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Abstract

We present a novel surface reconstruction algorithm that can re-
cover high-quality surfaces from noisy and defective data sets with-
out any normal or orientation information. A set of new techniques
are introduced to afford extra noise tolerability, robust orientation
alignment, reliable outlier removal, and satisfactory feature recov-
ery. In our algorithm, sample points are first organized by an octree.
The points are then clustered into a set of monolithically singly-
oriented groups. The inside/outside orientation of each group is
determined through a robust voting algorithm. We locally fit an im-
plicit quadric surface in each octree cell. The locally fitted implicit
surfaces are then blended to produce a signed distance field using
the modified Shepard’s method. We develop sophisticated iterative
fitting algorithms to afford improved noise tolerance both in topol-
ogy recognition and geometry accuracy. Furthermore, this itera-
tive fitting algorithm, coupled with a local model selection scheme,
provides a reliable sharp feature recovery mechanism even in the
presence of bad input.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry—Geometric Algorithms and Object Representations

Keywords: Computer Graphics, Surface Reconstruction, Surface
Representation, MPU implicits, Modified Shepard’s Method.

1 Introduction

Surface reconstruction of a scanned real-world object is a critical
step of thereverse engineeringpipeline. The surface of an object
is first digitized into a set of sample points. Once these points have
been collected, a surface reconstruction technique is invoked to
build a surface representation that is faithful to the collected points.
Many surface digitizing devices, such as laser range image scan-
ners, can produce rather dense and accurate data samples. Some
optical devices can also provide inside/outside information or even
accurate surface normals. Most conventional surface reconstruction
techniques are highly (strongly) device-oriented, in the sense that
they rely on specific information such as surface normals or view-
point (e.g. volume carving), or that they pose excessive demand on
data accuracy or density. General devices, according to the digitiz-
ing techniques used, often produce defective data samples that are
subject to noise, local absence of data (e.g., due to occlusion), out-
liers, etc. A set of desirable properties for a general-purpose surface
reconstruction technique includes:

• Time and space efficiency,
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• Robustness for defective data sets,
• No restriction on topological type,
• Ability to fill holes and adapt to varying sampling density,
• (Abrupt) noise and outlier removal,
• Sharp feature preservation.

Figure 1: Our noise-tolerant surface reconstruction system. The
noise rate is 0.7% of the object size. The side view of the gargoyle
shows the fitting error map. Red color indicates larger fitting error.

In this paper, we propose a novel surface reconstruction tech-
nique which poses very little restriction on the data set. Our system
takes as input a set of (noisy) sample points without any normal
or orientation information and outputs a piecewise smooth surface.
Sharp edges and corners can be well identified and recovered. The
main ideas behind our technique are that (1) we never use local
unreliable information to determine global properties, and (2) we
iteratively detect false local results and recompute the local fitting
when such bad input is detected.

We employ the recently introduced Multi-level Partition of Unity
implicits (MPU implicits) by Ohtake et al. [2003a] as the underly-
ing surface representation. In general, implicit surfaces can provide
better topological flexibility and automatic hole filling than can
piecewise parametric models. MPU implicits can also offer the de-
sirable properties of local support and local feature representation.
Xie et al. [2003] also developed a similar implicit surface represen-
tation scheme based on the modified Shepard’s method for noisy
data fitting. Ohtake et al’s surface reconstruction algorithm builds
an MPU implicit surface from an unorganized point cloud with pre-
scribed normals. Their system exhibits extraordinary capability in
sharp feature preservation, hole filling, and topological adaptabil-
ity. However, their method requires accurate data sets with precise
normals associated with each point. We note that the normal infor-
mation plays a key role in determining the topology of the surface.
Our goal is to augment the MPU implicit reconstruction system to
general data sets while preserving all its desirable properties such
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as sharp feature recovery.
We term such noisy and incomplete data sets with possible out-

