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Abstract

We present a fast, memory efficient algorithm that generates a manifold triangular mesh S passing through a set

of unorganized points P � R3. Nothing is assumed about the geometry, topology or presence of boundaries in

the data set except that P is sampled from a real manifold surface. The speed of our algorithm is derived from a

projection-based approach we use to determine the incident faces on a point. We define our sampling criteria to

sample the surface and guarantee a topologically correct mesh after surface reconstruction for such a sampled

surface. We also present a new algorithm to find the normal at a vertex, when the surface is sampled according

our given criteria. We also present results of our surface reconstruction using our algorithm on unorganized point

clouds of various models.

1. Introduction

The problem of surface reconstruction from unorganized

point clouds has been, and continues to be, an important

topic of research. The problem can be loosely stated as fol-

lows: Given a set of points P which are sampled from a sur-

face in R3, construct a surface S so that the points of P lie

on S. A variation of this interpolatory definition is when S

approximates the set of points P.

There are a wide range of applications for which surface

reconstruction is important. For example, scanning complex

3D shapes like objects, rooms and landscapes with tactile,

optical or ultrasonic sensors are a rich source of data for a

number of analysis and exploratory problems. Surface rep-

resentations are a natural choice because of their applica-

bility in rendering applications and surface-based visual-

izations (like information-coded textures on surfaces). The

challenge for surface reconstruction algorithms is to find

methods which cover a wide variety of shapes. We briefly

discuss some of the issues involved in surface reconstruc-

tion.
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We assume in this paper that the inputs to the surface re-

construction algorithm are sampled from an actual surface

(or groups of surfaces). A proper reconstruction of these

surfaces is possible only if they are “sufficiently” sampled.

However, sufficiency conditions like sampling theorems are

fairly difficult to formulate and as a result, most of the exist-

ing reconstruction algorithms ignore this aspect of the prob-

lem. Exceptions include the works of 3; 5; 2.

If the surface is improperly sampled, the reconstruction

algorithm can produce artifacts. A common artifact is the

presence of spurious surface boundaries in the model. Man-

ual intervention or additional information about the sampled

surface (for instance, that the surface is manifold without

boundaries) are possible ways to eliminate these artifacts.

The other extreme in the sampling problem is that the sur-

face is sampled unnecessarily dense. This case occurs when

a uniformly sampled model with a few fine details can cause

too many data points in areas of low curvature variation.

The choice of underlying mathematical and data structural

representation of the derived surface is also important. The

most common choice are triangular or polygonal mesh rep-

resentations. Triangular meshes also allow us to express the

topological properties of the surface, and it is the most popu-
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lar model representation for visualization and rendering ap-

plications.

Currently, most of the surface reconstruction algorithms

that guarantee a “good” quality triangulation and are the-

oretically sound typically produce higher dimensional sim-

plicials like tetrahedra. A second stage of these algorithms

remove interior facets to produce the final triangulation.

Therefore, these algorithms usually take on the order of a

few minutes to run on data sets of moderate sizes (about

20000 to 30000 points) and their applicability to very large

data sets (order of millions of points) is not very clear. In this

paper, we present an algorithm which guarantees a correct

reconstruction (and a good quality triangulation) under some

assumptions about the underlying object and runs more than

an order of magnitude faster than the above mentioned algo-

rithms.

1.1. Main Contributions

In this paper, we present a fast and efficient algorithm for

surface reconstruction from unorganized point clouds based

on localized two-dimensional Delaunay triangulation. Our

algorithm incrementally develops an interpolatory surface

using the surface oriented properties of the given data points.

The main contributions of this paper include:

� Sampling criteria: We present a new local sampling cri-

teria for the problem of surface reconstruction. The crite-

ria is based on directional curvatures on the surface that

is sampled. Based on this criteria and some well placed

assumptions about the underlying surface, our algorithm

produces the correct reconstruction.

� Fast surface reconstruction algorithm: Our algorithm

is based on the advancing front techniques for surface re-

construction. Each iteration of our algorithm advances the

reconstructed surface boundary by choosing one point on

it and computing all the faces incident on it.

� Normal estimation algorithm: We also present a new

and simple algorithm for robust estimation of normals for

the points in an unorganized point set. It is very similar in

approach to the method of Hoppe et. al. 16, but we believe

that the formulation is different.

� Fast Delaunay neighborhood computation: We have

developed a fast and simple algorithm to compute the De-

launay neighborhood on a plane around a point, given an

angle ordered set of possible candidate Delaunay neigh-

bors. This is supported by a fast algorithm for ordering of

a set of points by angle around a reference point.

� System implementation: We have developed a system

based on the above results and have applied it to a number

of models of varying sizes. The empirical performance of

our system is very encouraging and can generate surfaces

from point clouds of sizes around 100,000 points in few

tens of seconds.

2. Previous Work

The problem of surface reconstruction has received signif-

icant attention from researchers in computational geometry

and computer graphics. In this section, we give a brief survey

of existing reconstruction algorithms. We use a classification

scheme by Mencl et. al. 21 to categorize the various methods.

The main classes of reconstruction algorithms are based on

spatial subdivision, distance functions, surface warping and

incremental surface growing.

The common theme in spatial subdivision techniques is

that a bounding volume around the input data set is subdi-

vided into disjoint cells. The goal of these algorithms is to

find cells related to the shape of the point set. The cell selec-

tion scheme can be surface-based or volume-based.

