling in SQG makes the mixing more diffusive in
character, by decreasing the correlation length of the velocity (analogous to the mean
free path in kinetic theory). In doing so, it makes the mixing less effective than the
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stretch and fold mixing that predominates in chaotic advection and two-dimensional
Euler flows. Although we have not quantified the distinction, our impression is that
homogenization is more difficult to obtain in SQG than in two-dimensional flows.
As in two-dimensional Euler flows, the mixing does not destroy the wave. Rather,
the large-scale wave sweeps up the energy of the perturbation, and thereafter continues
to propagate in an orderly fashion, a particular instance of the inverse energy cascade.

5. Turbulence

As described by Blumen (1978), Juckes (1994) and PHS, SQG dynamics possesses
two quadratic conservation laws, analogous to energy and enstrophy consideration in

two-dimensional flows: V={6% and E=-—{y6) » 27)

Curly brackets denote an average over the domain. E is the kinetic plus potential
energy of the flow in three dimensions (see (17) above). Setting

V= jv(k) dk and E= fe(k) dk, (28)

the Kolmogorov—Kraichnan theory predicts two inertial ranges for homogeneous
isotropic turbulence, one at high wavenumbers through which V' cascades to smaller
scales, with v(k) ~ k™5/® and e(k) ~ k™3, and one at low wavenumbers, where E
cascades to larger scales, with v &~ k™! and e & k2. The variance of the surface flow,
{u* +v*}, has the same spectral shape as V. The spectral slope of the cascading scalar
at small scales is expected to be steeper than in two-dimensional flows (—32 as opposed
to — 1), but the variance of the flow itself should be less steep (—2 as opposed to — 3).
Numerical experiments described in PHS at 512 x 512 resolution confirm these
qualitative predictions.

Owing to the locality of the interactions in SQG, one might expect the inertial ranges
to be more easily simulated than in the two-dimensional Euler case, in which it has
been notoriously difficult to obtain convergent results with increasing resolution.
However, PHS find approximately the same order of discrepancy in two-dimensional
and SQG models between the predicted slopes for the direct cascade and those
obtained numerically. (Borue 1994 has recently found a clear k™! enstrophy cascading
range for two-dimensional flow in a 4096 x 4096 spectral model, and it will be
interesting to solve the SQG equations at the same resolution.)

PHS also examine a generalization of SQG, in which the relation between the
streamfunction and the advected tracer in the spectral domain is

O, = —I|KI* ¥y, (29)

so that « = 1 and 2 correspond to SQG and two-dimensional flow respectively. Their
results show that the prediction of the direct inertial range spectral shape clearly breaks
down as « increases beyond 2. In fact, the simulated slope for « = 3 is similar to that
for & = 2. It appears that « = 2 may be a special point, marking the boundary between
flows for which the Kolmogorov—Kraichnan predictions for the direct cascade are
satisfied, at least approximately, and flows in which the interactions are so non-local
that spectra are better described by Batchelor’s predictions for a passive tracer.
Figure 10(a) is a snapshot of the @-field in the SQG simulation of PHS, in which the
flow is maintained by forcing at large scales (wavenumbers 4-6). The corresponding
vorticity field, (9,,+0,,) ¥, is shown in figure 10(b), where only values larger than a
threshold value are shaded. This vorticity field is of interest when one considers the
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(a) 3

®)

FiGure 10. Snapshdt from a forced homogeneous turbulence simulation in SQG: (@) temperature;
(b) vorticity with only those points with values larger than a critical value shaded.

geostrophic momentum (GM) equations (Hoskins 1975). In this extension of quasi-
geostrophic theory, one approximates the momentum by the momentum of the
geostrophic flow, but advects it with the full, geostrophic plus ageostrophic, flow. It
turns out that the GM equations can be solved by transforming to ‘geostrophic
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s e

FiGURE 11. Snapshot of temperature in an unforced, decaying SQG turbulence simulation, with
white noise initial condition.

coordinates’ in which coordinate system the equations simply reduce to quasi-
geostrophy. Therefore, one can take a quasi-geostrophic solution, such as that in figure
10, and transform it into a solution of the GM equations. The Jacobian of the
transformation is essentially 1—¢/f, where { is the vorticity displayed in figure 10(5).
When the Rossby number {/f reaches unity, GM predicts the formation of a frontal
singularity. The implication of figure 10 is that one can anticipate a filigree of micro-
frontal singularities in homogeneous turbulent simulations of the geostrophic
momentum equations. The possibility that the quasi-geostrophic equations themselves
would also form such a pattern of discontinuities has been raised by Constantin et al.
(1994). But GM predicts that the flow will develop a singularity well before the SQG
equations do.