liers and abrupt bursts of high noise as “noisy” and “defective” data
sets. In our system, the sample points are arranged over an oc-
tree. We first cluster the points into monolithically oriented groups
through an active contour method. These groups will be used to
determine the orientation of each locally fitted implicit surface. In-
stead of using Hoppe et al.’s [1992] orientation propagation method,
the inside/outside test is conducted through a voting algorithm. This
algorithm utilizes not neighboring cells but global information to
decide the orientation of each implicit surface patch; thus, it pro-
vides improved robustness. We also propose an iterative surface fit-
ting algorithm to correct erroneous fitting results that exhibit high
error or undecidable orientations. Later fitting iterations use the
normal vectors produced by previous iterations for feature detec-
tion and model selection. In a nutshell, our system exploits a series
of mechanisms to deal with noisy and corrupted data sets with extra
robustness and efficiency.

2 Related Work

Our work seamlessly integrates ideas from several research areas in
the literature of computer modelling and surface reconstruction. In
this section, we discuss related work in areas of implicit surfaces
(signed distance fields), deformable models (active contour meth-
ods), and spatial partition-based surface reconstruction algorithms.

Compared to explicit models, implicit models can very effica-
ciously deal with objects of arbitrary topology, blend surface prim-
itives, tolerate noise, and fill holes automatically. The traditional
approaches are based mostly on Blinn’s idea of blending globally
or locally fitted implicit primitives [1982]. Following this line, Mu-
raki [1991] uses a linear combination of Gaussian blobs as the sur-
face fitting model. Carr et al. [2001], Turk and O’Brien [1999] use
globally supported radial basis functions(RBFs) to fit data points by
solving a large dense linear system. Morse et al. [2001] and Ohtake
et al. [2003b] reduce the computational cost to a sparse linear sys-
tem by using locally supported RBFs. Another approach in this
direction defines the distance field as the distance to a locally fitted
surface. Hoppe, DeRose, et al. [1994] define the signed distance
field as the distance to a locally fitted tangent plane. Curless and
Levoy [1996] build the signed distance function on a volumetric
grid using a set of depth images. Bajaj, Bernardini et al. [1995]
combine piecewise algebraic surfaces withα-shapes. Although
algebraic patches are more flexible for local shape fitting, they
need a cumbersome procedure to maintain the single-sheeted na-
ture and the continuity between adjacent implicit patches. Recently,
Ohtake et al. [2003a] proposed Multi-level Partition of Unity im-
plicits (MPU implicits). This method can be seen as the combina-
tion of algebraic patches and radial basis functions. Xie et al. [2003]
also proposed a similar method to build the distance field using the
modified Shepard’s blending of implicit patches. One common re-
quirement for the local implicit fitting methods is to determine the
orientation of each patch. A frequently used technique proposed by
Hoppe et al.[1994] is by orientation propagation along a minimum
spanning tree. This method can suffer in the presence of sparse
and incomplete data sets, noise, and sharp corners [Xie et al. 2003].
Recently, Mello et al. [2003] proposed an orientation alignment al-
gorithm by minimizing a cost function. However, this method may
be costly due to the globally defined cost function and the simulated
annealing solver. Many algorithms determine the orientation by us-
ing some additional information such as normals or view direction
in data sets acquired from some particular devices.

Another category of surface reconstruction algorithms widely
exploited in computer vision are deformable models or active con-
tour methods. Kass, Witkin and Terzopoulos[1987] posed the im-
age segmentation problem as an energy minimization of a deform-
ing surface. DeCarlo and Metaxas[1995], McInerney and Ter-

zopoulos[1995] proposed a technique that allows changes in topol-
ogy. Recent extensions of the deformable models to implicit sur-
faces (also known as the level-set method) have been developed
that employ simpler data structures and support a wider range of
topologies [Sethian 1999; Osher and Fedkiw 2002; Whitaker 1998;
Zhao et al. 2001]. Deformable models are very robust in dealing
with noisy data sets. Their main drawback is their low performance
due to their reliance on partial differential equations.

The third group of approaches are through Delaunay triangula-
tion[Boissonnat 1984; Edelsbrunner and Mcke 1994; Amenta et al.
2001]. The surface is a subset of the faces of the Delaunay triangu-
lation upon the data points. Nina Amenta, et al.[2001] present the
Power Crust algorithm, which employs the medial axis transforma-
tion.