The surface-based scheme proceeds by decomposing the

space into cells, finding the cells that are traversed by the sur-

face and finding the surface from the selected cells. The ap-

proaches of 16; 11; 4; 3 fall under this category. The differences

in their methods lie in the cell selection strategy. Hoppe et.

al. 16; 17 use a signed distance function of the surface from

any point to determine the selected cells. Bajaj et. al 4 con-

struct an approximate surface using α-solids to determine

the signed distance function. Edelsbrunner and Mucke 22; 11

introduce the notion of α-shapes, a parameterized construc-

tion that associates a polyhedral shape with a set of points.

The choice of α has to be determined experimentally. More

recently, Guo et. al. 13 use visibility algorithms and Teich-

mann et. al. 27 use density scaling and anisotropic shap-

ing to improve the results of reconstruction using α-shapes.

For the two-dimensional case, Attali 3 introduces normalized

meshes to give bounds on the sampling density within which

the topology of the original curve is preserved.

The volume-based scheme decomposes the space into

cells, removes those cells that are not in the volume bounded

by the sampled surface and creates the surface from the

selected cells. Most algorithms in this category are based

on Delaunay triangulation of the input points. The earli-

est of these approaches is Boissonat’s 8 “Delaunay sculpt-

ing” algorithm that successively removes tetrahedra based

on their circumspheres. Veltkamp 29 uses a parameter called

γ-indicator to determine the sequence of tetrahedra to be

removed. The advantage of this algorithm is that the γ-

indicator value adapts to variable point density. However,

both the approaches of Boissonat and Veltkamp cannot han-

dle objects with holes and surface boundaries. Amenta et.

al. 2; 1 use a Voronoi filtering approach based on three-

dimensional Voronoi diagram and Delaunay triangulation to

construct the crust of the sample points. They provide the-

oretical guarantees on the topology of their reconstructed

mesh given “good” sampling.

The distance function of a surface gives the shortest dis-

tance from any point to the surface. The surface passes

through the zeroes of this distance function. This approach

leads to approximating instead of interpolatory surfaces

c
 The Eurographics Association and Blackwell Publishers 2000.



M. Gopi, S. Krishnan, C.T. Silva / Surface Reconstruction

16; 7; 10. Hoppe et. al. 16 use a Reimannian graph to compute

consistent normal throughout the surface to determine the

signed distance function. The approach of Curless and Levoy
10 is fine-tuned for laser range data. Their algorithm is well

suited for handling very large data sets.

Warping-based reconstruction methods deform an initial

surface to give a good approximation of the input point set.

This method is particularly suited if a rough approximation

of the desired shape is already known. Terzopoulos et. al.
28 use deformable superquadrics to fit the input data points.

A different approach to warping was suggested by Szeliski

et. al. 25 with oriented particles. By modeling the interaction

between the particles, they construct the surface using forces

and repulsion.

The basic idea behind incremental surface construction is

to build-up the surface using surface-oriented properties of

the input data points. The approach of Mencl and Muller
19; 20 is to start with a global wireframe of the surface gener-

ated using Euclidean minimum spanning tree construction,

and to fill it iteratively to complete the surface. Boissonnat’s

surface contouring algorithm 8 starts with an edge and it-

eratively attaches further triangles at boundary edges of the

emerging surface using a projection-based approach. This

algorithm is similar in vein to our approach. A crucial dif-

ference between our methods is that Boissonnat’s algorithm

is edge-based, while ours is vertex-based. We also provide

guarantees on quality triangulation. Further, his algorithm

can only generate manifolds without boundaries.

The Spiraling-Edge triangulation technique proposed by

Crossno and Angel 9 is also related to ours. Major differ-

ences include the fact that they make several limiting as-

sumptions about the data, including normal information for

each point, and also an estimate of each point’s neighbors.

Their algorithm works by creating a star-shaped triangula-

tion between a point and its neighbors. But the paper pro-

vides no theoretical foundation for the actual triangulation

computed, including no estimates for the sampling neces-

sary to produce correct triangulations.

Another recent advancing-front triangulation scheme is

the Ball-Pivoting Algorithm (BPA) of Bernardini et al 6.

Given a point cloud and a radius ρ, BPA finds an interpola-

tory surface where each of its triangles are characterized by

the fact that the ball of radius ρ that sits on its vertices has

no internal point (i.e., it is an ρ-exposed triangle). The al-

gorithm works by finding a “seed” ρ-exposed triangle, then

extending the surface as far as it can by “pivoting” a ball

of radius ρ along each boundary edge of the current sur-

face (which is continuously updated). Under some sampling

conditions, BPA is guaranteed to finish with a correct tri-

angulation. One shortcoming of BPA is the fact that it does

not allow for reconstructing surfaces out of variable-sampled

points without multiple passes and they assume that the nor-

mal information is available for the input point set.

3. Algorithm Overview

Our surface reconstruction algorithm takes a set of unorga-

nized 3D points S as input with no other additional infor-

mation like normals. The output of the algorithm is a set of

triangles, which defines a manifold surface with or without

boundary, passing through the input set of points. This algo-

rithm uses a progressive triangulation technique where the

triangulation incrementally progresses over the surface. The

neighbors of a vertex in the final triangulation is computed

on its tangent plane. Hence it is a local triangulation tech-

nique.

Our surface reconstruction algorithm goes through four

major steps: normal computation, candidate point selection,

Delaunay neighbor computation, and finally the triangula-

tion step. This section gives a brief description of all the

above steps.

Normal Computation: The first step in our algorithm is to

compute the normal at all sample points. This step is per-

formed only if we the normal information is not part of the

input. This step also consistently orients the normals of the

sample points to get an orientable manifold.

Candidate points selection: This step chooses those points

which might be possible neighbors to a vertex in the final tri-

angulation. Using our sampling criteria described in Section

4, we compute this candidate point set (Pp) for every sample

point p.

