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Figure 1: Surface reconstruction with our new method. (left) 35 input contours from a CT scan of the pelvis area bones, resolution 420× 300.
(middle) Input contours overlaid on the surface reconstruction. (right) The reconstructed surface alone, resolution 420× 300× 347.

Abstract

We present a robust method for 3D reconstruction of closed
surfaces from sparsely sampled parallel contours. A solution
to this problem is especially important for medical segmen-
tation, where manual contouring of 2D imaging scans is still
extensively used. Our proposed method is based on a mor-
phing process applied to neighboring contours that sweeps
out a 3D surface. Our method is guaranteed to produce
closed surfaces that exactly pass through the input contours,
regardless of the topology of the reconstruction.

Our general approach consecutively morphs between sets of
input contours using an Eulerian formulation (i.e. fixed grid)
augmented with Lagrangian particles (i.e. interface track-
ing). This is numerically accomplished by propagating the
input contours as 2D level sets with carefully constructed
continuous speed functions. Specifically this involves parti-
cle advection to estimate distances between the contours,
monotonicity constrained spline interpolation to compute
continuous speed functions without overshooting, and state-
of-the-art numerical techniques for solving the level set equa-
tions. We demonstrate the robustness of our method on a
variety of medical, topographic and synthetic data sets.
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1 Introduction

A wide variety of objects, animals and specimens are scanned
for scientific purposes every day in imaging centers across
the globe, producing a steady stream of volumetric datasets.
Objects such as developing mouse and frog embryos, rat and
monkey brains, nerve cells of all types, bones and even fossils
are examined by MRI, CT, ET scanners, as well as physi-
cally sliced and imaged to produce these 3D samplings of
real objects. Once the objects/specimens have been imaged
the resulting volume datasets can be manually segmented.
In this process, an experienced anatomist goes over selected
slices (i.e. images) of the dataset, identifies relevant struc-
tures, and circles them with a stylus, producing a series of
parallel contours that outline the object of interest.

From these sets of contours it is usually required to produce
a high quality, smooth 3D surface model that reconstructs
the original object. The reconstructed surface is useful for
visualization and further processing, e.g. resampling and ge-
ometric calculations. An important issue that frequently
must be addressed during the reconstruction process is the
non-uniform resolution of the scanned datasets. Very often
the in-plane (X-Y) resolution of a dataset is greater than the
out-of-plane (Z) resolution. This difference can range from
a factor of 2 to 10. Many approaches have been proposed
that stitch the contours together in order to create a polygon
mesh. Another class of solutions takes an implicit approach,
where 3D fields are derived by stacking and interpolating 2D
distance fields constructed from the individual contours.

Contour stitching algorithms only create polygonal surfaces,
thus the resulting reconstructed surfaces have C0 continuity.
Additionally, this class of reconstruction algorithms has not
been shown to robustly cope with general, complex, branch-
ing structures. We have therefore taken a field-based ap-
proach to solving the contour-based reconstruction problem,
based on velocity-adjusted contour morphing. With this ap-
proach, morphing one contour into the next sweeps out a
3D surface. This is accomplished by equating time in the
2D contour morphing process with the third dimension in
the surface reconstruction process. Our approach easily ad-



Figure 2: Overview of the reconstruction pipeline described in Section 2.

dresses the branching problem, provides a superior technique
for interpolating between sparse slices, and produces closed
surfaces from contours with both smooth and sharp features.
Our work addresses the previously overlooked, but crucial,
problem of adjusting the local velocities of the morphing
contours in order to guarantee smooth surface transitions at
the contour boundaries.

Our approach consists of four major stages. The reconstruc-
tion process takes as input a stack of binary images that rep-
resents the contours. When completed, a volumetric model
is produced, which may be directly rendered or a mesh can
be extracted from it for interactive viewing. In the first stage
of our approach a 2D signed distance field is computed to
each input contour. The contours may also be smoothed be-
fore this stage, if desired. Next a 3D surface is produced by
performing a series of 2D level set morphs between adjacent
contours embedded in the distance fields. This stage is bro-
ken up into two steps. First distance estimates are produced
that correspond to the arc lengths of trajectories that con-
nect the adjacent contours in the image plane. Next these
distances, together with a time-of-arrival, are used to esti-
mate the speeds (in contour normal directions) needed to
produce a smooth morph when transitioning between sets
of contours. The 3D reconstruction is rendered in the final
stage. The complete process is summarized in Fig. 2.