In essence, explicit deformable models and level-set methods
can be formulated as a volume sweeping method. The volumet-
ric regions swept by the active contour are distinguished from the
rest of the volume. Delaunay triangulation-based algorithms fol-
low a space partition and selection manner. In this paper, we de-
sign a pseudo-medial axis transformation algorithm using a simple
deformable model. This novel algorithm features improved robust-
ness and efficiency for inside/outside determination.

3 The Modified Shepard’s Blending
Method
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Figure 2: The modified Shepard’s blending of a set of locally de-
fined functions. The resulting function (red solid curve) is con-
structed from three local functions (thick dashed curves) with their
associated weight functions (dashed double-dotted curves).

The modified Shepard’s blending method was originally de-
signed for building a global function from a set of locally defined
functions. The resulting global function resembles the behavior of
each locally defined function within their respective domains of in-
fluence. In Fig. 2, three real functionsf1(x), f2(x) and f3(x) are
defined locally in the vicinities ofc1, c2 andc3 respectively. The
domain of influence of each local function is designated by assign-
ing to it a nonnegative weight functionwi(x). Accordingly, the lo-
cal functions fi(x) can be considered basis functions. The result
blended function by the modified Shepard’s method can be formu-
lated as:

f (x) =
∑n

i=1 fi(x)wi(x−ci)

∑n
i=1wi(x−ci)

, (1)

wheren = 3 for this specific example. Usually, a weight function
takes the form of a nonnegative real-valued radial basis function
w(x) = φ(r), r = ‖x−ci‖. Typical choices of the radial basis func-

tions include the inverse distance functionsφ(r) = (
Max(R−r, 0)

R r )2

[Franke and Nielsen 1980], the Gaussian distribution function
φ(r) = exp(−c r2) and the inverse multiquadricφ(r) = (r2 +

c2)−1/2.
To achieve computational efficiency, the weight functionsφi(r)

are often compactly defined, that is, there exist a set ofRi , r >
Ri ⇒ φi(r) = 0. Interpolation atfi(ci) can be achieved by letting
limr→0 φi(r) → +∞. We use a B-spline-based form as Ohtake et
al. [2003a] suggested.
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and Error Estimate
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Figure 3: The algorithmic flow of our surface reconstruction system.

The resulting functionf (x) will be of Cn continuity if bothwi
and fi are Cn continuous. Blending the implicit functions nat-
urally blends the implicit surfaces generated from these implicit
functions. We refer readers to [Shepard 1968; Franke and Nielsen
1980; Renka 1988] for a background of the origin of this method,
and some nice properties accompanying it. In comparison to other
blending methods such as splines or NURBS, the modified Shep-
ard’s method poses no requirements on the local connectivity and
no limitations to the valence (number) of nearby basis functions,
and thus can be easily adapted to a variety of applications.

4 Algorithm Overview

The algorithmic flow of our novel surface reconstruction algorithm
is illustrated in Fig. 3. (1) We first divide all sample points by a
volumetric grid and insert them into an octree. All samples are in-
serted into the deepest level of the tree. Only empty cells can be leaf
nodes (except for nonempty cells at the deepest level). The depth
of the octree is determined comprehensively by the noise rate and
the feature size of the modelled surface. Adaptively subdividing
the octree in the fitting stage is possible but not preferable because
Step 2 is not currently a locally adaptive algorithm. For level-of-
detail fitting, the fitting is allowed to occur at non-leaf cells. (2)
At each level, the grid points are clustered into a set of so-called
“mono-oriented” groups using an active contour method. These
groups are “mono-oriented” in the sense that all the grid points in
the same group have the same orientation, ether inside or outside,
but which side is not determined at this point. (3) We locally fit in
each cell an implicit quadric surface to its nearby sample points. (4)
The mono-oriented groups at the opposite side of each local implicit
surface are expected to have opposite orientations. Each nonempty
cell casts a vote for the orientation of its neighboring groups. The
orientation of the grid point groups will in turn be used to decide the
orientation of each locally fitted surface patch. Thus, the orientation
can be aligned globally but efficiently using as much information as
possible to avoid erroneous results. (5) We calculate the normal of
each sample point as well as the fitting error and normal variation
in each cell. Cells with normal changes or fitting error bigger than a
threshold will undergo an additional fitting process (detected sharp
edges indicated by circles). (6) The last step of our algorithm is to
blend all the locally fitted implicit surfaces to produce a (pseudo-
)signed distance field using the modified Shepard’s method. In the
figure, yellow indicates positive regions and blue, negative regions.
The resulting signed distance field can be visualized by ray tracing,
volume rendering techniques or be transformed to a polygon mesh
using the Marching Cubes algorithm.

