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Abstract
The computation of surface data based on visual information is an important sub-component in the computer-graphical
surface reconstruction of solids and in the control of 3-D environments. Different methodologies can be used for that as,
e.g., static stereo, shape from motion, shape from shading, photometric stereo, or structured lightening. There exist diffe-
rent basic approaches in literature often based on simplifying assumptions. However, it is well known that such
assumptions may not be true if surface reconstruction is applied under practical circumstances. In this paper, several
problems are mentioned which are related to practical applications of surface reconstruction approaches following the
methodologies of static stereo, shape from motion, and photometric stereo. We present specific solutions to cope with these
problems, or the solution state what was reachable in our work. Some problems are ill-posed and limitations of approaches
have to be accepted. As a second contribution of this paper, we discuss the evaluation problem of surface reconstruction
algorithms. It is important to  answer such questions as  1) For what kind of surfaces and  3-D objects an algorithm
behaves either well or bad? 2) How accurate are the reconstruction results of an algorithm under specified circumstances?
What measure can be used to evaluate reconstruction accuracy? 3) How to compare reconstruction results following
different methodologies? 4) What algorithm can be suggested for a specific application project? and so on. So far we
present some proposals and first quantitative or qualitative results for answering such questions. In our opinion a
methodology for evaluating surface reconstruction algorithms is still at its beginning. However a critical evaluation of
potential methods in project applications is helpful in selecting the appropriate algorithm.
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1 INTRODUCTION

This report is about work that was stimulated by applications of several surface
reconstruction algorithms. Two typical application situations are assumed. First,
computer-graphical surface reconstructions of solids, e.g., in building architec-
ture, medical surgery, production and manufacturing etc., need precise 3-D sur-
face data. Computing time demands are often relaxed in this application. Second,
the control of 3-D environments, e.g., in robotics or active vision, also incorpo-
rates tasks of (rough) obstacle detection, distance estimations or motion control.
Here, a few range data or rough drafts of object surfaces can be sufficient. How-
ever, the computing time has to be minimized to ensure on-line processing.

The report presents some refinements of elementary approaches in static
stereo, shape from motion and photometric stereo. A comparative performance
analysis is initiated for evaluating different surface reconstruction results.

1.1 Aims and Problems

The results of surface reconstruction algorithms are either dense according to the
spatial resolution of the image (dense range data, dense motion field, dense gradi-
ent data etc. -  at all pixels of an image, or in a few image segments), or they are
isolated measurements, i.e. sparsely distributed. Reconstructed surface patches
are approximations of 3-D object faces containing absolute or relative depth infor-
mation. They can be accurate or very rough - this is a matter of reconstruction
quality. Depth or surface representation methods are used for these patches as
known in computer graphics, e.g. a 3-D point cluster representation for depth
values, or the floating horizon method for surface representation. Isolated mea-
surements of 3-D point positions are approximate locations of specific surface
points. Reconstructed surface patches and isolated measurements characterize the
two typical aims of surface reconstruction algorithms. Specific applications are
characterized by these aims and accuracy demands, cp. Tab. 1.1.

application aim computational speed

computer-graphical surface re-

constructions of solids

 reconstructed surface patches,

 isolated measurements,

high accuracy demands

typical: off-line processing

also possible: on-line

            processing

control of 3-D environments  reconstructed surface patches,

 isolated measurements,

lower accuracy demands

typical: on-line processing

also possible: off-line

            processing

Table 1.1: Aims in different surface reconstruction fields.
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Figure 1.1: Typical input pictures of the scene spaces PACKAGE (box, bottle etc.)
and BEETHOVEN (plaster statue, alone or in a desk environment).

Two scene spaces PACKAGE and BEETHOVEN are used throughout the paper
for comparing results of different algorithms. Typical input images of these scene
spaces are shown in Fig. 1.1. For image acquisition we have used a 3CCD-
Color-Camera DXC730P from Sony. Gain control and gamma correction were
turned off. Automatic white balancing was used. The digitization process was
done by a DATACELL s2200-frame grabber in a Sun IPX workstation. The focal
length used with static stereo (Section 3) and dynamic stereo (Section 4) was 23
mm. The focal length used with the shading based approaches (Section 5) was ca.
60 mm. The scenes were illuminated by one or several slide projectors (dynamic
stereo and shading based approaches) or fluorescent ceiling lamps (static stereo).

The objects in these experiments are considered under the assumptions of
computer-graphical surface representations and of control of 3-D environments.
Three approaches were considered in these experiments

- static stereo analysis for color cameras (with studying parallel realizations
of correspondence calculations to ensure on-line processing),
- motion analysis with extensive testing and modifications of optical flow
computations, and a shape reconstruction algorithm for a rotating disc based
on Tsai's camera calibration (dynamic stereo analysis),
- photometric stereo analysis for polyhedral objects and for different
reflection assumptions, where different albedo values can be present in a
scene.

 We also started with experiments following a forth approach,

- light plane projections and a rotating disc, based on Tsai's camera calibra-
tion.
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The experimental setting is still under development so that this forth approach is
not yet included in the discussion in this report. However some comments in the
Conclusions also reflect experimental results with this structured lightening me-
thod.

 In literature the mentioned approaches are normally based on simplifying
assumptions [12]. However, it is well known that such assumptions may not be
true if surface reconstruction is applied under practical circumstances. For exam-
ple, the following problems can arise,

• evaluation of camera calibration method: For a selected calibration
method, the mapping of 3-D scene points onto picture points, and of picture
points into the scene should be possible in both directions.
• selection of correspondence method: What method should be chosen from
all the several hundreds of published methods of calculating corresponding
pixels in static or dynamic stereo images?
• on-line static stereo :  What speed-up is possible if parallel implementations
are used instead of serial one's for the chosen correspondence methods?
• selection of optical flow method: How to select an appropriate optical flow
method?
• existence of optical flow method: Is there any optical flow method which
satisfies the demands of shape from motion?
• depth from point correspondences: How camera calibration results can be
used in different situations, e.g. objects on a rotating disc?
• extension to non-static scenes: Is reconstruction still possible if rigid scene
objects can move with a certain maximum speed? How about non-rigid ob-
jects?
• using more general reflection models: What reflectance methods can be
used if Lambertian reflection can not be assumed? How can an image
representing non-Lambertian surfaces be processed to meet the requirements
of methods assuming Lambertian reflection?
• treatment of shadow regions: How difficult is the treatment of shadow re-
gions if a single point-light source is assumed?
• consideration of interreflections: How interreflection models can be used
to improve reconstruction methods?
• inaccurate illumination parameter estimation: How to deal with
inaccuracy in illumination calibration?
• reconstruction of polyhedral objects: What methods can be used to recon-
struct planar faces?

We mention that certain problems can be ill-posed. In such cases it has to be ac-
cepted that no solution exists if no further information is available for transform-
ing the ill-posed problem into a well-posed one.
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1.2 Performance Characterization

A general methodology of quantitative algorithm evaluation is described in [6],
and used for the evaluation of thinning algorithms. Quantitative evaluations of
algorithms are still a rare case in the computer vision literature. As an other
example, such quantitative studies were performed in [1, 16, 17] for differential
optical flow algorithms. In this report, the scene space PACKAGE is used to
describe a first step into the direction of quantitative evaluations of surface
reconstruction methods. So far typical comparisons between different methods are
based on qualitative evaluations, and this is demonstrated for different recon-
struction algorithms in the second scene space BEETHOVEN.

A large number of papers proposing surface reconstruction algorithms
have been published in literature. Some performance characterizations should be
available to evaluate such an algorithm and to support comparisons between dif-
ferent surface reconstruction algorithms. Such an evaluation scheme combines
several entries, cp. Tab. 2 for an example. In this report several surface recon-
struction algorithms are discussed. However a complete filling of the proposed
evaluation scheme is very difficult. We discuss possible entries of Tab. 1.2:

Algorithm XYZ

reconstructed
surface patches

accuracy isolated mea-
surements

accuracy computing time

(A)
motion data,
gradient data,
range data etc.

(B)
conditions, error
measure etc.

(C)
point location
stability

(D)
conditions, error
measure etc.

(E)
a) serial
b) parallel

Table 1.2: Tabular representation of an evaluation scheme of surface reconstruction
algorithms.

(A+C) Surface reconstruction algorithms deliver depth values (range data), cor-
respondence data (motion vectors, static stereo correspondences) or surface
gradients. In the latter two cases absolute or relative depth information has to be
computed from the correspondences (depth from correspondence) or from the
gradients (depth from gradients). Normally, isolated gradient measurements are
without practical value, but isolated motion data or range data can be. Under (A) it
can be specified what data are generated by the algorithm to support the recon-
struction of surface patches, and how these data are transformed into depth or sur-
face representations. A criterion for evaluating the computed reconstruction data
should also be included here. For example, motion vector computation methods
typically lead to dense motion fields, but only those vectors should be  selected
which are good representations of the viewed 3-D motion. Analogously, under
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(C) the kind of computed data is specified, and a method for choosing pixel posi-
tions of isolated measurements. Some analysis results about the stability of these
point locations would be desirable. For example, a static stereo algorithm delivers
several point correspondences, but only some of them allow accurate depth mea-
surements.