Delaunay Neighbor Computation: We map each of the

candidate points in the set Pp on the tangent plane at p by

a simple rotation about a well defined axis on the tangent

plane. The set of these mapped candidate points are referred

as PT
p . Then we compute the local Delaunay neighborhood

from the set PT
p around p in its tangent plane. This compu-

tation is repeated for all the points in S, and the final surface

triangulation is determined from this neighborhood relation-

ship.

The candidate point set Pp plays a crucial role in deter-

mining the final triangulation. In order to obtain the correct

surface, we must impose a certain sampling criteria. In the

next section we formulate this criteria mathematically. We

also justify the above algorithm using the sampling criteria.

4. Sampling Criteria

In this section, we present a sampling criteria to guarantee a

triangulation homeomorphic to the surface F. The sampling

density at a point along a particular direction (in the tangent

plane) is inversely proportional to the directional curvature

at that point. The geometric intuition behind this criteria is

that the positioning of the normals of the set of point sam-

ples on the Gaussian sphere is uniform provided the product

of the directional curvature and the arc length on the sur-

face is constant (see 24 for an explanation of this fact). In the
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Figure 1: The Darboux Frame

rest of this section, we shall quantitatively explain what the

above criteria means using concepts from differential geom-

etry. We shall start by giving a few definitions and notations

which will be used by us. More detailed explanations can be

found in the appendix.

� Consider a point p on a surface F as shown in Figure 1.

Let the normal vector to F at p be ~N. Given a unit vector~v
on the tangent plane at p, define a curve c(t) : [�ε;ε]! F

such that c(0) = p, c0(0) = v. The Darboux frame at p is

defined as the orthonormal differential frame ~T =~v;~B =
~N�~T ;~N. Figure 1 shows the Darboux frame on the sur-

face of a cone. It is easy to see that for surfaces with a

well defined tangent plane everywhere, every point on the

surface has a unique Darboux frame associated with it in

a given direction v in the tangent plane.

� Surface curvature: Associating a local differential frame

at every point on the surface allows us to measure some

geometric invariants on the surface. If we walk infinites-

imally along a direction ~v, the change of the surface nor-

mal in the direction ~v is called the normal curvature. As

we move along different directions in the tangent plane,

the normal curvature varies. The directions with mini-

mum and maximum normal curvatures are called princi-

pal directions and the corresponding curvatures in these

directions are called principle curvatures. These principal

directions are orthogonal to each other. In the rest of this

paper, we will refer to the principal curvatures as k1 and

k2 (or kmin and kmax).

� Local surface as a height function: We make use of the

well known implicit function theorem 23 to express the

surface in the neighborhood of a point as a height function

in terms of the principal curvatures. We will represent the

height function in the local neighborhood as

h(x;y) =
1

2
(k1x

2 + k2y
2)+higher order terms

h(r;θ)� r2

2
(k1 cos

2 θ+ k2 sin
2 θ);

where r =
p

x2 + y2 and θ is the angle the vector (x;y)
makes with the x-axis. The derivation of the above ex-

pression is given in detail in the appendix.

� The Euler equation relates the normal curvature, kv, at

some point p on the surface along a direction~v in the tan-

gent plane to the principal curvatures, k1 and k2. Let the

principal directions at p be~v1 and~v2. Then

kv = k1 cos
2 θ+ k2 sin

2 θ;

where θ represents the angle~v makes with~v1.

Using this result on the expression for h(r;θ) above, we

get

h(r;θ) = kvr2

2
(1)

� It is possible to describe the behavior of the normal vector

along space curves on a surface F passing through some

point p. The equation below can be derived from the Car-

tan’s equations for differential frames 18; 23.

∂~N =�kv∂s~T � t∂s~B;or (2)

j∂~Nj=
q

k2
v + t2 j∂sj (3)

Here kv is the normal curvature and t (also known as

geodesic torsion) intuitively measures the twist along the
~N�~B plane.

The quantity
p

k2
v + t2 is called the total curvature of the

space curve through p. We simplify the above equation

for the special case of planar curves through p for which

t is always zero. Then the total curvature becomes kv, the

normal curvature. Our sampling criterion now can be for-

mulated mathematically as

kv∂s = constant (4)

Intuitively, this sampling implies that the dot product be-

tween the normals at a given point on the surface and the

nearby point samples is constant. Higher the curvature in

a particular direction, closer the point samples should be

and vice-versa.

� We call a point p on a surface F a regular point if the

surface in the neighborhood of p is homeomorphic to an

open disk. We replace the constant term in equation 4 by

δ and the arc length ∂s by the edge length. Given a regular

point p on F with unit normal Np, let Cδ
p be the (closed)

contour on F around p such that

kvjpqj = δ;8q 2C
δ
p;v = (~pq� (~pq �Np)Np);

where jpqj denote the Euclidean arc length along the
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surface. It is clear that Cδ
p partitions surface F into two

(or more) parts: one that contains p and others that do

not. We define the former partition as the immediate δ-

neighborhood (Bδ
p) of the point p.

� We call a point set S a δ-sampling of a surface F if every

point p 2 F has a closest point q in the sample set S such

that q 2Cδ
p. In the above definition, δ is a parameter that

can be changed to obtain different samples of the surface.

The definition of a δ-sampling is clearly a local sampling

criterion and makes an intrinsic assumption about the tubular

neighborhood of the underlying object. This has the disad-

vantage of not being sensitive to global features of the object

like two layers of the same object coming very close to each

other. We make some assumptions on the tubular neighbor-

hood of the object. Given a point q 2 F not in the immediate

δ-neighborhood of p, we place a bound (function of δ and

principal curvatures) on the dot product of the vector ~pq with

the unit normal at p. For the rest of this discussion, we will

assume that

� The surface under consideration is smooth and that the

ratio of the maximum to minimum principal curvature at

any point is bounded above by the constant ρ.