The inverse energy cascade in SQG appears to have much in common with that in
the two-dimensional case. Figure 11 is a snapshot from the free evolution of an SQG
flow with an initial white noise temperature field. (The scale-selective diffusivity is once
again V®T.) Vortices form as the cascade proceeds, more or less as in two dimensional
flow (e.g. McWilliams 1984), and the evolution can be thought of as the movement of
the vortices in the flow field induced by other vortices, with occasional intense
encounters. There is considerable pairing of vortices and the sporadic formation of
larger groups, but we have not yet attempted to determine whether there is a greater
tendency for the formation of assemblages than in two-dimensions, as suggested by the
discussion in §3. A qualitative difference hinted at by this figure is that vortex
encounters are more violent than in two-dimensional flow: rather than merger
accompanied by the formation of relatively passive filaments, encounters such as that
seen on the left edge of the domain are almost invariably accompanied by the
formation of small satellite vortices, through the filamentary instabilities described
above. The formation of these satellite vortices should modify the evolution of the
vortex size probability distribution in important ways.

Rhines (1975) has discussed the way in which the inverse energy cascade in two-
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dimensional flow is halted by the presence of an environmental vorticity gradient, the
beta-effect (see also Vallis & Maltrud 1992). In the two-dimensional case, within the
K5 inverse energy cascade range the characteristic inverse timescale, or advective
frequency, of an eddy with wavenumber K = (k®+ %)'/% is

w0,y = (K* E(K)V? oc K2,

Comparing with the Rossby wave dispersion relation, w, = — gk/K?, one sees that
wave dispersion will eventually dominate, except along the & = 0 axis. The transition
is a fairly sharp one: wg/w,, ~ k™2 for [ = 0.

In the SQG case, the surface flow and buoyancy are predicted to have a K ! spectral
shape, so that w,, oc K. The edge wave frequency is w, = —Ak/K, giving the ratio
W,/ wqq o k71 for I = 0. Thus, we still expect a transition between turbulent and wave-
like behaviour, but a more gradual one, with increasing scale. Numerical experiments
in which the inverse energy cascade is arrested with an environmental temperature
gradient have yet to be performed.

6. Concluding remarks

An assortment of results from the SQG model have been presented which
demonstrate the distinctive characteristics of its flows, and its potential importance as
a numerically tractable turbulence model. As contrasted with two-dimensional flows,
the shorter-range interaction leads to a turbulent cascade that more closely resembles
that described in Richardson’s famous ditty: ‘big whorls have little whorls...".

We have said relatively little about physical applications. One difficulty is that the
cascade to smaller scales in SQG is invariably marked by increasing Rossby numbers,
since it is temperature, not vorticity, that is conserved. Since vorticity involves an
additional horizontal derivative, it increases as the scale is reduced. QG theory is only
valid for small Rossby numbers, so these equations are self-consistent over a large
spectral range only if the Rossby number of the energy-containing eddies is very small.
In the atmosphere, one has at best a Rossby number of 0.1 and one decade of quasi-
geostrophic scales of motion. In addition, as the horizontal scale decreases, so does the
vertical scale of the SQG flow, eventually submerging the eddy in the planetary
boundary layer, where the flow is strongly damped and geostrophy breaks down in any
case.

Juckes (1994) has argued that SQG dynamics is relevant for tropopause perturbations
(see §2). This appears to be a better candidate than the solid surface, since one no
longer has to deal with the frictional effects in the planetary boundary layer, at least.
However, the model can only be relevant over a fairly narrow spectral range once
again, because of the size of the Rossby number in the atmosphere. Also, the
approximations inherent in QG theory break down at the tropopause as soon as
vertical displacements of fluid particles become substantial: for example, the familiar
phenomenon of tropopause folding cannot easily be described within QG theory.
Garner et al. (1993) describe a flow for which the breakdown of SQG is clear. The
implications of SQG theory for tropopause dynamics remain to be clarified.

The range of nearly geostrophic scales in the oceans is larger than in the atmosphere.
While interior potential vorticity may always be present, it need not dominate the
surface temperature evolution. The interior potential vorticity should produce an
enstrophy cascade similar to that in two-dimensional flow, which yields a flow
spectrum that is steeper than the SQG cascade at the surface (k™2 as opposed to k7°/3),
Therefore, if allowed to proceed through a substantial cascade, the flow induced by the
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surface temperature should dominate on small enough scales. A complex pattern of
frontal structures, such as that seen in figure 10, should result. The analysis of oceanic
surface temperature fields may uncover some SQG-like features.

We thank M. Juckes and A. Majda for helpful conversations on this topic. R.T.P.
and K.L.S. were supported by NSF Grant ATM 8§9-20589.
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