(B+D) Accuracy is a relation between ground truth and calculated result.
For surface reconstruction algorithms, the geometrical locations of 3-D scene ob-
ject surfaces act as ground truth, and the reconstructed surface patches or isolated
measurements are the calculated result. If synthetic objects are used, then the
ground truth is known. Real objects are used in the scene spaces PACKAGE and
BEETHOVEN. For some objects, as the box in scenes of PACKAGE, the size is
available, see Fig. 1.2. In general, in (B+D) the population of pictured 3-D
objects should be characterized, the image acquisition conditions, the error
criterion for comparing calculated results with the ground truth and finally the
evaluation results based on this error criterion. A quantitative evaluation allows
the use of error criterion functions. For example, the average of all deviations in
reconstructed sizes of the box in PACKAGE scenes, cp. Fig. 1.2 for the actual
sizes, is such a function. If such functions are not available then the qualitative
visual comparison of reconstructed surfaces with the given 3-D objects is used as
a qualitative error criterion.

 

Figure 1.2: Size of the box in PACKAGE scenes as shown in Fig. 1.1.

(E) Additionally to the reconstruction results also the computing time behavior is
of interest in relation to the implementation environment, e.g. whether only serial
computations or also a parallel processor was used.
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A difficult problem arises if the geometrical object model, i.e. the ground
truth is not available as it is the case for the plaster statue. However, even if the
geometrical surface data are available then still the following problem remains,

• 3-D surface error measure: How to measure geometrical differences
between two 3-D surfaces representing partial views of the same 3-D object?

The complexity of this problem increases if only relative depth values can be re-
constructed, i.e. the reconstructed surface patches are scaled with some variable.

The scene space PACKAGE allows evaluations in the sense of categories
(C+D) in Tab. 1.2, and the scene space BEETHOVEN in the sense of (A+B).

1.3 Contents of the Report

This report describes solutions and performance evaluations for three different
stereo analysis approaches. Chapter 3 is devoted to static stereo analysis, Chapter
4
discusses topics in dynamic stereo analysis, and Chapter 5 informs about pro-
gress in photometric stereo analysis. Chapter 2 specifies the used camera model
and reports about camera calibration results.

For the evaluation of stereo analysis results several experiments are
sketched. An experiment is described by specifying its input data and the
available ground truth, by defining an error criterion, by specifying the selected
algorithms which are used, and by a discussion of the experimental results and the
conclusions. Normally, the experiments are characterized by input data, ground
truth, and error criterion. The further topics are discussed in the context of these
experimental settings.

This report can be read as an information about the current state in stereo
analysis what could be achieved in our group at the Berlin Technical University. It
is also an invitation to other groups for defining joint projects in performance
evaluation. The obtained performance evaluations are still far away from the
evaluating data sheets which are given in [6] for thinning algorithms. However,
we propose quantitative comparisons using objects as the box in the PACKAGE
scene space, and qualitative comparisons using plaster statues as the one of
Beethoven for further evaluations.

Chapter 3 also contains some material about the parallel implementation of
static stereo analysis approaches. This is given in this report with respect to the
general importance of parallel implementations for shape reconstruction algo-
rithms. All the methods discussed in Sections 3, 4 and 5 are inherently suitable
for parallel implementation because of they are focusing on local computations.
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2 PROJECTION MODEL AND CALIBRATION

Camera calibration is of basic importance for reconstruction approaches [18, 30,
47]. This Section describes a solution of the evaluation of camera calibration
method problem, see Subsection 1.1. First, the camera geometry is briefly intro-
duced. Then the calibration method is cited, and its evaluation is explained.

2.1 Coordinate Systems

The following (left handed) coordinate systems are used to model the relations
between scene space objects and projected images, see Fig. 2.1:

Xw,Yw, Zw( )  denote the 3-D coordinates of object surface points P  in the world
coordinate system ,

Xc,Yc, Zc( ) denote the 3-D coordinates of P  in the camera coordinate system ,
f is the distance between the image plane and the projection center

(focal length),
xu, yu( ) are non-distorted image coordinates of Xc,Yc, Zc( ) assuming an ideal

pinhole camera,
xd , yd( ) are distorted image coordinates, differing from xu, yu( ) by radial lens

distortion, and
x f , y f( ) are device-dependent  coordinates of xd , yd( )  in the digitized image

(not illustrated in Fig. 2.1).

The Z-axis Zc  of the camera coordinate system coincides with the optical axis,
and it is pointing into the scene space.

If only relations between camera coordinates and non-distorted image
coordinates are discussed then world and camera coordinates are assumed to be
identical. For simplification, x, y( ) and X,Y, Z( )  are used in this case, without
indices u , w or c.

All coordinates and parameters are measured at the same scale, e.g. µm.
The only exception are discrete coordinates x f , y f( )  for the digitized image which
are given in (sub-) pixels.

The 3-D camera coordinates Xc,Yc, Zc( ) are transformed in ideal, non-
distorted image coordinates xu, yu( ) by perspective projection. According to the
pinhole camera model it holds

xu = f ⋅ Xc

Zc
   and  yu = f ⋅ Yc

Zc

in the camera centered coordinate system  as shown in Fig. 2.1 where the focal
point of the camera, i.e. the projection center, coincides with the origin of the
camera-centered coordinate system. If parallel projection is assumed then it holds

xu = Xc    and   yu = Yc .
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Figure 1.1: Camera geometry with perspective projection: world coordinates
XwYwZw  , camera coordinates XcYcZc , ideally projected coordinates xuyu and
distorted image coordinates xd yd where radial lens distortion is modeled. The circu-
lar area illustrates a rotating disc as used for controlled motion in Section 4.

Central projection is assumed in Sections 3 and 4, and parallel projection
in Section 5.

2.2 Camera Calibration

For camera calibration, internal camera parameters as well as geometric relations
between camera coordinates and world coordinates have to be pre-calculated, and
these data have essential influence on the accuracy of surface reconstruction re-
sults. The method of R.Y. Tsai [46] is used. For solving the evaluation of
camera calibration method problem, an extension of this method was necessary.

Four steps are considered in this calibration procedure if an object surface
point P = Xw,Yw, Zw( ) is mapped on device dependent coordinates x f , y f( ):

(1) For the affine transform from world coordinates Xw,Yw, Zw( )  into camera co-
ordinates  Xc,Yc, Zc( ),  a rotation matrix R and a translation vector T have to be
calibrated.
(2) For transforming the 3-D camera coordinates Xc,Yc, Zc( ) in ideal, non-
distorted image coordinates xu, yu( ) by perspective projection, the focal length f
has to be calibrated.
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(3) For the calculation of non-distorted image coordinates xu, yu( ) from real, dis-
torted image coordinates xd , yd( )  the calibration method as proposed by [46] had
to be extended. The equations

xd + Dx = xu  ,     yd + Dy = yu

are based on the following abbreviations (for radial distortion):

Dx = xd ⋅ κ1r
2 + κ2r4( )  and Dy = yd ⋅ κ1r

2 + κ2r4( ), with r = xd
2 + yd

2 .

The distortion coefficients κ1  and κ2  have to be calibrated.
These equations can be used for the restoration of images if the values of

xd , yd( )  are known. However if the calibration result should be evaluated then
also the transformation of non-distorted into distorted coordinates is of interest.
This direction is not described in [46]. The application of numeric methods for
solving the resultant non-linear equation system leads to non-acceptable time-in-
efficiency, e.g. if a full image has to be transformed. Therefore ideal image points

xu, yu( ) can be distorted using the following computational fast approximation
scheme:

xdi
= xu

1 + κ1ri−1
2 + κ2ri−1

4  and ydi
= yu

1 + κ1ri−1
2 + κ2ri−1

4 , with ri = xdi

2 + ydi

2

for i = 1,...,n . The initial value is r0 = xu
2 + yu

2 . Improved radii ri  are calculated
during subsequent iterations.1

(4) For transforming non-distorted image coordinates xu, yu( ) into device depen-
dent image coordinates x f , y f( ) , several parameters have to be calibrated as
described in [46].

Using this extension of Tsai's method, the accuracy of calibration results
was evaluated. Different real and synthetic calibration objects (planes with calibra-
tion points in the latter case) were used for selecting a simple, but sufficient cali-
bration object, cp. [19]. Using synthetic objects it was possible to prove statisti-
cally that near-optimum accuracy is achievable already by three calibration planes,
each with about 20 calibration points (e.g. an "open cube"). With real calibration
objects, the following experiment was performed for measuring the accuracy.

Input data, ground truth and error criterion: Different real calibration
objects are used in this experiment. Grids of calibration points are used on these
3-D objects. They are projected into the image plane. The known 3-D positions of
the calibration points and the measured positions of the projected points are used
as input of the calibration procedure. Then the calibration results are used to
transform the 3-D calibration points into test points (labeled with crosses in Fig.
2.1) of the image plane.

1  About eight iterations were sufficient.
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Figure 2.1: Calibration results for two different calibration objects: two planes each
with 25 calibration points, the object is smaller than the image (left), and three
planes each with 25 calibration points, the object covers the whole image (right).
The calibration result is used to project the known calibration points into the image
plane (labeled with crosses) as well as the known disc  (labeled with a grid). In the
left picture, a subpicture is enlarged showing the error at the border of the disc.

The deviations between the measured positions and the test points are used as
quantitative error criterion. The mean square error (MSE) of these deviations is
used as quantitative error criterion function. The calibration objects are placed on a
disc and the geometric relation between disc (i.e. disc border) and calibration
object is known. The calibration results are also used to project the disc into the
image plane (labeled with a grid in Fig. 2.1). The deviation between this projected
disc and the visible border of the disc is also used as a qualitative error criterion
based on visual inspection.

The calculated MSE was larger in situations as shown in the left picture in
comparison to the situation shown in the right picture of Fig. 2.1. The qualitative
criterion did also lead to the conclusion that the calibration object should cover the
whole image. The statistical results based on synthetic data (i.e.  optimum calibra-
tion is nearly achievable with 3 planes, each with 20 calibration points or more)
are also supported by this experiment with real calibration objects.