1.1 Previous Work

In the past three decades many significant efforts have ad-
dressed the problem of creating surfaces from parallel con-
tours. This work falls into two general categories, contour
stitching and field-based methods, which can also be charac-
terized as Lagrangian and Eulerian approaches respectively.

1.1.1 Lagrangian approach: Contour Stitching

The contour stitching approach to surface reconstruction at-
tempts to generate a surface by connecting the vertices of
adjacent contours in order to produce a mesh that passes
through all contours. These approaches generally need to
address the correspondence (how to connect vertices between
contours), tiling (how to create meshes from these edges) and
branching (how to cope with slices with different numbers
of contours) problems.

Keppel [20] and Fuchs et al. [14] described the first algo-
rithms for creating polygonal meshes from a series of con-
tours. The Fuchs work defines the best reconstructed sur-
face as the one with minimal surface area. Many papers
have offered incremental improvements to these seminal ef-
forts. Several solutions to the correspondence problem have
been proposed, e.g. those based on parameterization of the

contours [16], contour decomposition [12], Minimum Span-
ning Trees [25], Angular Bisector Networks [29], medial axes
[21] and partial curve matching algorithms [3]. Boissonnat
[6] utilizes Delaunay triangulation to cope with branching
surfaces. Bajaj et al. [2] provide a unified approach to solv-
ing the correspondence, tiling and branching problems by
imposing three constraints on the surface when deriving the
reconstruction rules. Johnstone et al. [18] describe a method
for creating Bezier surfaces from contours with cylindrical
topology. Fujimura and Kuo [15] use isotopic deformations
to create non-self-intersecting surfaces from nested contours.

1.1.2 Eulerian Approach: Field-Based Methods

Levin [22] presents the seminal field-based approach to sur-
face reconstruction from a series of parallel contours. Given
a distance field for each contour, the 2D fields are stacked
and interpolated in the z-direction with cubic B-splines. The
reconstructed surface is extracted from the resulting 3D field
as the zero iso-surface, and in general will only be as smooth
as the distance field, i.e. C0. Raya and Udupa [34] extend
Levin’s approach to time-varying datasets. Jones and Chen
[19] suggest that Voronoi diagrams be used to minimize the
computation needed for calculating the 2D distance fields.
Barrett et al. [5] recursively apply morphological operators
(dilation and erosion) to contour images in order to interpo-
late intermediate gray level values. Cohen-Or et al. [9, 10]
introduce the concept, without supporting results, of cre-
ating a 3D object from contours by morphing one contour
into the next using warp-guided distance field interpolation.
Chai et al. [8] present a gradient-controlled partial differen-
tial equation method for producing C1 continuous surfaces
from nested contours.

1.2 Contributions

We present a novel approach to reconstructing closed 3D sur-
faces from closed 2D contours. The work described here is
the first to demonstrate that smooth 3D models can be cre-
ated from parallel contours by morphing the contours that
sweep out a 3D surface. We propose techniques, based on
processing all contours simultaneously, that address the con-
tinuity problem at contour boundaries, a problem that is
usually caused by connecting only two contours at a time;
thus producing smooth surface transitions at the contours.

The approach offers the following additional features:

• Robustness: Topology changes occurring between in-
put contours are easily handled. Horizontally overlap-
ping contours are guaranteed to be connected in the
reconstruction.



• Accuracy: The 3D reconstructions fit accurately to
the input contours. Furthermore the input contours
are generally not visible in the reconstruction. The 3D
surface is at least C1 continuous in the direction per-
pendicular to the plane of the contours.

• Flexibility: The reconstruction technique allows for
any number of input contours (≥ 2), as well as the
application of various constraints (e.g. derivative and
height information, etc.).

• Efficiency: The computational complexity of our ap-
proach is linear in the size (i.e. arc length) of the input
contours and thus not dependent on the size of the em-
bedding (i.e. images). It should also be emphasized
that all of the (level set) computations in our 3D re-
construction method are exclusively performed in 2D
employing a fast improved narrow band scheme (see
Appendix A).

• Stability: We employ proven finite difference schemes
for solving Hamilton-Jacobi equations. Additionally we
propose an improved equation for level set morphing.
Our modified formulation guarantees exact convergence
to within the numerical accuracy of the integration
scheme.