� The arc pqv along the surface can be replaced by the edge

pqv. This assumption is reasonable for small δ.

In this section, we shall state without proof a couple of

properties about δ-sampled surfaces. The proofs are given in

the appendix.

Lemma 1 Given a δ-sample S of a surface F and two points

p;q 2 S such that q 2Cδ
p. Then p 2Cδ

q .

The above lemma will later be used to claim the symme-

try in the choice of neighborhood around a point. We now

proceed to show that ratio of the distances between any two

points q; r 2Cδ
p to p is bounded.

Let p 2 F. Define the contour Cδ
p around p as before.

Theorem 1 (a) Consider any two points q; r 2Cδ
p. Then the

maximum ratio of edge distances
jpqj
jprj is bounded above by

a function of principal curvatures.

(b) Let Np be the unit normal to F at p and let p̂q de-

note the unit vector from p to q. Define the height function

H(p;q) = jNp � ~pqj. Then H(p;q) is bounded above by the

quantity
p

1+δ2�1
kmin

. kmin is the smaller of the principal curva-

tures.

(c) Define the angle function D(p;q) = jNp � p̂qj. Then

D(p;q) is a constant,
p

1+δ2�1p
1+δ2+1

, for all q 2Cδ
p.

The result about the height function can be used to pre-

cisely quantify how close two different parts of the model

can come so that a δ sampling is sufficient for the recon-

struction algorithm. Since the maximum height value for

any point in Cδ
p is bounded by

p
1+δ2�1

kmin
, we bound the dis-

tance between two different layers of the model to be greater

p

q

r

s

C
p

Cq

Figure 2: Angle between adjacent samples on δ-sampled

surface

than twice this value. Observe that this condition is similar

to putting a bound on the distance of any point from its clos-

est medial axis feature 2; 1. On the converse side, if we know

that two different layers of an object are within distance d of

each other, then we can impose a δ-sampling on the surface

such that δ�
p

d2k2
min+4dkmin

2 .

The above results show that the points in the neighbor-

hood of a point p on a δ-sampled surface satisfy strict bounds

on the ratio of the distances and the angles from the normal.

Further, the assumption about different layers not coming

too close together justifies our local sampling criterion. We

shall now argue that instead of computing the three dimen-

sional Voronoi diagram of the sample points, it is sufficient

to compute the local two-dimensional Voronoi cell of each

sample point in its local tangent plane.

We will first try to bound the maximum angle deviation

between adjacent sample points on the contour Cδ
p. Intu-

itively, given a δ-sampled surface, adjacent points on the

contour cannot lie arbitrarily far away since the sampling

will not be preserved. For the smooth curves which define

Cδ
p, the angle bound is 90�. Figure 2 illustrates one such case.

Consider the point q in Cδ
p. The contour Cδ

q can be thought of

as a similar curve with a small rotation of the principal direc-

tions at p because of proximity to p and the fact that we are

associating a differential reference frame at every point on

the smooth surface. Adjacent point samples on Cδ
p are con-

strained by the fact that they have to lie in the intersection

points of Cδ
p and Cδ

q . Let the intersection points be r and s. It

is easy to see that the angles 6 rpq and 6 qps are less than the

corresponding angles if the points r, q and s are flattened into

the tangent plane at p. The extreme values of angles occur

when q is along one of the principal directions of p. In either

of these cases, the sum of the angles 6 rpq+ 6 qps < 180�
with symmetric positioning of r and s. This shows that the

maximum deviation between adjacent samples is less than

90�.
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Figure 3: Voronoi sites in the plane

Theorem 1(c) showed that the expression for the angle

function D(p;q) (cosine of the actual angle) is constant for

all points on Cδ
p whose value is small for small values of δ.

Consider the plane Πq formed by the normal vector Np and

the vector ~pq. This plane intersects the tangent plane at p

along a particular direction ~v. The angle between ~v and ~pq

which is just jπ=2� cos�1 D(p;q)j is thus also very small.

This implies that we can map the points on the sampled con-

tour Cδ
p to points on the tangent plane by a rotation of ~pq

in their corresponding plane Πq without affecting the neigh-

borhood around p and little change in the relative distances

between adjacent sample points.

The above result suggests a simple scheme for completing

the triangulation around the point p. Take the sample points

in the δ-neighborhood of p. Map them onto the tangent plane

at p using the scheme above. Compute the two-dimensional

Voronoi cell of p with the neighborhood points. Its dual

determines the triangulation around p. Unfortunately, the

above scheme has a small problem. Consider the situation

in Figure 3. Let q and r be two adjacent samples on the con-

tour Cδ
p 90� apart at a distance d from p. Considering p, q

and r in isolation produces a Voronoi vertex s at a distance

d=
p

2 away. It is now possible that some other sample point t

which is outside Cδ
p but within distance l =

p
2d from p can

alter the Voronoi cell at p. However, points which are fur-

ther than l from p cannot affect its Voronoi cell. Therefore,

we modify our earlier triangulation scheme by considering

sample points in the 2δ-neighborhood of p.

There is an interesting connection between the restricted

Voronoi diagram in Amenta et. al. 1 and our Voronoi cell

computation. In their paper, 1 define the restricted Voronoi

diagram as the cell decomposition induced on the surface

F: the boundaries of the cells on F are simply the intersec-

tions of F with the three-dimensional Voronoi cell bound-

aries. They also define a good triangle with vertices from the

sample set S if it is dual to a vertex of the restricted Voronoi

diagram and go on to show that for a good enough sampling

of the surface, the good triangles form a polyhedron home-

omorphic to F. Figure 4 shows the similarity between the

restricted Voronoi diagram computation of 1 and the three-

dimensional lifting of our 2D Voronoi cell computation on

the local tangent plane.