As a further experiment, the robustness with respect to errors in detecting
calibration point locations in the image was studied using the following experi-
ment.

Input data and ground truth: Points on calibration planes in 3-D space
and projected images of these points are generated for an assumed central
projection.  The calibration is performed assuming Gaussian noise for these
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calibration points in 3-D space, then these points are projected into the image
plane, and again the projected image points are effected by Gaussian noise, with
standard deviation 0.1 in both cases, i.e. 0.1 mm for world coordinates and 1/10
pixel for the projected image coordinates. The values of camera parameters, as
distortion coefficients and focal length, are assumed for this ideal projection of 3-
D points into the discrete image. Furthermore, the rotation matrix R and the
translation vector T are known describing the coordinate transformation between
the world coordinate system and the camera coordinate system.

  Error criterion function: The ideal camera and transformation parameters
and the calibrated parameters can be compared using different functions. Tab.  2.1
shows all the absolute differences in values.

parameters assumed values calibrated values
translation (in mm) Tx 80.0 80.000

Ty 100.0 100.011
Tz 2000.0 1998.276

rotation  (in deg) yaw 60.0 59.994
pitch 20.0 20.003
roll -5.0 -5.003

focal length (in mm) f 8.0 7.998
distortion coefficients κ1 -1.0 . 10 -5 -1.3 . 10 -7

(in 1 / mm2) κ2 -1.0 . 10 -5 -3.1 . 10 -6

Table 2.1: Results based on camera calibration with synthetic data assuming
Gaussian errors for calibration points (before and after projection).

A synthetic calibration situation and the obtained values in this experiment are
shown in Tab. 2.1. In practice it is not straightforward to detect calibration points
within a digital picture at subpixel accuracy. A calibration point is projected onto a
"point segment", and the centroid of these segments can be calculated, e.g., by
weighted moments. A deviation of 1/10 pixel of detected point positions in com-
parison to the true point positions is used as theoretical estimate in this ex-
periment. In the second phase of this experiment, the points previously used as
calibration points are considered as surface points of a moving object in the scene
space and their position is calculated based on the previously calculated calibration
results. The experiment proves that a deviation of 1/10 in calibration point loca-
tions seems to be an acceptable error in point location detection. This experiment
can be adjusted to the actual point location results of a certain calibration situation,
e.g. if 1/10 pixel is not the appropriate error estimate.
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3 STATIC STEREO ANALYSIS

The key problem in stereo analysis is how to find the corresponding points in the
left and in the right image, referred to as the correspondence problem. Whenever
the corresponding points are found, the depth can be computed by triangulation.
Stereo techniques can be distinguished by either matching edges and producing
sparse depth maps or by matching all pixels in the entire images and producing
dense depth maps (see [24] for an overview of stereo techniques). The objective
of the application always effects the decision whether the preference is given to
dense stereo correspondence or to edge-based correspondence. Therefore, we
took both types of approaches into consideration to find suitable solutions to the
correspondence problem in stereo. A very efficient method to obtain dense stereo
correspondence is presented in Subsection 3.2. In Subsection 3.3 we present the
edge-based approach that we obtained the best matching results with so far.

Although good results can be achieved with stereo techniques, the exces-
sively long computation time needed to match stereo images is still the main ob-
stacle on the way to their practical applications. Computational fast stereo tech-
niques are required for real-time applications. General purpose computers are not
fast enough to meet real-time requirements because of the algorithmic complexity
of stereo vision techniques. Consequently, the use of parallel algorithms and/or
special hardware is inevitable to reach real-time execution. This Section discusses
the selection of correspondence method problem and the on-line static stereo
problem, see Subsection 1.1.

3.1 The Problem To Select A Correspondence Method

Worldwide, many research activities are known dealing with stereo vision.
Nevertheless, there still does not exist a standardized way for the evaluation of the
algorithms. The known methods differ in their solution to the correspondence
problem as well as in the selection of constraints assumed for the visible objects in
the scene. Moreover, nearly all publications exclusively present their own solution
without comparing it to the results of other methods, and the methods are applied
to rather different tasks (e.g., mobile robots, photogrammetry, stereo mi-
croscopy, etc.). The large number of distinguishable features in the solutions ag-
gravates a direct comparison of the methods and it is nearly impossible to evaluate
the suitability of a method for a selected application.

The considerations mentioned above encourage the necessity to create an
experimental tool for the methodical investigation of computer vision methods.
Another difficulty occurring with the evaluation of stereo methods is resulting
from the direct interdependence between the single processing steps. It is not
suitable to evaluate a selected single processing step (e.g. a stereo matching
algorithm) without taking into consideration the interdependence of all processing
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steps. Matching could be done easily if for example the correspondence search is
reduced to characteristic features like junctions in the image. Although, the
matching problem can be solved perfectly for those features, the obtained results
are not suitable for a consecutive surface reconstruction process. Thus, the whole
stereo vision cycle has to be examined and has to be assessed. Of course, the
entire problem has to be divided into solvable subproblems, but the general view
can not be ignored. The main emphasis of the investigations presented in [22] was
on stereo matching because this processing step has a great influence on the
quality of the computed results. In addition, the entire correlation and the mutual
dependence of the processing steps within a stereo system were taken into
consideration. The experiment can be described as follows:

Input data and ground truth: Correspondence methods are evaluated with
regard to their suitability within a stereo system for the automatic registration of
the geometry of an a-priori unknown 3-D object in near distance to the cameras
(approximately 1 m). All methods are applied to a series of indoor images (see
[22] for further details). Gray value or color images can be chosen.

Error criterion: Qualitative evaluations of calculated correspondences are
used. The following Subsection contains representation examples of the computed
3-D data. Such visualizations were used for visual comparisons of the different
methods.

Algorithms: We investigated 73 different stereo methods and implemented
eight selected and two new matching techniques [22]. The ten methods were
selected regarding their methodical distinction in solving the correspondence
problem (area-based and feature-based, binocular and trinocular, statistical and
physiology-based, etc.).

Results and conclusions: As a result of our comparison we found an
approach based on disparity histograms [43] to be very suitable for edge-based
correspondence. Furthermore, a technique based on Block Matching which was
developed in our group [21] was found to be rather efficient and of high quality
for obtaining dense stereo correspondence. Both techniques are detailed in the
following subsection. In addition, we found that the quality of the matching
results always improves when color information is used instead of gray value
information. This holds for edge-based techniques and for dense techniques [25].

3.2 Dense Stereo Correspondence Employing Color Information

The computation of dense disparity maps defined for every pixel in the whole im-
age is essential for a successful reconstruction of complex surfaces. Unfortuna-
tely, most of the existing dense stereo techniques are very time consuming (see
e.g. [10, 35]). As mentioned above, we developed an efficient technique for ob-
taining dense depth maps based on Block Matching [21]. Furthermore, we
extended the Block Matching technique to color images. Four different color
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models ( RGB, XYZ, I1I2I3, HSI ) and three different color measures have been
investigated with regard to their suitability for stereo matching [23]. As a result
the I1I2I3 color space suggested by [34] provides the best information for stereo
matching. The three coordinates are defined by

 I1 = R + G + B

3
,    I2 = R − B

2
,   and    I3 = 2G − R − B

4
 .

The selection of the color measure had no significant influence on the results in
this investigation. In addition, we applied the algorithm to gray value and color
images to compare the performance. The precision of the matching results always
improved by 20 to 25% when using color information instead of gray value infor-
mation. Thus, high quality matching results can easily be obtained with Block
Matching employing color information.

The principle of Block Matching is based on a similarity check between
two equally sized blocks in the left and the right image EL  and ER (area-based
stereo). In general these blocks are m × n-matrices, we assume m = n = 2k + 1
for simplicity. The mean square error MSE  between the pixel values inside the
respective blocks defines a measure for the similarity of two blocks. This function
MSE  is defined for gray value images as follows:

MSE x, y,∆( ) = 1

n2 ER(x + i, y + j) − EL (x + i + ∆ , y + j) 2
,

j=−k

k

∑
i=−k

k

∑
where ∆ is an offset describing the difference xR − xL( )  between the column
positions in the left and in the right image. This formula can easily be extended to
color images when employing a color measure. As mentioned above, the selection
of the color measure has no significant influence on the quality of the matching re-
sults. Therefore, we use the square of the Euclidean distance denoted as distc.
For two colors c1 = R1,G1, B1( ) and c2 = R2 ,G2 , B2( ) in the RGB color cube the
measure distc is defined as follows:

distc(c1,c2 ) = R1 − R2
2 + G1 − G2

2 + B1 − B2
2

.

The left color image CL  and the right image CR can be represented in the RGB
color space, e.g. CL x, y( ) = RL x, y( ),GL x, y( ), BL x, y( )( ) . MSE  is replaced by

MSEcolor x, y,∆( ) = 1

n2 distc (CR(x + i, y + j),CL (x + i + ∆ , y + j))
j=−k

k

∑
i=−k

k

∑ .

The block of size n × n is shifted pixel by pixel inside the search area in
the right image. The disparity D between the blocks in both images is defined by
the distance between those positions of the blocks (i.e. the difference in the
columns) showing the minimum MSE  or MSEcolor  value for both images. The
search area can be limited in horizontal direction by a predefined maximum dispa-
rity  Dmax .  A dense disparity map is generated when applying this pixel selection
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Figure 3.1: Gray value reproduction of original left and right color stereo image of
the BEETHOVEN scene space (in PAL resolution 752 × 566 pixel).

technique to every pixel in the image. Afterwards, the pixel disparities are trans-
formed with a median filter to avoid outliers.