2 Surface Reconstruction Pipeline

In this section we present the details of the 3D reconstruction
pipeline outlined in Fig. 2. The goal of our approach is to
generate smooth surfaces that fit to an arbitrary number of
parallel contours. When completed it should not be possible
to identify the input contours in the final 3D reconstruction,
i.e. the final surface should be at least C1 continuous in the
direction perpendicular to the contours. However, to allow
for sharp features in the input contours, the cross sections of
the 3D reconstruction may be C0 continuous. Since our gen-
eral approach involves morphing one contour into another we
refer to the height dimension perpendicular to the contours
as time.

2.1 Novel Eulerian Approach: Level Set Model

Explicit curve and surface representations that use vertices
or control points can be regarded as Lagrangian approaches
since they essentially use body-fixed particles. While this
formulation offers many advantages for static geometry, it
suffers from significant limitations when representing dy-
namic geometry: aliasing (e.g. undersampling during expan-
sion), failure to easily handle topology changes (e.g. merg-
ing or bifurcations) and self-intersections (e.g. formation of
loops or swallowtails). Since our general approach for 3D
reconstruction is based on metamorphosis it must cope with
complex, changing geometry. A more robust approach to
processing dynamic geometric models utilizes an Eulerian
formulation, where the deforming interface (contour in 2D or
surface in 3D) is implicitly represented as a time-dependent
iso-surface or contour of a function discretized on a fixed
computational grid.

An elegant Eulerian formulation for deforming closed (i.e.
orientable) interfaces is the level set method [31]. It repre-
sents the interface as a time-dependent Euclidian distance
function embedded in a Cartesian space of dimension one
higher than the interface (i.e. co-dimension one). A con-
tour may then be conveniently represented as a 2D image
of real numbers that sample the shortest distance function,
φ, to the contour. A sign convention is used to distinguish
between grid points inside (negative) and outside (positive)
of the contour. Arbitrary deformation problems may then

be recast into a framework that solves the following partial
differential equations (PDE),

∂φ(x(t), t)

∂t
=

dx(t)

dt
· ∇φ(x(t), t)

= F(x(t), φ(x(t), t), . . . ) |∇φ(x(t), t)| ,
(1)

where dx(t)/dt denotes the velocity vector of the deforming
interface and F() is the speed function that may depend on
a variety of arguments. The geometric interpretation of F()
defines it as the magnitude of the velocity dx(t)/dt in the
direction normal to the interface at x, i.e. F = n ·dx(t)/dt.
Also note that the local interface normal, n, is given by
∇φ/ |∇φ| and that the mean curvature is ∇ · n, see [26]
for details. The level set PDEs, Eq. (1), can be solved ef-
ficiently using several numerical techniques, e.g. the narrow
band schemes [1, 33, 41] and robust finite difference schemes
like WENO [23]. In Appendix A we present a fast and yet
relatively straightforward narrow band scheme based on an
improvement of [33]. This scheme guarantees that our final
level set reconstruction algorithm has a computational com-
plexity that is linearly proportional to the size of the input
contours, as opposed to the size of the images in which they
are embedded. For more general information on methods for
solving level set equations we refer the reader to [30, 37].

2.2 Euclidian Distance Fields From Input Contours

The input to our algorithm is a set of contours obtained from
parallel 2D slices of a closed surface. We assume that the
contours are registered in the same frame of reference and
that the individual slices each have an associated height.
These heights can be user defined or derived directly from
the data sets. For contours from topological maps the third
dimension normally corresponds to height values and for
medical contours the third dimension may be derived from
the distances between the slices.

Since the level set equation, Eq. (1), is a time-dependent Eu-
lerian PDE, it defines an initial value problem. Consequently
the first challenge is to derive the initial level sets from the
input contours. This amounts to computing Euclidian dis-
tance fields from the input contours, which mathematically
corresponds to solving the Eikonal equation |∇φ| = 1 with
associated boundary conditions [37]. This equation can in
turn be solved efficiently by a number of numerical meth-
ods. For the work presented in this paper we used the Fast
Sweeping Method of [43], which is more efficient than the
Fast Marching Method of [36, 40]. This stems from the fact
that the computational complexity of the former is O(N)
in the number of grid points N , as opposed to O(N log N)
for the Fast Marching Method. However we also found the
steady-state formulation of [33, 39] to be useful when the
input is binary contours, because the time-dependent PDE
approach (see Eq. (6)) provides a slight smoothing of the
interface, and hence may be used to anti-alias the binary
input. We stress, however, that this smoothing is optional.