5. Algorithm

In this section, we will describe in more detail, the steps we

briefed in Section 3.

5.1. Computation of Vertex Normal

The first step in our algorithm is to find the normal, and thus

the tangent plane of the surface, at every sample point p.

This is computed using the closest neighbor information. We

choose k�nearest neighbors of p for this purpose. We need

to find a vector which is a good representative of the nor-

mal to that surface at p. We propose that the normal vector

~np is the vector that minimizes the variance of the dot prod-

uct between itself and the vectors from p to its k� nearest

neighbors. If the k�nearest neighbors are q1 to qk, then the

vectors from p to its k� nearest neighbors are ~Vi = qi � p,

1 � i � k. We want to find ~np such that it minimizes

∑k
i=1 (Di� ∑k

i=1 Di

k )
2

k
(5)

where Di = ~np �~Vi.

The vectors ~Vi can be viewed as the coordinates of the k-

nearest neighbors with p as the origin. Removing the scale

factor 1
k from the above equation, we get

min(
k

∑
i=1

(~np �~Vi� ∑k
i=1 ~np �~Vi

k
)

2

), or (6)

min(
k

∑
i=1

((~Vi� ∑k
i=1

~Vi

k
) � ~np)

2) (7)

If p is at the origin, the centroid of k nearest candidate points

is C = ∑k
i=1

~Vi

k . Thus, the above equation can be rewritten as,

min(
k

∑
i=1

((~Vi �C) � ~np)
2) (8)

If A is a k�3 matrix where ~Vi�C defines the row vectors,

then the above expression reduces to

min(kA~npk2) (9)

This minimization problem can be posed as a standard

singular value decomposition problem 12. The eigenvector

c
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Figure 4: Left: Restricted Voronoi diagram of [AB98], Right: Three-dimensional lifting of our 2D Voronoi cell computation

which corresponds to the smallest eigenvalue of A is the nor-

mal vector which minimizes the above equation. Hoppe et.

al. 16 proposed the use of principal component analysis of

a covariance matrix to determine the normals. Even though

our formulation is very different, it turns out that the result-

ing normal vectors computed by both methods are the same.

5.1.1. Propagation of Normal Direction

The normal vector found by the above process is correct only

upto sign. To find a consistent orientation of the surface, we

fix the orientation of one of the normals and propagate this

information to rest of the points. We use the technique pro-

posed by Hoppe et. al. 16 to do the propagation. Hoppe et.

al. pose this problem as a minimum spanning tree problem,

where the vertices of the model are the vertices of the graph,

and the edges of the model are the edges in the graph. The

weight of the edge between the vertex i and j is assigned

to be (1� j~ni � ~n jj), where ~ni and ~n j are the normals at the

vertices i and j computed using the method given in the pre-

vious section. The minimum spanning tree of the thus con-

structed graph would give the propagation sequence of nor-

mals for the consistent orientability of the model. An arbi-

trary vertex of the graph is assumed to be the root and the

normal is propagated to its children recursively. When the

normal direction is propagated from vertex i to vertex j, if

ni �n j is negative, then the direction of n j is reversed; other-

wise it is left unchanged.

5.2. Computation of Principal Curvatures

We use an adaptation of the method described by Taubin
26 to compute the curvature tensor at every point. Taubin’s

method was described for a surface mesh. Since we have

only a discrete set of points, we choose the k�nearest neigh-

bors of p instead of the explicit neighborhood defined by the

mesh. Given p and one of the nearest neighbors qi, the nor-

mal curvature along the direction ~vi (= ~pqi � (~np � ~pqi)~np) in

the tangent plane at p is defined as k
vi
p � 2(~np� ~nqi

)� ~pqi

k ~pqik2 .

Taubin 26 shows that the principal curvatures and direc-

tions correspond to linear combinations of the (non-zero)

eigenvalues and eigenvectors of the rank deficient 3�3 ma-

trix Mp =
1

2π
R π
�πkv

p~v~v
T dθ, where ~v is represented in terms

of the principal directions (~vp
1 and ~vp

2 ) as ~v = cosθ~vp
1 +

sinθ~vp
2 , where θ is the angle~v makes with~v

p
1 .

The integral is discretized into a weighted sum of the k�
nearest neighbors normal curvatures. We first compute the

angles that ~vi makes with an arbitrary frame in the tangent

plane. Then we sort the angles in counterclockwise order

(fα1;α2; : : : ;αkg). The discrete form is

Mp = Σk
i=1w

i
pk

vi
p~v~v

T ;

where wi
p = (

αi+1�αi�1

4π ).

5.3. Candidate point selection

To complete the triangulation around a point p, we consider

all the points in its proximity determined by the sampling

criteria. Given a δ-sampling S of a surface F , we consider

all the sample points in the 2δ neighborhood of p 2 F . By

theorem 1, we know that the maximum ratio of distances

of two points in the contour Cδ
p is the ratio of the principal

curvatures at the point p. When we consider all points inside

the 2δ-neighborhood, this ratio simply scales up by a factor

of two. This gives us a value of mp =
2kmax

kmin
. This constant mp

is used by our candidate point selection algorithm described

here.
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This step is similar to clustering algorithms used by other

triangulation schemes 16; 14. We first apply a distance crite-

rion to prune down our search for candidate adjacent points

in the spatial proximity of p. It is executed in two stages.