The algorithm sketched above was applied to several test images repre-
senting scenes of different complexities. Here, we present results for scenes of
the scene spaces BEETHOVEN and PACKAGE. An original stereo image of the
scene space BEETHOVEN is shown in Fig. 3.1. The dense depth map obtained
for this image with chromatic Block Matching is shown in Fig. 3.2 at the left, and
the reconstructed scene is shown in Fig. 3.2 at the right. A dense depth map
obtained when applying chromatic Block Matching to a PACKAGE stereo image
is shown in Fig. 3.4 at the left. For further details see [23].

3.3 Edge-Based Stereo Correspondence

Dense depth maps are not always required for every application, and their compu-
tation is time consuming. Often, the computation of distances between the camera
system and the objects in the scene is the exclusive aim of the stereo task. Thus,
the correspondence search in stereo images can be reduced to a matching of a few
image positions, e.g. characterized by edges. Edge-based stereo techniques have
the advantage of being less sensitive to photometric variations. In an earlier
investigation [22], we found that high quality edge matching results are obtained
when a feature-based technique suggested in [43] is applied to the stereo images.
The main idea of this binocular approach is based on disparity histograms
showing the distribution of disparity values in the neighborhood of matching
candidates in multiple resolutions. A standard stereo geometry is used to reduce
the search space to horizontal lines.

Edges are extracted in both (intensity) stereo images applying the Marr-
Hildreth or LoG operator, respectively, in three resolutions ( σ1 = 1.41, σ2  =
3.18,  and  σ3  = 6.01).  Zero-crossings in the  LoG filtered images constitute the
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Figure 3.2: Gray coded dense depth map obtained with chromatic Block Matching
(left) and gray value reproduction of the reconstructed BEETHOVEN scene using
this dense depth map (right).

features in the succeeding matching process. The basic idea of the edge-based ste-
reo approach is explained in the following, cp. also [43]. A zero-crossing is de-
fined as a two-dimensional unit vector e x, y( )  pointing into one of the two direc-
tions of the zero-crossing curve. A pair of zero-crossings, one in the right image
and one in the left image, is regarded as a (possible) matching pair if the diffe-
rence between the directions of the zero-crossings is less than 30 degrees. This is
represented by matching functions MR and ML

 for the right and the left image,
respectively: if eR x, y( ) and eL x + D, y( )  form a matching pair, then
MR x, y, D( ) = 1 and ML x + D, y, D( ) = 1. Otherwise, let be MR x, y, D( ) = 0  and
ML x + D, y, D( ) = 0 , where D  denotes a disparity.

First, the global disparity histogram GDH  is determined to find approx-
imate disparity intervals. The GDH  represents the distribution of candidate dis-
parities (including true and false matches) in the whole image. It is defined for the
right image as

GDHR(D) =

MR(x, y, D)
(x,y)∈R

∑
eR(x, y)

(x,y)∈R
∑

,

where R  is the whole image raster. The function GDHR  suffices to estimate the
disparity distribution. Based on the global disparity histogram, a candidate dispa-
rity interval Iα  is determined in the following equation,

Iα = D: GDHR(D) > α H{ } ,

where H  is the peak value of GDHR(D) and α  is a constant with 0 < α  < 1.
Local disparity candidates are estimated using local disparity histograms LDH . A
local disparity histogram shows the disparity distribution of true and false matches
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within the window Wσ  of size Nσ × Nσ  around a zero-crossing point, where
Nσ = 2πσ . The local disparity histogram for a zero-crossing at x, y( ) in the
image is defined as

LDHX (x, y, D) =

MX (x, y, D)
(x,y)∈W

∑
eX (x, y)

(x,y)∈W
∑

with D ∈ Iα . Local disparity histograms are determined for the left and the right
image ( X = L or X = R ). Once local disparity histograms of all channels are
computed, a best channel is selected for each window based on the first and the
second largest peaks in the local disparity histograms. If the difference between
the two peaks is the largest, the channel is selected. A function F  is defined to
check the reliability of the selected channel. FX x, y, Dmax( )  is the difference
between the largest peaks of the best channel in the window around position

x, y( ) in image X = L or X = R, where Dmax  is the disparity showing the maxi-
mum peak. Matching is established if the values of the F functions are large and
the difference between the disparity values in the right and left images is small.

Figure 3.3: Gray value representation of the depth map obtained when applying the
edge-based approach to the BEETHOVEN stereo image shown in Fig. 3.1.

Once the most likely disparity D* is obtained in Wσ , disparities of all zero-
crossing points in Wσ  and those of "finer channels" with smaller windows Wω ,
where ω < σ ,  are obtained by searching for the optimum disparity being the
closest to D*. For further details see [43]. Whenever a pair of zero-crossings is
matched, they are removed from the sets of zero-crossings to reduce the number
of remaining candidates. After trying to establish matches for all zero-crossings
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inside the window Wσ  and the windows Wω  of finer resolutions, the algorithm
(starting with global disparity histograms) is applied to the reduced feature lists.
The matching process terminates if no new matches can be established.

The results are visualized in Fig. 3.3 obtained when applying this sketched
algorithm to the stereo pair of BEETHOVEN images in Fig. 3.1. Furthermore,
we compared the results obtained when applying the dense and the edge-based
technique to PACKAGE stereo images showing the box characterized in Fig. 1.2.
Results are shown in Fig. 3.4 and in Tabs. 6.1 and 6.2.

   
Figure 3.4: Depth values obtained to an PACKAGE stereo image when applying
chromatic Block Matching (left), and points where the edge-based approach has
matched zero-crossings (right). The camera was about 1.80 m away from these
objects, and the baseline distance between both cameras was 11.7 cm.

3.4 Towards On-Line Static Stereo Analysis

 Using Parallel Algorithms

During the last years some hardware solutions to stereo analysis were already
implemented. Neural networks and transputers are, for example, successfully em-
ployed for stereo [29, 31]. Parallel stereo algorithms were presented for the TMC
Connection Machine [3] or special hardware [42]. None of these implementations
produces dense depth maps. As mentioned before, we found the Block Matching
technique using color information to be very suitable for dense stereo matching.
Several ways exist to develop parallel algorithms for chromatic Block Matching.
Currently, we divide both images into several segments and we compute MSE
values inside every segment in parallel. For example, both color images can be
divided into 8 segments. Now, MSE  values can be computed in parallel for every
segment using 8 processing units (PUs). An illustration of this procedure is given
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segment 1
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segment 5
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MSE(x,y,   )∆

STEREO IMAGE PAIR

Figure 3.5: Illustration of the parallel Block Matching algorithm showing by exam-
ple the computation of the MSE  values in the segment number 7 (shadowed area)
in the three color components in both color images.

BEGIN
PARALLEL DO (in PUi , 1 ≤ i ≤ 2)       { transform the left and right image i

ConvertRGBtoI1I2I3i ()          from RGB  to I1I2I3 color space }

END PARALLEL

PARALLEL DO (in PUs , 1 ≤ s ≤ 70)
FOR d = 2 TO dmax DO         { search for corresponding blocks in

BlockMatchings (d)          horizontal segments by minimizing
END FOR     the MSE  }

END PARALLEL

PARALLEL DO (in PUs , 1 ≤ s ≤ 70)     { filter the block disparity image
BlockMedians ()   with a median approximation in

END PARALLEL    horizontal and vertical segments }

PARALLEL DO (in PUs , 1 ≤ s ≤ 70)     { compute pixel disparities from
SelectPixels ()   block correspondences }

END PARALLEL

PARALLEL DO (in PUs , 1 ≤ s ≤ 70)    { apply the median approximation
PixelMedians ()  to the pixel of the disparity image

END PARALLEL    in horizontal and vertical segments}
END

Figure 3.6: Parallel Algorithm for Chromatic Block Matching (with up to 70 PUs).

in Fig. 3.5. In principle, both images can be divided into many segments (e.g.,
70 segments for PAL resolution). Utilizing an individual processing unit for every
segment speeds up the matching process.

As mentioned above, we found a slight improvement in the quality of the
matching results when employing the I1I2I3 color space instead of the RGB  color
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BEGIN
PARALLEL DO (in PUic, 1 ≤ i ≤  2, 1 ≤ c ≤ 3) { search zero-crossings in

FeatureExtractionic ()    left  and right image i ,
END PARALLEL    for each channel c }
DO

PARALLEL DO (in PUc, 1 ≤ c ≤ 3)        { compute global disparity
ComputeGDHc ()                 histogram and candidate
Compute Icα ()     disparity  interval for all

END PARALLEL     channels independent }
FOR (each feature in channel 0) DO

PARALLEL DO (in PUc, 1 ≤ c ≤ 3)  { for each channel c, calcu-
ComputeLDHc ()   late local disparity histo-
ComputeFXYc ();   gram, determine existence

END PARALLEL   and magnitude of a peak }
c ← SelectBestChannel ();
IF (TestReliabilty (c) = OK) THEN

MatchAndDeletePair (c); { try to match the features in
END IF    c and all  channels with

END FOR    finer resolution }
WHILE (new features were matched)

END

Figure 3.7: Parallel algorithm of the edge-based stereo approach.

space. Image data have to be transformed from RGB  to I1I2I3 when this color
space is used. Nevertheless, the principle of dividing a color image into several
segments holds for every tristimulus color cube. A variant of the median filter, the
separable median of medians [33], was implemented to accelerate image
smoothing. Furthermore, we implemented pixel selection for every segment in
parallel. The resulting parallel algorithm for chromatic Block Matching is outlined
in Fig. 3.6.