5 Mono-oriented Region Partition

In order to make our surface reconstruction algorithm as general as
possible, we assume as input an unorganized point set without nor-
mal or orientation information. For data sets equipped with normal
or interior/exterior direction, the step of the algorithm described in
this section can also be necessary for noisy and untrustworthy nor-
mals — which are often the case.

Figure 4: Mono-oriented region partition. Within each cave and
recess of the surface as well as the outer bounding space an active
contour is launched. The active contours can not penetrate the hole
(on top of the club) when growing.

To blend signed distance fields correctly with the modified Shep-
ard’s method, the normal direction of each implicit surface patch
must be correctly aligned; that is, the gradient of all implicit func-
tions must point outward with respect to the surface. The tra-
ditional normal alignment method exploits a Minimum Spanning
Tree (MST)-based orientation diffusion approach [Hoppe et al.
1994]. A basic assumption in their method is that the normalsni ,
n j of a pair of sufficiently close surface pointpi , p j should point
toward nearly the same direction, that is−→ni ·

−→n j ≈ +1. But Hoppe
et al.’s method cannot easily accommodate sharp edges even if the
propagation follows an optimal route along the MST. Consider a
regular tetrahedron with accurate normals pointing outward at each
surface point. The dot product of two normals across an edge is
always negative. Hence, for this example, normal orientation can
never be correctly aligned beyond a facet. Another problem with
Hoppe et al.’s method is that, in the presence of noise, the locally
estimated normals may not always be trustworthy. Moreover, nor-
mal alignment of distant islands in an incomplete data set may even
be impossible.

Essentially, the effect of orientation alignment of a manifold sur-
face is equivalent to dividing the volume space into two groups of
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regions: the inside regions and the outside regions. A commonly
used approach to find the inside or outside of a surface is the active
contour method. To avoid leakage through holes, most deformable
models resort to the minimization of some complicated and expen-
sive strain energies. In this paper, we follow a different idea to
avoid leaking. We launch two active contours growing at both sides
of the hole. If every point on these two active contours travels at the
same speed and keeps the same distance to the surface, these two
active contours will finally collide at the center of the hole. This
leads to the following space partition algorithm, as shown in Fig. 4.
We begin by launching an active contour within each cave and re-
cess of the surface as well as in the outer bounding space. These
active contours grow or shrink toward the surface and try their best
to keep the same distance to the surface. At the end of this process
the whole surface is sandwiched between active contours.

The subspace swept by a specific active contour lies as a whole
inside or outside of the surface. We name these subspaces “mono-
oriented regions.” After the orientation of each mono-oriented re-
gion is decided, each patch of the surface can be easily oriented.
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Figure 5: The mono-oriented region growing method. (a) The
discrete unsigned distance field (actually, squared distances are
marked in the figures) and initialization of active contour seeds.
(b) Two active contours grow down the discrete distance field and
collide in the middle of a hole.

At the start of the algorithm, we have no idea which regions are
inside the surface and which are outside, let alone where to put the
active contour seeds in each cave and recess. The idea of using
medial axis transformation [Amenta et al. 2001] for surface recon-
struction indicates that for any spatial region visually bounded by a
set of surface samples, there exists at least a space point inside the
surface such that all its neighboring space points are not further to
the set of samples. That means this point is a local maximum of the
unsigned distance field associated with this set of surface samples.
We call such a point a (local) peak point (of the unsigned distance
field). Hence, it is sufficient to launch an active contour seed at each
peak point besides the one in the bounding space.