In the first stage, the simpler L1 metric is used to define

the proximity around p. Our algorithm takes an axis-aligned

box of appropriate dimensions centered at p and returns all

the data points inside it. The second stage of pruning uses

a Euclidean metric, which further rejects the points that lie

outside a sphere of influence centered at p. Our data structure

for this stage of pruning is a depth pixel array similar to the

dexel structure proposed in 15. We maintain a 2D pixel array

into which all data points are orthographically projected. The

points mapped on to the same pixel are sorted by their depth

(z) values. This data structure makes the search for candidate

points very easy.

By using this data structure, this search is limited to the

pixels around the pixel where p is projected. The size of the

bounding box for choosing the candidate points using L1
metric, and the radius of the sphere of influence used in the

second stage of pruning is determined by the value mp. As-

suming that the distance of p from its closest neighbor is s,

the bounding box and the sphere should enclose all points,

which are at the distance less than mps from p.

The set of points obtained by these two pruning stages

is further pruned by computing the height values of these

points in p’s local tangent plane. If the height value is greater

than
p

1+4δ2�1
kmin

(refer to Theorem 1b), we remove those

points from consideration because they lie outside the tubu-

lar neighborhood of the surface near p. The points that re-

main are the possible Delaunay neighbors of p.

5.4. Triangulation

The next step is the find the neighbors of each vertex to find

the final triangulation of the surface. Once we have a consis-

tent orientation of the normals for all the vertices, we map

the candidate points as found in Section 5.3 onto the tangent

plane at the reference point p. This mapping is the rotation

of the vector Vi, from p to the candidate point, on the plane

defined by the normal and Vi, to the tangent plane at p. These

projected candidate points on the tangent plane are ordered

by angle around p.

5.4.1. Fast Ordering by Angle

The candidate points are transformed to the local coordinate

system and are mapped as explained above to the tangent

plane at p. These points have 2D coordinates, with an im-

plicit definition of coordinate axes. The projected candidate

point set is partitioned on the basis of the quadrant where the

points lie on this tangent plane in the local coordinate sys-

tem. The points within each quadrant are ordered by angle

using a simple method as explained below.

The square of the sine of the angle from the implicit x�

p

B

Voronoi Edges

C

A

M

CL

IBL

BL B

ACI

AL

Figure 5: Finding Delaunay neighbors. Given points A, B

and C, check whether B is a Delaunay neighbor of p. The

thick edges are local Voronoi edges around p.

axis can be easily computed without any use of square-root

or trignometric functions. We find the square of sine as it is

a close-to-linear function. We discretize the range between 0

to π=2 degrees and store its sine-square values in a look-up

table. Any value of sine-square can be looked up in the table

to give the angle between 0 to π=2. The values in-between

the discretized values represented in the table are linearly

interpolated and the angle is found. We use the sine-square

value to order the points within the same quadrant, and we

use the angle computed in this section to identify surface

boundaries and to fill up holes in the triangulation.

5.4.2. Delaunay Neighbor Computation

This section describes the details of finding the neighbors for

the reference point p from the candidate point set. We use

2D local Delaunay triangulation around p to find the neigh-

bors of p. We compute the Delaunay neighbors of p using

the following algorithm. Given the ordering of the candidate

vertices around p, the goal is to choose the subset which are

its Delaunay neighbors. The basic function of the algorithm

takes the reference point and three consecutive points in an-

gle order A, B, and C, from the ordered candidate point set

to check whether the middle point (B) could be a Delaunay

neighbor to p in the presence of A and B. Figure 5 explains

this algorithm pictorially.

bool CheckDelaunay(p, A, B, C)

{

LA = Perpendicular bisector of the line segment pA.

LB = Perpendicular bisector of the line segment pB.

LC = Perpendicular bisector of the line segment pC.

IAC = Intersection point of LA and LC.

LIB = Line parallel to LB, and passing through IAC.

MB = Mid point of the line segment pB.

If both p and MB lie on the same side of LIB, then

B is a local Delaunay neighbor to p

when compared with A and B.

return TRUE.
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No. of No. of Normal Comp.Time Triangulation Time Total Time

Model points Triangles (in secs) (in secs) (in secs)

Oil Pump 30937 61772 8.18 10.63 20.99

Club 16864 33643 4.30 3.32 7.90

Bunny 34834 69630 9.25 8.31 18.64

Foot 20021 39862 5.23 4.77 10.53

Skidoo 37974 75364 9.73 6.42 16.66

Mannequin 12837 25438 3.37 3.59 7.62

Phone 83034 165981 22.40 19.42 44.41

Table 1: Performance of our algorithm: See Figure 7* (color plate)

else

B is not a Delaunay neighbor to p.

return FALSE.

}

If q1 : : :qn are the ordered projected candidate points

of p, then the above function is called for every triplet

qi�1;qi;qi+1. If the test passes, then the next triplet

qi;qi+1;qi+2 is tested. But, if the test fails, then qi is rejected,

and the algorithm backtracks with the call qi�2;qi�1;qi+1 to

re-evaluate qi�1 for its validity. As the ordering of the ver-

tices is by angle, and hence is cyclic, any point can be chosen

as the first point q1. We choose the closest point to p as q1,

as it is always a Delaunay neighbor, and further, it is used

as a terminating condition for the backtracking algorithm.

The implementation of the above algorithm is optimized for

speed, and each call to the above function takes less than 35

mathematical operations.

The Delaunay neighbors of each vertex is found and is

stored in a list ordered by angle. Vertices A, B, and C form

a triangle if and only if {B C}, {C, A}, and {A, B} are con-

secutive voronoi neighbors in ordered voronoi neighbor lists

of A, B, and C respectively. There are a few degenerate cases

and problems arising out of improper sampling. These cases

are described in the next section.