Furthermore, we developed parallel algorithms for the edge-based stereo
approach based on disparity histograms. We do not concentrate on the parallel im-
plementation of the Marr-Hildreth operator since [45] presents a hardware imple-
mentation. In our parallel implementation, we detect edges in the left and in the
right image in three resolutions in parallel. Afterwards, the global disparity
histogram, the candidate disparity intervals, and the local disparity histograms are
determined in parallel for the three resolutions. Parallel algorithms for computing
the global disparity histogram and local disparity histograms are presented in [26].
The resulting parallel algorithm is outlined in Fig. 3.7.

We implemented the dense and the edge-based techniques on several
different machines and we applied the algorithms to several different test images
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to evaluate the time efficiency. In Tab. 3.1 and Tab. 3.2 some computing time
examples are given using IRIX Power C on a SGI Power Challenge with twelve
R8000 processors (75 MHz). The algorithms were applied to the BEETHOVEN
stereo image of Fig. 3.1 in PAL resolution employing one, three, six or ten
processing units (PUs).

computing time  [in sec] 1 PU 3 PUs 6 PUs 10 PUs
conversion RGB  to I1I2 I3

left
0.17 0.17 0.17 0.17

right 0.17 0.17 0.17 0.17
estimating block disparities 26.32 9.16 4.77 3.05
block median 0.01 0.01 0.01 0.01
pixel selection 4.28 1.51 0.81 0.51
pixel median 0.36 0.13 0.08 0.07
total 31.30 11.16 6.01 3.98

Table 3.1: Computing time when applying chromatic Block Matching to the
BEETHOVEN stereo image of  Fig. 3.1 (752 x 566 pixels).

As a result, a very good acceleration was found for the parallel chromatic Block
Matching algorithm. In general the computing time could be reduced up to the
factor eight when employing ten processing units instead of one. Although color
information was employed, the whole Block Matching algorithm consumes less
than 4 seconds computing time when ten processing units are used in parallel.
These results encourage an implementation on a highly parallel architecture.

computing time  [in sec] 1 PU 3 PUs 6 PUs 10 PUs
feature extraction left

channel 0
2.95 3.17 3.24 3.30

channel 1 5.78 6.03 6.14 6.21
channel 2 16.23 16.52 16.69 16.71
right channel 0 2.92 2.94 3.32 3.29
channel 1 5.80 5.82 6.10 6.19
channel 2 16.24 16.37 16.73 16.80
Subtotal 49.96 22.53 16.78 16.97

edge matching 62.40 31.29 32.28 33.67
total 112.36 53.82 49.06 50.64

Table 3.2: Consumed computing time when applying the edge-based approach to
the image BEETHOVEN of  Fig. 3.1 (752 x 566 pixels).

Opposed to this, our parallel algorithm for edge-based stereo is not very suitable
for high parallelism. The best acceleration was achieved with three PUs because
the results were computed in parallel for the three resolution channels. Further
results can be found in [26].
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4 MOTION ANALYSIS

Shape from motion is often cited as one of the basic computer vision approaches
[8], and even some books in computer vision are focusing on that issue, e.g. [11,
28]. Rigid objects are projected into the image plane assuming a certain camera
model. For a time sequence of such projections, motion vectors have to be com-
puted. Based on these vectors, certain shape values of the objects can be deter-
mined leading to a (partial) 3-D representation of the projected objects [13, 14].

This Section contains contributions to the selection of optical flow
method problem, the existence of optical flow method problem, and the depth
from point correspondences problem, as specified in Subsection 1.1.

4.1 Calculation of Optical Flow Fields

The computation of high-accuracy dense motion vector fields is the most critical
issue of surface from motion, cp. [1, 16, 17] for evaluations of optical flow algo-
rithms. Approaches for solving this task can be classified as point-based differen-
tial methods, as region based matching methods, as contour-based methods, or as
energy-based methods.

Point-based differential methods use spatial and time gradients of the im-
age irradiance function. The point-based differential methods are favorite candi-
dates for surface reconstruction approaches since complete and dense motion
fields can be computed. However, the question is how accurate are these motion
fields. For choosing an optical flow algorithm, the experiment specifications were
as follows:

Test images and ground truth: Synthetic textured images were generated
(periodic or autoregressive pseudo-random patterns) and used for simulating
translations and rotations. In an experiment (A), motions of homogenous textured
planes were used to calculate a sequence of images. In experiment (B), indepen-
dent motions of a textured circle and of a differently textured background plane
were used for computing image sequences. In both experiments the translation
and/or rotation parameters were available as ground truth, i.e. the motion vectors
u* = u*,v*( ) were known in all pixel positions in sub-pixel accuracy.

Error criterion function: Assume that an optical flow algorithm computes
a dense motion field u = u,v( ). The normalized sum of all relative errors ( SRE )
between u*  and u is defined as follows,

SRE ( u* ,u) = 1
# pixels

⋅
u − u*( )2 + v − v*( )2

u*
2 + v*

2
all pixels

∑ = 1
# pixels

⋅
u − u*

u*all pixels
∑ .
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This error criterion function is used in experiments (A) and (B). A different mea-
sure was used in [1], namely the normalized sum of all angular errors ( SAE )

SAE u*,u( ) = 1
# pixels

⋅ arccos
u*,δt( ) ⋅ u,δt( )

u*,δt( ) ⋅ u,δt( )










all pixels
∑ ,

with time δt  between two images of the sequence. The SRE  function was used in
our experiments since it was more adequate to small (and large) motions, and
since point-based differential methods can only detect small motions.

For experiment (A), some typical results are illustrated in Fig. 4.1.
Surprisingly (also to the reader?), the original Horn/Schunck-method was quite
tolerant to the different textures. The Nagel-method which uses the unknown 3-D
positions of  surface points is of theoretical interest only, and did not show any
essential improvement in comparison to the Horn/Schunck-method. In general, all
these differential methods fail if there is not sufficient "diversity" in the used tex-
ture.

30%

25%

20%

15%

10%

 5%

0% texture

Nagel/Enkelmann

Nagel

Schunck

pseudo-inverse

Horn/Schunck

A B C D E F

Figure 4.1: Examples of SRE  values in experiment (A), for six differently textured
planes where a small (constant) translation of these planes was simulated.

For experiment (B), some typical results are shown in Fig. 4.2. Here, for series
of differently textured circles moving on textured planar backgrounds (inverse
motions were used for generating "simple" motion boundaries), the errors did
increase in comparison to experiment (A). Even after improving the initialization
of the iterative methods by using a result of a non-iterative pseudo-inverse method
for initialization,  the SRE  error was about 5% at best, where the Nagel/Enkel-
mann-method did behave best for this two-component motion. Note that such
homogeneous textured circles on a homogeneous textured background represent a
simple input for such a motion detection algorithm. The iterative Schunck-method
was even more worse then the used non-iterative pseudo-inverse method!
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Figure 4.2: Averaged SRE  values in experiment (B) for repeated motions of tex-
tured circles on differently textured backgrounds. Above: the start value u0 = 0,0( )
is used for the iterative methods. Below: results of the non-iterative pseudo-inverse
method are used as start values for the iterative methods (below a finer error scale is
used).

Later on, also further motion detection algorithms, not listed in Fig. 4.1 or Fig.
4.2, were evaluated [17] using the source code of [1].2 Because real objects often
do not have "nicely textured surfaces", the experimental results were even more
worse! Thus, for the following results on shape from motion, erroneous input
data have to be taken in mind if images of real moving objects have to be ana-
lyzed.

2  Programs obtained via ftp and own programs (as far as implemented), both following the
same approach, often did lead to slightly different results. For us at least this did prove that
theory, algorithms and implementations are different issues.
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Based on a-priori knowledge about object motion, correspondence based
motion detection can be constrained for obtaining improved results. Assume that
objects are placed on a rotating disc, cp. Fig. 1.1, i.e. the radius of the disc and a
fixed rotation axis are given (for calculating the axis, Tsai's camera calibration as
discussed in Section 2 can be used). For this case of rotational motion [19], for
correspondence calculation the epipolar constraint of static stereo can be adopted.
In this specific (partially calibrated) case, optical flow vectors connecting
corresponding image points can be used to calculate depth without going via
shape.

4.2 Depth from Correspondence

By using dynamic stereo based on the rotating disc, for corresponding
points in consecutive images depth can be computed directly without going via
shape. Assume that during image acquisition of an object placed on the rotating
disc, projections of points C1   and C2  in the image plane of the camera-centered
coordinate system are given for the same visible surface point W  in the world
coordinate system, at consecutive time slots t  and t + 1. The task consists in cal-
culating the coordinates of W , where the Z-coordinate of W  in the camera-
centered coordinate system is identified with depth.

At first, assume that the rotation speed can be controlled, i.e. the rotation
angle between time t  and t + 1 is known. Based on the calibration results, the
defined task can be solved. It holds

RW + T = C1

where R  denotes the calibrated 3 × 3 rotation matrix, and T  denotes the calibra-
ted translation vector. For the rotation R∆  of the disc between t  and t + 1, it
holds

RR∆ W + T = C2  .

For the calibrated focal length f  and the ideal image points xPi , yPi( )  at time
t1 = t  and t t2 = t + 1, it holds that

xPi =
f ⋅ XCi

ZCi

  ,  and   yPi =
f ⋅ YCi

ZCi

 .

For the calibrated distortion coefficients κ1  and κ2 , based on measurements of
the distorted image coordinates, at first the ideal image points Pi  can be com-
puted, and secondly these ideal points can be used for determining points Ci  in
the camera-centered coordinate system,
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by solving the following two equation systems. For abbreviation, let Z1 = ZC1
 ,

and Z2 = ZC2
 . For Ei  as defined above it holds (cp. Fig. 4.3 at the left)

RT Z1E1 − T( ) = RR∆( )T
Z2E2 − T( )

There are three equations and two unknowns. In fact, the disc rotation
angle ϕ∆  can be taken as third unknown. But, the equation system "looses its lin-
earity" if considered also for unknown ϕ∆ .