2.3 Building Block: A Robust Level Set Morphing

The morph of an initial level set model, φ(x, 0) = φsource(x),
to a final level set, φtarget(x), can be formulated and solved
with the following PDE,

∂φ(x(t), t)

∂t
= [φ(x(t), t) − φtarget(x)] |∇φ(x(t), t)| , (2)

which is evolved to a steady-state where φ and φtarget are
identical. Eq. (2) directs the portions of the initial interface



that are inside the target to expand, and the portions outside
to contract. This behavior is produced by the sign conven-
tion of φtarget, and requires that φsource and φtarget overlap;
otherwise φsource will collapse to a point. Note that the pres-
ence of φ in the speed function, F = φ− φtarget, guarantees
an exact convergence (i.e. steady-state) within the numeri-
cal accuracy of the integration scheme. This speed function
is numerically more stable than the original formulations of
[7, 11] where F = −φtarget, which is unlikely to be exactly
zero for the samples in the discretized narrow band. Conse-
quently no true discretized steady-state solution exists, re-
quiring a manual termination of the propagation when the
interface is within a grid point’s distance to the target. The
improved formulation of Eq. (2) will on the other hand con-
verge accurately to the target level set.

It is possible to successively apply a 2D version of Eq. (2)
between all pairs of neighboring input contours to create
a 3D surface. Time would then correspond to the height
coordinate of the 3D surface that sweeps together the con-
tours. While this approach creates a closed surface it does
not necessarily produce a desirable result. The 2D morph is
not guaranteed to be C1 continuous in time across contour
boundaries. It will be C0, and in most cases will show ma-
jor discontinuities in the time derivatives across the input
contours. This in turn will lead to 3D reconstructions where
input contours are clearly visible, see Fig. 5 (left). To avoid
these artifacts a speed function that is at least C1, or better
yet C2, continuous over time must be defined. See Fig. 5
(right). This is accomplished by assuring that all portions
of the contour arrive at the target at the same time, and
that the velocity of the morphing contour is the same as it
approaches and departs from an input contour.

2.4 Estimating Distances Between Contours:
Lagrangian Particle Tracing

Each input contour is assigned a time-of-arrival, the time
when the morphing contour should reach the input contour.
Given our interpretation of time, this value is associated with
the height of the input contour. An estimate of the distance
traveled by each portion of the deforming contour is required
in order to adjust the speed function so that all portions of
the contour reach the target simultaneously. This follows
from the interpretation of F() as the speed of a point on a
deforming contour in the local normal direction.

Figure 3: Illustration of the distance estimates between two con-
tours, A and B. Distances are computed as arc-lengths of particle
trajectories connecting A and B during a morph defined by Eq. (2).

An effective approach to estimating distances for the speed-
function traces particle paths from one contour to the next.
The Eulerian morphing of A → B can be augmented with
Lagrangian particles that keep track of both the traveled
distance (i.e. the arc-lengths of trajectories between start
and end points on the two contours) as well as the point
correspondences between A and B.

Tracker particles are first seeded on the zero-crossing of the

interface. These particles are advected with an intermediate
level set using Eq. (2). When the intermediate morph has
reached a steady-state, we collect the length of the trajec-
tories traveled by the particles. These distances are then
signed (according to the inside/outside convention) and av-
eraged to produce a signed distance estimate for the discrete
zero-crossing grid points. A point-to-point correspondence
between consecutive contours is also cached making interme-
diate morphs unnecessary between all contours at all time-
steps.

The particle advection for a level set morph from φA to φB is
implemented by repeating the following steps until a steady-
state is reached, i.e. φA = φB :

1. Seed particles randomly on zero-crossing of φA.

2. Advect the particles in the following vector field:
(φB(x) − φA(x))∇φA(x)/|∇φA(x)|

3. Propagate φA(x) with F = φB(x) − φA(x).

4. Back-project particles into A using the vector field:
−φA(x)∇φA(x)/|∇φA(x)|

5. Accumulate the distances traveled to the particles.

Step 1 to 4 are illustrated in Fig. 4. The velocity fields
are derived from the geometric interpretation of F(), the
fact that the local normal field of φA is ∇φA(x)/|∇φA(x)|
and Eq. (2). We observe that the back projection step (4)
is necessary because discrete integration schemes for solv-
ing level set equations have a built-in numerical dispersion
[13]. This essentially means Lagrangian particles will almost
never follow the level set exactly. Hence the back projection
is needed as a correction. The seeding of particles can be
adaptive by dynamically adding or deleting particles as the
particle densities changes during contour expansion or con-
traction. However, for the examples presented in this paper
a simple over-sampling strategy with 10 initial particles per
zero-crossing pixel proved sufficient. Note also that not all
particles are guaranteed to reach a target contour. This cor-
responds to a situation where the particles are seeded on
parts of a contour that erode away. It should be emphasized
that this is a natural behavior and causes no problems for
our subsequent reconstruction. Finally it should be stressed
that the above procedure is repeated for each (CFL) time-
step which implies that our approximate distance metric will
converge to the correct distance as the sweeping level set ap-
proaches the input contours.