In practice, we discretize the above continuous approach onto a
volumetric grid. We first build a discrete, unsigned distance field
on the grid points. The distance value of a grid point is defined
as its distance to the nearest nonempty cell (see Fig. 5 (a)). Every
peak point on the grid initiates an active contour (the double-circled
red point in Fig. 5(a)). Due to discretization, the double-circled
blue point is falsely identified as an active contour seed. Since this
seed will not be able to grow (try the algorithm in Fig. 7), it poses
no harm. The true seed (the red double-circled point) can grow to
its neighboring points and lead to a new mono-oriented region. If
several peak points are consecutively connected, they share a single
mono-oriented group ID.

All points on the active contours are sorted with a heap by their
distances to the surface. The point on top of the heap (the furthest
point, as double-circled in Fig. 5 (b)) grows first. Hence, all parts of
the active contour grow with nearly the same distance to the surface.
The grid points swept by the same active contour are clustered into
a mono-oriented group. Fig. 5 (a) and Fig. 7 show the details of the

algorithm.

Push active contour seeds (peak points and bounding
box) to heap H. Give each seed a proper group ID (gid).

distField (p) > 0 ? Stop
No

Yes

pop p out of H

Build the discrete unsigned distance field distField

Let point p = top of H (farthest point)

Yes

For all such q, Set q.gid = p.gid
and push q into heap H

No neighbor q of p, s.t. q.gid =
distField (q) < distField (p) ?
∃

     neighbor q of p,  s.t.
 q.gid         and q.gid     p.gid ?

∃
φ≠ ≠

Yes

φ

Collision Detect

Closer Ungrouped
Neighbor

φ=gidq. means q belongs to no group*

Figure 7: The mono-oriented group growing algorithm. HeapH is
sorted in descending order by the distance to the nearest nonempty
cell.

The above discussion leads to anO(n3) algorithm, wheren is the
diameter of the volumetric grid. We can improve the performance
by introducing a hierarchical version of this algorithm. As shown
in Fig. 8, we first perform the mono-oriented region partition algo-
rithm at a coarse level, than we transform the active contour to a
finer level and redo the region growing method on the finer level.
Typically, it is a loop of the following four steps.

(1) Find new active contour seeds;
(2) Grow the mono-oriented regions;
(3) Transform the active contour to the next level of grid;
(4) Grow the mono-oriented regions;

The purpose of step (4) is to decrease the space available for new
seeds, thus reducing the number of mono-oriented groups. We note
that the active contours transformed to the next level shrink back a
little. This is done intentionally in order to avoid penetration of the
blue contour through holes. Left unchecked, such penetrations be-
come larger in finer levels of the octree. As the algorithm descends
the octree hierarchy, more and more topological and geometrical
details are exposed. Big cells break into smaller ones, cavities come
out and thus new peak points appear. At each level of the algorithm
we add new peak points to the lists of the active contour.

In Fig. 6, we show the hierarchical growing process of the mono-
oriented regions. The first three figures show the mono-oriented re-
gions initiated by peak points inside the surface at level 5, 6 and 8
respectively. Figure (d) shows the boundary of the mono-oriented
group initiated by the bounding box. (e) is the shaded model recon-
structed with our system.

Since only the state of the grid points near the surface needs to be
stored, we can use a hash table to store the status of all grid points.
This allows us to obtain a roughlyO(n2) algorithm assuming the
Hausdorff dimension of the sample points is 2. The space complex-
ity is also reduced toO(n2). Another even more significant aspect
to the speedup of our algorithm is that, in our hierarchical approach,
the distance field evaluation is conducted only between nearby grid
points and cells (except near big holes). Efficient distance calcula-
tion of points far from the surface is never a trivial task.
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(a) Inside surface, Level 5 (b) Inside surface, Level 6 (c) Inside surface, Level 8 (d) Outside surface, Level 8 (e) Shaded model

Figure 6: Mono-oriented groups growing method. The first three figures show mono-oriented regions inside the surface, while (d) is the
active contour initiated by the outer bounding box.
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Figure 8: Hierarchical volumetric mono-oriented region partition.
The result of the coarse level is transformed to a finer level.