For abbreviation, let  a = aX ,aY ,aZ ,( ) = RTE1  , b = bX ,bY ,bZ ,( ) = RTT ,
and c = cX ,cY ,cZ ,( ) = RTE2 . Then it holds (cp. Fig. 4.3 at the right)

ϕ∆ = 2 arctan
c2 aYbZ − bYaZ( ) + c1 aXbZ − bXaZ( )
c2 aXbZ + bXaZ( ) − c1 aYbZ + bYaZ( )







 ,

Z1 =
bZ cX − cX cos ϕ∆( ) + cY sin ϕ∆( )( )

aXbZ − aZbX cos ϕ∆( ) + aZbY sin ϕ∆( )  ,

Z2 = Z1 ⋅ aZ − cZ

bZ − cZ
 .

Despite of that the calibration results are very accurate, the  flow vectors or
the point correspondences are still the open problem for real objects on the ro-
tating disc. For polyhedral objects, features computed by a corner response func-
tion were suggested for correspondence analysis [19]. For the practical evaluation
of these reconstruction formulae, complex synthetic objects were considered. The
experiment specifications were as follows:

Input images and ground truth: Synthetic objects (visualized by shaded
surfaces) are assumed on a rotating disc in front of a camera. During rotation, se-
veral projections are computed, and exact correspondences are assumed. The vi-
sualized surface structure is used as qualitative ground truth.

Error measure: For interactive evaluation, the resultant surface is graphi-
cally represented (3-D triangulation and shaded surface).
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Figure 4.3: Reconstructed depth map of a cube if the rotation angle is known (left),
and reconstructed depth map if this angle is unknown (right).

In Fig. 4.3 (left), depth reconstruction is illustrated if the rotation angle is known,
or (right) if it is unknown. In the experiments, the algorithm with known rotation
angle was robust for any 2-D motion of point C1  into C2  within the image plane.
The algorithm with unknown rotation angle did not work if the direction of the
motion vector u,v( ) of point C1  into point C2   is "nearly parallel" to the image
rows or to the image columns, i.e.

 
u

v
  »  1      or       

u

v
  «  1   .

So far, no mathematical explanation is available for this "bad behavior" in
the case of applying the algorithm for unknown rotation angle.

As conclusion, a two-step procedure is proposed. At first the algorithm
with unknown rotation angle is used for calculating the unique (!) rotation angle:

For some corresponding pairs C1  and C2 , the rotation angle is calculated.
Then, for the resulting angles a certain mean value is derived as unique rotation
angle ϕ∆ .

Then, the algorithm with unknown rotation angle is used to calculate depth
values for all pairs of corresponding points  C1  and C2 .

In Fig. 4.4, the reconstruction results are illustrated of a more complex
synthetic object than the cube of Fig. 4.3. Only two projected images were as-
sumed. The correct motion field was available (motion vectors rounded to pixel
positions !), the rotation angle was given (for correct flow vectors, the first
approach is very robust for calculating this correct rotation angle), and the second
approach was applied.
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Figure 4.4: Synthetic 3-D object, its motion vector field simulating the rotating disc,
the reconstructed depth map based on two (!) projections only, and a 3-D visualiza-
tion of these depth values as used for interactive error analysis.

Because the sketched calibration method of Section 2.2 is very accurate, the same
could be qualitatively evaluated for the defined surface reconstruction experiment.

Unfortunately, so far automatic dense flow vector field computation is not
available at a quality level allowing similar reconstructions for real objects just by
using one of these two approaches. By adding noise to ideal motion vector fields
it became clear that relatively small distortions will have a great impact on the re-
constructed surfaces.

The experiment specifications for the BEETHOVEN scene were as fol-
lows:
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Figure 4.5: A plaster statue on the rotating disc, a needle representation of the
optical flow field calculated by the Anandan method, cp. [1], and two
representations of the reconstructed 3-D surface, namely a depth map (below left)
and a shaded surface (below right). Cp. also Figure 6.1 for texture mapping.

Input images and ground truth: Objects as the plaster statue were placed
on a rotating disc in front of a camera. During rotation, several pictures were
taken. The visible surface structure was used as qualitative ground truth.

Error criterion: For interactive evaluation, the resulting surface was
graphically represented (depth map, floating horizon, isolines, 3-D triangulation,
shaded surface, texture mapping).
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In Fig. 4.5 it is illustrated what quality of depth map representation or
shaded surface representation was obtainable. Comparing many point-based
differential methods for computing the optical flow, the Anandan-method was
chosen to behave best for this experiment (by comparing with evaluations in [1],
note that dense flow fields have to be used in this experiment). The depth map in
Fig. 4.5 shows smoothed depth values.

The high error rate of such a motion based surface reconstruction
technique is without doubt. The surface of these plaster statues is not covered
with homogeneous surface textures as assumed in the experiments in Section 4.1.
Even such textures did lead to quite erroneous motion fields. The reconstruction
algorithms, either for known or for unknown rotation angle, produce very rough
surface drafts.

However, these rough drafts can be of interest for the control of 3-D
environments, i.e. it is not possible to recognize an  object, or to reconstruct the
surface in a precise way, but it can be calculated "that there is something" what a
robot may view as an obstacle. Also, all the processes can be in parallel what
makes on-line processing achievable.

Figure 4.5: Localization of isolated points in 3-D space using motion analysis.

Dense optical flow field computation does not lead to complete surface reconstruc-
tions at acceptable quality. However, singular correspondences ("sparse flow
fields") can be calculated for real objects with good accuracy, e.g. by interactively
supported correspondence assignments, allowing computations of a few 3-D
positions of surface points (these can be called fixation points). Such fixation
points of a PACKAGE scene are illustrated in Fig. 4.6.
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This figure illustrates a result of the following processing steps: A
sequence of four input images was used. The rotation angle between two images
was 5°. The camera was about 1.80 m away from these objects. The rotational
disc is shown in the image just for illustration purposes. The features as shown in
Fig. 4.6 are calculated with the Marr-Hildreth operator. These features were used
for calculating corresponding points. The known rotation angle was used for
reconstruction. In the enlarged subimage, four points are shown which were
interactively selected. The reconstruction algorithm did calculate the 3-D world
coordinates  P1 = (-116.3, 87.7, 168.7), P2  = (-124.6, 26.3, 167.4), P3  = (-
34.3, 13.2, 167.1), and P4 = (-29.1, 74.6,  166.0) for these four points, all
values are scaled in mm.  Further results are given in Section 6 in comparison
with reconstruction results of the other methodologies.
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5 SHADING BASED SHAPE RECOVERY

Shading based methods for surface reconstruction consider the imaging sensor as
a photometric measuring device [7]. Assuming special reflection characteristics
and known illumination configurations, the measured image irradiances (intensi-
ties) reduce possible surface orientations to a closed curve on the Gaussian
sphere. For Lambertian reflection these curves are circles. Several approaches
exists to achieve a unique surface in spite of this ambiguity in image irradiance.
Most approaches require hard limitations to the object world. This implies that
these approaches are theoretically very interesting but not useful in practice.

However shading based methods have the important advantage that three-
dimensional features they calculate can be recovered in a dense manner. There-
fore, a surface orientation or a relative depth value can be assigned to each visible
surface point in the image, except for sharp discontinuities.

In our work we focus on methods which are independent of the actual sur-
face albedo. The reasons are practical considerations. Albedo independence al-
lows the surface to be of an arbitrarily colored texture. Hence, no reflection factor
measurements are needed for the original unknown surface.

5.1 Photometric Stereo Analysis with Table Look-Up

Using at least three light sources surface orientations together with albedo
values can be measured for each image point independently. This is known as the
photometric stereo method [48]. Algorithms following this methodology calcu-
late surface shape (orientations, gradients or normals) from the shading variations
in three images, taken of the objects with light sources in different positions. Op-
posite to the binocular stereo techniques (Section 3), the visual sensor is fixed in
the same position and orientation. Opposite to the dynamic stereo techniques (Sec-
tion 4), the illumination changes during picture sequence acquisition. Therefore
no matching or registration strategy is necessary. From the surface orientations
the depth can be calculated using an integration technique. Comparisons with
several approaches have shown that a FFT-based method [5] produces the best
results.

Applying the photometric stereo method to a large number of different
objects it has turned out that this shading based approach can serve as a good
starting-point for high-quality surface reconstruction. The investigations have
shown, that the photometric stereo method is open to improvement in several
ways. The most important problems for applying this method are listed in
Subsection 1.1, listed there as the last six problems.

All these problems concern the accuracy of the surface reconstruction.
Some problems are furthermore related to practical considerations, i.e. what
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techniques improve the applicability of the calibration and of the reconstruction
processes.

The inaccurate illumination parameter estimation problem can be
solved if the influence of these parameters on reconstruction can be reduced.
Traditionally for the photometric stereo method [48], the accuracy of the
orientation determination depends strongly on the estimation of the light source
parameters, i.e. the light source strength and the illumination direction. On the
other hand, table look-up techniques exist which need no knowledge of these
parameters, since the table look-up is built with an calibration object [8]. Table
look-up techniques in general have the disadvantage that only objects with surface
materials can be analyzed which have exactly the same reflection characteristics as
the calibration object. This implies many practical problems, since often it is
difficult to generate a calibration object with a special surface material, and since
the albedo of the analyzed object has to be constant. We developed a table look-up
technique which is independent of the surface albedo. The light source parameters
remain unknown. In comparison to other table look-up techniques, a further
assumption is that the sensor has a linear characteristic.