6. Implementation and Performance

We have implemented the algorithm described in this paper.

This section describes a few of the implementation issues

and give the performance of our method on various models.

Most of the sample point clouds that we obtain in prac-

tice do not necessarily satisfy our sampling criteria. Further,

the positions of these points might be in some kind of geo-

metric degeneracies. In the triangulation stage of our algo-

rithm, assume that A, B, C, and D form a quadrilateral in

their Delaunay neighborhood relationship. There might be

cases where both BD and AC are Delaunay edges. The other

case is the hole formation by the above quadrilateral, where

neither BD nor AC is a Delaunay edge. In the first case, a

simple contention detection and removal method is used to

unambiguate the triangulation. In the second case where the

hole is left due to lack of Delaunay edges, we cannot deter-

mine if is an actual hole in the model or a hole formed due

to sampling artifacts.

We use a simple thresholding strategy based on number

of edges in the hole to decide whether to fill the hole or not.

This in combination with the hole size forms a good oper-

ating rule of thumb to decide the hole filling operation. The

average of the normals of the vertices forming the hole is

taken as the projection plane normal, where the vertices and

the edges forming the hole is projected. A simple 2D tri-

angulation algorithm is used to fill up the 2D hole. This is

projected back in 3D to achieve 3D hole filling. This simple

heuristic for finding the projection plane works reasonably

well for all the practical models we have used in this paper.

We ran the implementation of our algorithm on various

models, and the results have been documented in Table 1.

All timings are measured on an SGI-Onyx with an R10000

processor running at 194 MHz. Figure 7* (color plate) shows

the result of our algorithm on a few models. Our algorithm

and implementation is extremely modular and is suitable for

parallelization without any change.

7. Conclusion

We have presented a new, simple, and fast surface recon-

struction algorithm for unorganized point clouds. We have

introduced a new sampling criteria that a given point cloud

has to respect so that our algorithm generates the correct re-

constructed surface. Our algorithm falls under the classifica-

tion of advancing front paradigm for surface reconstruction.

We proceed by computing a local neighborhood around each

sample point and computing the triangulation in its local tan-

gent plane. We have implemented our algorithm and shown

its performance on a number of models with varying sample

densities and curvature.
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p=(0,0,0)

xy−plane

M

Wp

Vp

Figure 6: Quadratic approximation of a surface

Appendix

In this section, we shall prove some of the theorems from

differential geometry which we used in the section on sam-

pling.

Surface Approximations using Power Series

Consider a 2-manifold F�R3 and a point p2 F as shown in

Figure 6. Without loss of generality, we make the following

assumptions about p and F.

� p is the origin,

� the tangent plane of F at p (Tp(F)) is the z = 0 plane, and

� the two principal directions of F at p are the coordinate

axes e1 = (1;0;0) and e2 = (0;1;0).

It is easily seen that these conditions can be achieved by

a simple rigid transformation of F. To proceed further, we

make use of a result from classical differential geometry

which we state here without proof.

Theorem 2 23 There exists a small neighborhood Wp of p 2
F such that the map π: (x;y; z)) (x;y) is a one-to-one map

with its image being an open set Vp �R2. Moreover the map

π is a diffeomorphism.

The point (x;y; z)2 F is a point in the local neighborhood of

p and is defined in a local coordinate system at p.

The fact that πis a diffeomorphism implies that π�1 exists

and that πand π�1 are smooth mappings. Therefore, we can

approximate the surface in the neighborhood of p (Wp) as

Wp = f(x;y;h(x;y)) : (x;y) 2Vpg
Here, h(x;y) intuitively represents the surface as a height

function. Further, the tangent plane of Wp � F is given

by the basis vectors
∂Wp

∂x
= (1;0; ∂h

∂x
(0;0)) and

∂Wp

∂y
=

(0;1; ∂h
∂y
(0;0)). Since, we assumed that the tangent plane at

p is the z = 0 plane, ∂h
∂x
(0;0) = ∂h

∂y
(0;0) = 0.

Shape operator is a familiar concept in differential geom-

etry. Essentially, the shape operator at a point p2 F (denoted

by Sp(F)) is a linear operator that maps an element of Tp(F)
to another element in Tp(F). If vp1 and vp2 are a set of ba-

sis vectors for Tp(F), Sp(avp1 +bvp2) = cvp1 +dvp2 (a;b;c
and d are real valued scalars). For the special case of a vec-

tor v being a principal direction, Spv = Kv, where K is the

principal curvature. In our particular case, the tangent plane

is spanned by e1 and e2. The shape operator applied to the

vectors e1 and e2 are given by

Spe1 =
∂2h

∂x2
(p)e1 +

∂2h

∂x∂y
(p)e2

Spe2 =
∂2h

∂x∂y
(p)e1 +

∂2h

∂y2
(p)e2 (10)

Since e1 and e2 are the principal directions, we can con-

clude that ∂2h
∂x∂y

(0;0) = 0 and that ∂2h
∂x2 (0;0) and ∂2h

∂y2 (0;0) are

the principal curvatures (denoted by k1 and k2 respectively).

We now use Taylor’s formula to expand h(x;y) around the

origin (0;0). Thus,

h(x;y) = h(0;0)+ x
∂h

∂x
(0;0)+ y

∂h

∂y
(0;0)

+
1

2
(x2 ∂2h

∂x2
+2xy

∂2h

∂x∂y
+ y

2 ∂2h

∂y2
)

+higher order terms

=
1

2
(k1x

2 + k2y
2)+higher order terms

� r2

2
(k1 cos

2 θ+ k2 sin
2 θ);

where r =
p

x2 + y2 and θ is the angle the vector (x;y)
makes with the x-axis.