6 Orientation Determination

By this stage of the surface reconstruction process we have parti-
tioned the volumetric grid into mono-oriented regions. However,
the orientation of each region (insideness/outsideness) is yet to be
determined. For each locally fitted implicit surface patch, its neigh-
boring grid points are divided into two oppositely oriented groups.
We can make a local sign map of the implicit function at those grid
points within a specific range of distance to the surface. A typical
choice of the range is 1 to 3 times the grid size. In Fig. 9 (a), as
an example, we mark the sign on those grid points with ‘+’ or ‘-’
and all others undetermined(‘U’). In Fig. 3 (steps 3-4), we show
the orientation determination of the mono-oriented regions by vot-
ing. Each local implicit sign map matches to its nearby oriented
mono-oriented groups and gives an orientation vote. The outermost
mono-oriented region is obviously outside. Then, the orientations
of inner regions are determined to maximize the number of matches
to their boundary local sign maps. This voting process needs to
be conducted several times till the innermost regions be properly
oriented. After the orientations of all mono-oriented groups being
determined, they will be subsequently exploited to determined the
orientation of each local implicit patch using local sign maps. Very
often not all surface patches can be aligned with their nearby mono-
oriented regions (this may due to the existence of too small a cavity
to hold a mono-oriented region). The orientation alignment algo-
rithm of adjacent surface patches can then be applied. Two adjacent
maps are called a positive match if there is no conflict of signs at
their common grid points; that is, no + and - meet at the same grid
point. A negative match requires that one sign must be flipped in or-
der to give a positive match. In Fig. 9(b), the two adjacent implicit
surfaces have a positive match.

7 Outlier Detection

Outliers, which do not truly belong to the surface, may exist in de-
fective data sets. There are two types of outliers. The first type lies
not too far away from the valid samples (Fig. 10(a)). The octree

(a) Local implicit function sign map. (b) Matching of two sign maps.

Figure 9: The local orientation map associated with the center cell
and the orientation alignment of two adjacent implicit surfaces. ‘U’
stands for uncertain.

cells containing these outliers have sufficient valid samples nearby
when doing local surface fitting. Thus, the outliers can be detected
and removed by measuring the distance to the fitted surfaces. An-
other type of outlier clusters with others at a distant place from the
surface. These outliers can erroneously produce a surface patch if
not properly removed. Our mono-oriented groups can help iden-
tify this type of outlier. As shown in Fig. 10(b), two mono-oriented
groups envelop the outliers in the center. But the orientations of
groups 1 and 2 are both marked inside after the voting step because
we assume outliers are rare. Hence, the local implicit surface fitting
these outliers can not be oriented, and outliers are identified.

1 2

(a) Near surface outliers. (b) Distant outliers.

Figure 10: Two types of outlier removal methods.

8 (Abrupt) Noise Removal

A critical aspect of our surface reconstruction algorithm is a new
iterative noise removal method we describe in this section. In the
first iteration of the surface fitting process, we fit an implicit quadric
surface to the sample points in the cell and all its neighboring cells
with a weight function of compact supportR (Fig. 12(a)). Then,
we project all the sample points in this cell to the fitted implicit
surface and term them the “projected points” (Fig. 12(b)). Nor-
mal vectors associated with each projected point are also computed
for feature detection. In the subsequent fitting iterations, we use
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(a) Reconstructed model from

noise-free data set.

(b) Recovered surface after one

iteration of noise removal.
(c) After five iterations.

(d) Reconstructed normals for

(a).

(e) Reconstructed normals for

(c).