Also some remarks to the extension to non-static scenes problem. Multi-
irradiance shading based methods assume that the object does not move with re-
spect to the sensor and the light source. It is assumed that the measured irradi-
ances triplets come from the same scene point. Using a color sensor as imaging
device it is possible to overcome this limitation [4, 38, 39], i.e. also non-static
scenes can be analyzed for (partial) surface reconstructions during motion.

5.2 Reconstruction of polyhedral objects

This Subsection deals the reconstruction of polyhedral objects problem
as defined in Subsection 1.1. For generating polyhedral reconstructions the first
partial derivatives generated from the photometric stereo method have to be
transformed to a depth map or to a geometrical 2 1

2-D model. We have developed
a method [2] that applies dense gradient information as well as a line drawing of
the object. The method consists of two steps. The visible surface of the projected
object is segmented into planar and curved patches. Then these segments are fitted
together to build up a 2 1

2D surface.
Region growing is used for segmenting the gradient images. The values

of these symbolic images are the computed gradients. This segmentation
technique allows to extract planar and curved patches. Curved patches can be ap-
proximated by planar patches, and these planar patches are attributed as belonging
to a curved segment. This is necessary for the treatment of occlusions and the
elimination of approximation edges in the recognition part. Since region
boundaries in the interior of curved patches are determined by the growing pro-
cess, these patches are post-processed with a balancing algorithm. Pixels on
region boundaries are reclassified if the average orientation in an adjacent region
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has a smaller angular deviation than the original region. The reclassification
process is done iteratively until an equilibrium is reached. Subsequently to this
process the boundaries are polygonally approximated. Consequently, for the next
steps consistent region boundary information is available.

Now, from the region and the boundary data a winged edge model is
generated. The model includes the vertices, edges, faces and the face orientations
from the 2-D structure. This structure must be modified if concave objects with
partially occluded boundaries occur. In this case, we have to assign more than one
depth value to some vertices. To prepare the depth calculation, such occluding
edges have to be detected. Occluding boundaries are detected by using the face
orientations. Parallel projection is assumed. Therefore, the expected edge orien-
tation depends on the adjacent face orientations n1 and n2 as follows,

(x, y)T = (q2 − q1, p1 − p2 )T = projXY (n1 × n2 ) ,

where n1 = ( p1,q1,−1)T ,  n2 = ( p2 ,q2 ,−1)T and projXY  denotes the projection
function on XY-coordinates (i.e. the parallel projection as introduced in Subsec-
tion 2.1).

If this orientation is inconsistent with the line drawing, the edge becomes
an occluding edge. Vertex splitting is carried out if both adjacent edges are occlu-
ding edges, or if one edge is occluding and the other is a 3-D boundary edge.

The depth is locally calculated for each vertex. The depth value of a vertex
constrains the depth values of all adjacent face vertices to some extend. Therefore
the following five cases are distinguished:

(i) At no adjacent vertex any depth value is available: the current vertex is
neither constrained with respect to its 2-D coordinates nor with respect to its depth
value. The depth value can arbitrarily be chosen.

(ii) For exactly one of the adjacent faces a 3-D fixation is already available:
the 2-D coordinates of the vertices can be substituted into the plane equation. This
determines the depth values of these vertices.

(iii) For exactly two of the adjacent faces a 3-D fixation is already avail-
able: a 2-D inconsistency of vertices can arise. Therefore a parallel projection onto
the line of intersection of the two planes is determined. Thereafter the point of
intersection is substituted into the plane equation.

(iv) For exactly three of the adjacent faces a 3-D fixation is already avail-
able: consistency and depth can be attained simultaneously by calculating the
intersections of the planes.

(v) More than three faces are fixed in 3-D space: if there is more than one
point of intersection, than this inconsistency cannot be repaired. Therefore the
depth calculation is scheduled in an order dependent on the number of adjacent
faces. Such accidental events occur very rarely.
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This procedure ensures that face orientations determined by the shape re-
covery method leave the assembling process unchanged. The edge structure
obtained by such a process can vary. Calculated surface slopes at or close to
edges are less reliable than in the interior of regions. For each face surface
orientations are calculated within the whole segment, and all these orientations are
used to determine a unique orientation of the face.

The above scheme (i) ... (v) is applied to each visible vertex. When the
process is finished the 2-D winged edge model derived from the line drawing is
transformed into a 2 1

2-D model. The following experiment is performed for
images of the PACKAGE scene space.

Input data and ground truth: Three light sources were used, cp. Tab. 5.1.
Images are taken if exactly one of the light sources is turned on (i.e. typical photo-
metric stereo arrangement). The sizes of the pictured box are used as ground
truth, see Fig. 1.2.

Error criterion: The deviations between reconstructed sizes and actual
sizes are used as quantitative error criterion.

Algorithm: The table look-up technique (Subsection 5.1) is used for
calculating surface gradients. Subsequently the polyhedral reconstruction scheme
(i)...(v) is applied.

The parameters shown in Tab. 5.1 are given to describe the illumination
configuration. However, they were not used within the surface orientation calcu-
lations.

light
source

relative
strength

estimated ps estimated qs estimated
tilt

estimated
slant

1 1.0 -0.311455 -0.231252 -143.41 21.20

2 1.02206 0.048908 0.303985 80.86 17.11

3 0.77149 0.410855 -0.235918 -29.86 25.35

Table 5.1: Light source parameters as used in the experiment with PACKAGE
scenes.

In Fig. 5.1 one of the input images and a needle map representation of the
reconstructed gradient image are shown. The cow pictured at the box has a very
small albedo, i.e. close to zero. Therefore (among other regions) in the cow no
surface orientations could be determined.

Fig. 5.2 shows perspective plots of the reconstructed box seen from two
different view directions. Only an 2 1

2-D model can be recovered from a single
sensor position, i.e. invisible parts of the milk can not be included in this model.
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Figure 5.1: A photometric stereo input image of a milk package and a  needle map
representation of the reconstructed gradient image using the albedo independent
photometric stereo technique, cp. Subsection 5.3.

P4

P6

P7

P5

P1
P2

E1

E3

E2

A

B
C

Figure 5.2: Perspective plots of the 2 1
2-D reconstruction.

vertex X Y Z

P1 -0.186663 -0.763393 0.062641

P4 -0.133929 0.320592 -0.567323

P5 0.504743 0.461217 -0.204844

P6 -0.391741 0.508092 -0.220501

Table 5.2: Examples of 3-D coordinates: the four visible vertices are labeled as in
Fig. 5.2. An object coordinate system is used.
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face X Y Z

A 0.054525 0.894764 -0.443198

B -0.836804 -0.244101 -0.490076

C 0.513713 -0.449641 -0.730699

Table 5.3: Examples of unit normals of three box faces labeled as in Fig. 5.2.

Tab. 5.2 and Tab. 5.3 summarize some of the data of the generated 2 1
2-D model.

The values in Tab. 5.2 are given in an object coordinate system. In Tab. 5.3 the
three determined unit surface normals are listed for the three visible faces. The
angles between these faces are as follows,

 angle A, B( ) = 92.7°, angle A,C( ) = 92.9° , angle B,C( ) = 87.8°.

From this data the ratios of the edge lengths can be calculated: E3:E1 = 1.6783,
E3:E2 = 2.6638, E1:E2 = 1.5872. The real edge ratios are: E3:E1 = 1.7579,
E3:E2 = 2.6508, E1:E2 = 1.5079.

In Fig. 5.3 at the left an iso-depth plot of a depth map determined from the
data of the reconstructed 2 1

2-D model is shown. For comparison the gradient
image has been transformed to a depth map using the FFT-method [5]. An iso-
depth plot of this depth map is shown in Fig. 5.3 at the right. Using edge E2 as
the reference edge the calculated lengths differ by 5 mm (E1) and 1 mm (E3).

Figure 5.3: Iso-depth plots of the box based on the reconstruction results of the
albedo independent photometric stereo technique, see Subsection 5.3. Left:
calculated iso-depth map  using the approach in [5]. Right: depth map generated
from the reconstructed 2 1

2-D model using the polyhedron reconstruction method.
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5.3 Using More General Reflection Models

Traditionally the photometric stereo method restricts the reflection characteristics
of the analyzed surface to Lambertian reflection. This approximate assumption can
be used for many materials. However, in general surface reflection is composed
of a diffuse and of a specular component. This Subsection deals with this using
more general reflection models problem.

With the specular reflection component more parameters must be known in
advance to model this hybrid reflection. These are roughness values and weigh-
ting factors, for example. Using color is a good way to get more information
about the scene without introducing more light sources and without making severe
restrictions to the surface reflection properties. We apply the dichromatic
reflection model. This model can be used to separate the two types of reflection
components [20, 40, 41]. Moreover, roughness values and weighting factors can
be extracted from the images. Since the photometric stereo method additionally
recovers surface albedo values, illumination independent surface color descriptors
can be obtained. These color descriptors allow that a set of CIE tristimulus values
can be assigned to each surface element. The next experiment illustrates the
influence of highlights on surface reconstruction.

Input images and ground truth: Scenes of a WATERING CAN arrange-
ment are used as input data. In general no ground truth data are available for com-
plex curved objects besides the visual appearance. If surface data are available as
ground truth, the comparison of this data with the reconstruction data is difficult
and instable (see the 3-D surface error measure problem at the end of Subsection
1.2). Therefore it is not easy to find sufficient data to make comparisons. An ob-
ject with tractable subsurfaces is chosen in this experiment. The watering can
(without its spout) shown in Fig. 5.4 at the left has a body which can be locally
approximated as being cylindrical. This means that most surface points have ap-
proximately a zero principal curvature. Furthermore the body has a symmetrical
shape and the non-zero principal curvature is small at the symmetry axis. We can
expect that the change in slant (i.e. angle between optical axis and surface normal)
is small in a region nearby the symmetry axis.