Euler Equation

The normal curvature kv at a point p on the surface in a given

direction~v on the tangent plane is defined as the curvature of

the intersection curve of the surface with the plane formed

by the vectors~v and the surface normal at p. Using the shape

operator, it can be written as

kv = Sp(~v) �~v

We can represent~v in terms of the principal directions (~v1

and~v2) as~v= cosθ~v1+sinθ~v2, where θ is the angle~v makes

with~v1. Therefore
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kv = Sp(cosθ~v1 + sinθ~v2) � (cosθ~v1 + sinθ~v2)

= (k1 cosθ~v1 + k2 sinθ~v2) � (cosθ~v1 + sinθ~v2)

= k1 cos
2 θ+ k2 sin

2 θ

The above equation is also known as the Euler equation.

It expresses the normal curvature at a point on the surface in

terms of the principal curvatures there.

Frenet-Serret equations for Darboux Frame

We will now present the equations which govern the behav-

ior of the Darboux frame for space curves on a surface F

passing through p. These equations are a modified form of

the well-known Frenet-Serret equations 18; 23.

0
B@

∂~T
∂s
∂~B
∂s
∂~N
∂s

1
CA =

0
@

0 g kv

�g 0 t

�kv �t 0

1
A
0
@

~T
~B
~N

1
A

The entries in the above matrix define the geometrical in-

variants at the point in consideration. kv is the component

of the acceleration along the surface normal (normal cur-

vature). g (or geodesic curvature) is the component of the

acceleration in the tangent plane. t (also known as geodesic

torsion) intuitively measures the twist along the ~N�~B plane.

Of this, the third equation governing the change in normal

is of most interest to us.

∂~N =�kv∂s~T � t∂s~B;or

j∂~Nj=
q

k2
v + t2j∂sj

Proofs of various theorems

We shall prove some of the theorems claimed in section 4.

Lemma 1 Given a δ-sample S of a surface F and two points

p;q 2 S such that q 2Cδ
p. Then p 2Cδ

q .

Proof: We will first show that the angle between the normal

at p and the normals at all the points on Cδ
p is a constant, and

is related to δ. Specializing equation (2) by zeroing out the

torsion factor, we know that

~N+ ~∂N = ~N� kv∂s~T (11)

Therefore the cosine of the angle between ~N and ~N + ~∂N

is simply 1=
p

1+(kv∂s)2 or 1=
p

1+δ2 which is a contant.

Since the dot product is just a function of δ which is

constant throughout the surface, and since the deviation (or

dot product) is symmetric, p 2Cδ
q .

Let p 2 F. Define the contour Cδ
p around p as before.

Theorem 1 (a) Consider any two points q; r 2Cδ
p. Then the

maximum ratio of edge distances
jpqj
jprj is bounded above by

a function of principal curvatures.

(b) Let Np be the unit normal to F at p and let p̂q de-

note the unit vector from p to q. Define the height function

H(p;q) = jNp � ~pqj. Then H(p;q) is bounded above by the

quantity
p

1+δ2�1
kmin

. kmin is the smaller of the principal curva-

tures.

(c) Define the angle function D(p;q) = jNp � p̂qj. Then

D(p;q) is a constant,
p

1+δ2�1p
1+δ2+1

, for all q 2Cδ
p.

Proof: (a) From equation (4), kvq jpqj = kvr jprj = δ. There-

fore,
jpqj
jprj =

kvr

kvq
. This ratio reaches maximum when kvr is

maximum and kvq is minimum. They are attained when the

two directions vr and vq are the principal directions v1 and

v2. Therefore, the maximum ratio at every point is the ratio

of the principal curvatures at that point. But this is bounded

by our assumption.

(b) In order to prove the height function bound, let

us assume without loss of generality that p is the ori-

gin and the normal vector at p is (0;0;1) and q is given

by the point (x;y;h(x;y)). Then H(p;q) is simply h(x;y).
From equation (1) we know that h(x;y) can be rewritten

as kvr2

2 . Also our δ-sampling criterion gives us the equation

kv

q
r2 +

k2
v r4

4 = δ. After some simple algebraic manipula-

tion and replacing kvr2

2 by h, we get the quadratic equation

k2
vh2 +2kvh�δ2 = 0. The positive solution of this equation

is
p

1+δ2�1
kv

. It reaches a maximum when the normal curva-

ture is minimum. This value is attained at the smaller of the

two principal curvatures.

(c) The angle function D(p;q) =
h(x;y)p

x2+y2+h2(x;y)
. From

equation (1) and simplifying after substituting r =
p

x2 + y2,

we get D2(p;q) =
k2

v r2

(4+k2
v r2)

. Using a similar manipulation as

was done for proving the height function bound but substitut-

ing k2
v r2 by d, we get the quadratic equation d2+4d�4δ2 =

0. The positive root of this quadratic equation is the constant

2(
p

1+δ2 � 1). Plugging this value into the expression for

D(p;q), we get
p

1+δ2�1p
1+δ2+1

. Therefore, all the points in the

curve Cδ
p make the same angle with the normal at p.
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(a) 34834 points, 69630 triangles, 18.64 seconds (b) 16864 points, 33643 triangles, 7.90 seconds

(c) 20021 points, 39862 triangles, 10.53 seconds (d) 12837 points, 25438 triangles, 7.61 seconds

(e) 30937 points, 61772 triangles, 20.99 seconds
(f) 83034 points, 165981 triangles, 44.41 sec-

onds

Figure 7: Triangulations generated by our algorithm. Below each image, we include the number of points and triangles gener-

ated, and the running time of the algorithm.
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