Figure 11: Feature recovery of noisy point cloud without prescribed normals.

the original sampling points within the sphere of radiusRi , while
use the projected points in a spherical shell with a larger support
Ro (Fig. 12(c)). The projected points should be assigned heavier
weights. A typical selection is:

Worig(p) =

{

φ(‖p−c‖,Ro) if ‖p−c‖ ≤ Ri
0 if ‖p−c‖ > Ri

, (2)

Wpro j(p) =

{

s∗φ(‖p−c‖,Ro) if Ri < ‖p−c‖ < Ro
0 otherwise , (3)

whereφ(·,Ro) is a radial basis function of compact supportRo, c
is the center of the inner cell ands is a constant which we name
the stress factor. BiggerRo result in relatively smoother fitting.
A typical Ri can be one half ofRo. The selection ofs depends
on the type of radial basis functionφ . Too big as may result in
non-convergency or bumpy results. We uses = 2 and the spline
weight functionφ(x,R) = b(3x/2R) in our implementation, where
b is a B-spline basis function. The optimal choice ofs and its role
in convergency is still an open issue. The original samples in the
spherical shell between radiiRi and Ro can also be used for the
fitting. In this case,Worig(p) = φ(‖p−c‖,Ro) for all ‖p−c‖< Ro.
This often gives better convergency.

R oR

iR

(a) Iteration 1. Fitting an

implicit quadric patch to

the original samples.

(b) Iteration 1. Projecting

samples in the inner cell to

the local surface patch.

(c) Iteration 2. Fitting to

the projected points as well

as the original samples.

Figure 12: Iterative noise removal using projected points.

9 Feature Detection and Local Model Se-
lection

In order to recover sharp edges and corners, we propose a new
feature detection scheme for noisy data sets following the spirit
of Ohtake et al.’s algorithm [Ohtake et al. 2003a]. Generally, we
choose one of the three candidate local fitting models according
to the local normal distribution. For flatter surface areas, we use
bivariate parametric quadrics defined in the local tangent plane;
for areas where there are two sheets of surfaces, we use general
quadrics; and for sharp edges and sharp corners, we exploit piece-
wise quadric surface models. The choice is made by evaluating the

maximum span angle of nearby point normals. Reliable and accu-
rate normal evaluation are required to detect and recover features
reliably in noisy data sets.

R R R

(a) Fitting sharp features

with bivariate parametric

quadrics often smooths out

features (only one patch for

the inner cell shown).

(b) Fitting sharp features

with bivariate parametric

quadrics after the first iter-

ation (all patches in non-

empty cells shown).

(c) After several iterations

of fitting with error tuned

weight functions, a feature

is now detected based on

normal distribution.

Figure 13: Iterative feature recovery using projected points.

In the first iteration, the system uses bivariate parametric
quadrics as the fitting model for all cells. This results in larger
fitting error in cells with sharp features (see Fig. 13(a)). Also, the
normals evaluated from the first iteration are very noisy. Thus, for
the second iteration, we may falsely detect or miss features using
Kobbelt et al.’s criteria [2001]. In this paper, we propose an itera-
tive feature detection algorithm that is naturally integrated with our
iterative noise removal method. The basic idea is to assign various
weight stress factors to the projected points in neighboring cells
based on their fitting error or estimated curvature. For the example
in Fig. 13, the fitting of a sharp edge using a parametric bivariate
quadric results in flattened surfaces. The feature detection fails to
identify the feature. However, for the fittings in the next iteration,
the points near the feature will have less impact on the implicit fit-
ting in its neighboring cells. Thus, the overall distribution of nor-
mals will gradually form a feature (Fig. 13(c)). After this, a feature
is detected with Kobbelt et al.’s criteria. The fitting model for this
cell in the the next iteration will be replaced by piecewise quadrics
as discussed by Ohtake et al[2003a]. To fit a piecewise quadric
model, we first group the projected points by their normal directions
similar to Ohtake et al.’s[2003a] approach. For the original sample
points in the inner cell (whose normal vectors are not used), we
group them by measuring their distances to the locally fitted plane
of each group of previously projected points. (That is, we locally fit
each group of projected points to a plane that interpolates the aver-
aged center of the projected points and that has as its normal vector
the averaged normal of the group of projected points.) The weight
function typically takes the form:w= φ(r,R)φ(e,ε)φ(v,η), where,
r is the distance to the center,R is the local support,e is the average
fitting error of the cell containing that point,ε is a user-specified
expected error,u is local normal change (maximum span angle),
andη is a user specified expected normal change, we usually take
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the value of 30 degrees.
Fig.11 presents some results of applying our feature recovery

algorithm to noisy data set. Fig.11 (a) is the reconstructed surface
from noise-free data without normals. Fig.11(b) and (c) are the
results of applying our algorithms 1 and 5 iterations respectively, to
data set with 5% of noise. Fig.11(d) and (e) are the normal maps of
(a) and (c) respectively.