Error criterion: The shape of the slant histogram in the region close to the
symmetry axis is chosen as qualitative error criterion.

Fig. 5.4 at the left shows one of the three input images of the photometric
stereo shape recovery approach. In Fig. 5.4 at the right a sketch of a horizontal
cut of the can is shown. The position of the cut is drawn in Fig. 5.4 at the left as a
horizontal line.

Tab. 5.4 specifies the light source parameters of this experiment. The light
source strengths are given relatively to the first light source. The illumination di-
rections are estimated with an inverse photometric stereo method [8] based on 150
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    visible

invisible

Figure 5.4: Left: a watering can illuminated with the third light source, see Tab. 5.4.
Right: cut through the watering can body. The cut is indicated in the left part as a
horizontal line.

light

source

relative

strength

estimated ps estimated qs estimated

tilt

estimated

slant

1 1.0 -0.323552 -0.157596 -154.03 19.79

2 0.79952 0.009482 0.572829 89.05 29.81

3 0.76223 0.450235 -0.012140 -1.54 24.25

Table 5.4: Light source parameters of the experiment with the watering can.
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Figure 5.5: Slant histograms of the watering can body region indicated in Fig. 5.4.

normals. They are given as gradient space co-ordinates ps,qs( ) and as spherical
coordinates (tilt, slant).

The highlight area on the body of the watering can is quite large. The pho-
tometric stereo method was applied to the original specular input images and to the
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matte input images after eliminating the specular component. Fig. 5.5 shows the
slant histogram of the rectangular area drawn in Fig. 5.4.

It can be seen that the slant angles of the original input images are scat-
tered. The slant angles obtained from the specular-free images generated by our
method are much more concentrated and therefore more reliable. The maximum
frequency is achieved at 6°, with a slant bin interval of one degree. This value is
not zero since the symmetry plane of the whole watering can and of the projection
(image) plane were not exactly coplanar during image acquisition.

Fig. 5.6 shows the needle map of the watering can using the matte images.
It can be seen that the normals in the area with high specular component have
small Y coordinate components. In the case of highlight influence they are tilted
towards the respective light source.

Figure 5.6: Needle map representation of the calculated gradient image where the
reconstruction was based on the matte images of the watering can.

Figure 5.7: Reconstructed surfaces of the watering can without highlight elimina-
tion (left) and with highlight elimination (rig ht).

Fig. 5.7 at the left shows the rotated reconstructed surface. A texture mapping
using the original image is applied to visualize the range data. The reconstructed
can is strongly deformed. The specular reflection component locally causes a
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dent. The result of surface reconstruction using three matte images is shown in
Fig. 5.7 at the right. Here a calculated matte image is mapped onto the range data.

The next experiment aims at the three-dimensional analysis of
BEETHOVEN scenes using the photometric stereo method. The FFT-based
integration method [5] is used to calculate a relative depth map from the calculated
surface orientations. The light source parameters used in this experiment are listed
in Tab. 5.5.

light

source

relative

strength

estimated ps estimated qs estimated

tilt

estimated

slant

1 1.0 -0.387930 0.059682 171.25 21.43

2 0.56271 0.031802 0.556538 86.73 29.14

3 0.52581 0.389363 0.104828 15.07 21.96

Table 5.5: Light source parameters of the experiment for reconstructing the surface
of the Beethoven plaster statue.

The albedo of this object is constant. Plaster has approximately a Lambertian re-
flection characteristic. Therefore no highlight elimination is necessary. The input
image illuminated from the first light source is shown in Fig. 5.8 at the left. Fig.
5.8 at the right is a visualization using a mesh plot. The sampling rate of the mesh
is three pixels. Therefore details in the depth map are lost.

Figure 5.8: Left: input image of the Beethoven plaster statue illuminated with the
first light source. Right: mesh plot of the resultant depth map.

The albedo independent table look-up method (Subsection 5.1) is used to
reconstruct the surface orientations in areas where three irradiances are available.
In areas illuminated from two light source the surface orientations are projected
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onto the self-shadow circle of the third source on the Gaussian sphere. In areas
illuminated from one source the orientations are projected onto the intersection of
the two shadowing sources. In Fig. 5.9 a surface plot is shown using texture
mapping. As texture image the scene illuminated with the second light source was
used.

Figure 5.9: Visualization of the reconstructed surface of the Beethoven plaster
statue using texture mapping.

Two reflection problems mentioned in Subsection 1.1 are not sketched in this
Section. For dealing with the  treatment of shadow regions problem, shadows
have to be recognized. The photometric stereo method needs three non-zero
irradiance measurements at each surface location. For convex surfaces the degree
of shadowing depends on the illumination configuration and only self-shadowing
occurs. Concave surfaces cause self-shadows and cast-shadows. For and contri-
butions to the consideration of interreflections problem, see [27, 32, 37].
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6 CONCLUSIONS

The reports discusses some solutions of the problems listed in Subsection 1.1 in
different depth. The main aim was in illustrating the state of the art where a poly-
hedral object (box) and a curved object (plaster statue) was used for comparisons.

Static and dynamic stereo analysis allows to measure absolute depth
values. For the box used in the experiments, such measurements are given in Tab.
6.1. Note that different world coordinate systems were used in the static and in
the dynamic approach. From these measurements, the edge sizes of the box can
be calcutated, see Tab. 6.2. These edge sizes allow a direct comparison, e.g. also
with the ground truth (see also Fig. 1.2). Photometric stereo analysis offers
gradient data, see Tab. 5.3, which can be used for computing a relative depth
map. The computed angles were close to 90˚, i.e. nearly accurate.

static stereo dynamic stereo

intensity based feature based

X Y Z X Y Z X Y Z

P4 -45.3 104.8 169.4 -41.7 110.1 171.6 -116.3 87.7 168.7

P6 -54.5 58.1 173.5 -59.8 56.0 171.5 -124.6 26.3 167.4

P7 3.9 17.1 167.1 3.6 9.8 165.2 -34.3 13.2 167.1

P5 23.5 67.8 166.4 20.3 64.3 165.5 -29.1 74.6 166.0

Table 6.1: Reconstructed 3-D world coordinates (in mm) of the box in the
PACKAGE scenes.

distance edge length static stereo dynamic

between (ground truth) intensity based feature based stereo

P1 P4 167.0 169.4 171.6 168.7

P2 P5 167.0 166.4 165.5 166.0

P3 P7 167.0 167.1 165.2 167.1

P4 P6 63.0 56.5 57.1 62.0

P5 P4 82.0* 75.4 77.3 88.2

P6 P7 82.0* 71.7 78.7 91.3

P7 P5 63.0 54.4 57.0 61.6

*The edge detection algorithm did not find the real positions of the vertices P4-P7 because their
contrast to the background is too low. In this case the edges of the white label were chosen.

Table 6.2: The comparison of  the 3-D point differences (in mm) with the ideal size
of the box in the PACKAGE scenes.
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Altogether these experiments with the box show that approximate surface
data can be obtained with these methodologies based on the used calibration.
However, for static and dynamic stereo analysis the correspondence problem for
these measurements was solved interactively by selecting a few corresponding
point pairs. Also, a better quality of these reconstruction results  seems to be
impossible because of the camera-object geometry (size of discrete pixels,
distance between objects and camera, size of objects etc.).

The reconstruction of surface patches was possible by photometric stero
analysis. The Beethoven plaster statue could be recognized at reasonable quality,
cp. Fig. 5.9. This reconstruction process is also very fast and in on-line only re-
stricted by the time of using three different light source illuminations. The
reconstruction of surface patches using static stereo analysis is possible at a very
rough level, and dynamic stereo analysis absolutely fails. Dynamic stereo analysis
can only be suggested to get some information that there exists something in 3-D
space in a certain distance. The discrete measurements of 3-D points using static
or dynamic stereo analysis could be used for scaling the results of photometric
stereo analysis.

  

Figure 6.1: Visualization of the reconstructed surface of the Beethoven plaster
statue using texture mapping: results of static stereo analysis (left) and of dynamic
stereo analysis (right), cp. Fig. 5.9 for photometric stereo analysis.

The evaluation of surface patch reconstruction was performed based on the
qualitative (visual) appearance of reconstructed surfaces. Of course this strongly
depends upon the used method for surface representation. For example, in general
texture mapping suggests better reconstruction results than a floating horizon
representation. However, in the case of dynamic stereo also texture mapping did
not help to suggest a reasonable reconstruction, see Fig. 6.1. For static stereo
analysis some improvements seem to be possible by analysing corresponding
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segments in the images [15] instead of corresponding points or line segments
(edges). However, this could not yet verified in practical experiments and is a
theoretical proposal so far.

For studying surface reconstruction based on structured lightening [9, 30,
44] a few experiments were already performed in our group. For example, a
plaster statue was placed on a rotating disc hit by a light plane (generated with a
point laser). During rotation of the object on the disc, a sequence of images is
taken. Thresholding, thinning, curve approximation and triangulation allow the
calculation of isolated points on the object surface. These points can be used for
computing a certain surface model, e.g. by triangulation. This approach leads to
very accurate surface data. However, e.g. not each object can be placed on a disc,
or viewed under constant rotation.

All the studied methodologies have to be related to such applicational situ-
ations (what objects, what object motion, what illumination etc.) where they can
be used with some benefit. Such proposals should be based on a very detailed
performance analysis.
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