10 Experimental Results

Due to the space limitations, we only show several representative
experimental results for the four main functionalities of our algo-
rithm: automatic hole filling, abrupt noise removal, dealing with
nonuniform samples in absence of normal information, and fea-
ture recovery from noisy data sets. In Fig.14, a surface with com-
plex topology is reconstructed. Fig.14 (a) shows two of the mono-
oriented regions where the inner core is successfully determined as
an outside mono-oriented region. In Fig.15, the noise in the data
set with complex topology is iteratively removed. Fig.16 shows a
close-up view of the fandisk model from Fig.11. We can see that the
sharp features are well captured and recovered. Fig.16(a) clearly
shows the effect of the feature detection threshold. Fig.16(c) and
Fig.16(d) are models recovered from the fandisk data set with noise
added. Fig.17 is an example of sharp feature detection and recov-
ery of noise-free data sets without normals. Our algorithm can also
process non-uniformly sampled data sets as shown in Fig.19. Using
different levels of the octree, we can obtain multiresolution surface
recovery. At a finer level of the octree, details can be well recovered
as shown by the dinosaur skin in Fig.18.

11 Conclusion and Future Work

We have presented a novel, noise-tolerable surface reconstruction
method with partition of unity implicits. Compared to other sur-
face reconstruction methods that handle noisy point clouds, our
method possesses both efficiency and robustness. Our system can
accept data sets subject to noise, bursts of noise, missing data, and
varying sampling density without normal or orientation informa-
tion. The basic idea behind this work is (1) to avoid using local
unreliable information to determine global properties (e.g. orien-
tation); (2) to detect false results iteratively and to redo the local
fitting as necessary. The techniques we develop for space parti-
tion, iterative fitting, feature detection, and normal alignment can
be adapted to a large variety of applications in computer graph-
ics, vision, medical image segmentation, etc. Our method signif-
icantly improves the previous MPU implicit method to accommo-
date general data sets. We designed a robust hierarchical volumet-
ric partition algorithm to distinguish the interior and exterior of the
modelled surface and employed a divide-and-conquer approach to
surface fitting. Each locally fitted surface patch is blended to pro-
duce a smooth (pseudo-)signed distance field using the modified
Shepard’s method. It avoids the expensive process of global im-
plicit function fitting, while preserving the desirable nature of the
implicit approaches – namely, automatic hole filling. Our iterative
local fitting algorithm also features topology recognition and geom-
etry recovery in the presence of noise.

Some future work includes: (1) design a locally adaptable mono-
oriented region growing algorithm. This algorithm makes possible
the locally adaptive level-of-details fitting; (2) automatic level-of-
detail checking and recovery from noisy data; (3) automatic deter-
mination of the optimal support radius of the weight function as
well as other user specified parameters—the expected error and the
expected normal change.
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(a) Two of the mono-oriented

regions.
(b) The recovered surface.

Figure 14: Reconstructed model featuring com-
plex topology.

Figure 15: A noisy model smoothed after 1, 2 and 5 iterations, respectively, of the
noise removal algorithm.

(a) (b) (c) (d)

Figure 16: Detail of reconstructed fan disk. (a-b) Original
data-set. (c-d) Model recovered after adding 0.5% noise. (c)
1 iteration. (d) 30 iterations.

Figure 17: Sharp features can be recovered very accurately.

Figure 18: Our algorithm reconstructs details very effec-
tively.

Figure 19: Our algorithm can process non-uniformly-
sampled data sets without difficulty.

(a) (b)

Figure 20: Surface reconstruction at varying levels of detail.
(a) Octree level 6. (b) Octree level 8.

266