As a closing remark we note that even though our approach
resembles the particle level set method of [13], they are very
different. Our method is not designed to modify the level set
interface in order to compensate for the numerical dispersion
present in the integration scheme. Rather our particles are
used for tracking and estimating distances between contours.

2.5 1D Interpolation For The Speed Functions

The approximation of the distances traveled by each con-
tour during morphing is combined with the time-of-arrivals
to produce smooth speed functions. Consider a sequence of
morphs A → B → ... → N and a particular grid point on the
zero-crossing of the current level set. Using the particle trac-
ing technique described above we can estimate the associated
signed distances, Si, that this part of the contour must travel
to reach all the (past and future) contours with the time-of-
arrivals, ti, where i = 1, 2, . . . , N . We then fit a smooth
polynomial function through these discrete data points and
differentiate it to get a speed-function at the considered grid



Figure 4: Illustration of the particle advection steps in the narrow band of the level set. (left) Initial configuration with particles seeded on the
interface. (middle left) Particles advected in the normal direction. (middle right) Level set advected, and correction vector field used to project
particles back onto the interface. (right) Shows the particles projected back on the interface. Note that the zero-crossing pixels are shaded red.

point location. This 1D interpolation is repeated for the
remaining zero-crossing grid points on the current level set.

Many differentiable functions can be used to fit the distances
and times, using standard curve-fitting techniques. We have
investigated several different polynomials, as well as shape-
preserving measures. They include linear interpolation, cu-
bic splines and monotonicity constraints.

Figure 5: Reconstruction with linear interpolation (left) and a natural
cubic spline (right) for the corresponding speed functions. The inputs
are three circular contours, two large ones at the top and bottom and
a smaller one at the center.

Simple linear interpolation for the speed-function will cre-
ate a shape with straight lines connecting the corresponding
points on the contours. If instead the aim is to make a
smooth shape, a higher order polynomial is needed. One
possibility is the natural cubic spline, which is a third or-
der piecewise C2 polynomial that minimizes strain energy
[42]. Two reconstructions from the same input, one using
linear interpolation and the other a natural cubic spline, are
presented in Fig. 5.

Additional constraints can be applied to the cubic spline
in order to control the properties of the reconstruction. If
for example the shape is known or desired to be (piecewise)
monotonic in time, it is possible to apply a monotonicity
filter [17] to the splines. Such a filter imposes the constraint
that the spline becomes piecewise monotonic with the po-
tential loss of C2 continuity. See Fig. 6 for an example. The
field of constrained polynomials is vast and several, more
complex, methods exist, which may be used to create recon-
structions with a variety of shape properties.

Figure 6: Examples reconstructed with a natural cubic spline that
produces the indicated overshooting (left) and monotonicity con-
straint spline (right). The inputs are three circular contours, a small
one at the top and two equally large ones at the center and bottom.

2.6 Velocity Extension and Renormalization

The velocities obtained by interpolation of the particle tra-
jectories are only defined on the zero-crossing grid points.
However, the speed-function of Eq. (1) must be defined in

the full narrow band of φ. Therefore, to extend F() off of the
interface we solve the following transport equation [33, 39]:

∂F(x, t)

∂t
= S[φ(x, t)]∇F(x, t) · ∇φ(x(t), t) (3)

where

S[φ(x, t)] =
φ(x, t)

√

φ(x, t)2 + |∇φ(x(t), t)|2
(4)

guarantees that information (i.e. the characteristics of
Eq. (3)) is propagated in the correct direction off of the
interface. S[φ] is essentially a smeared sign function of φ.

Note that when F() is defined by velocity extension (Eq. (3))
the corresponding level set propagation is in fact norm con-
serving, i.e. renormalization is not needed to guarantee sta-
bility of the numerical scheme. This follows from,

∂

∂t
|∇φ|2 = 2∇φ ·∇

∂

∂t
φ = 2∇φ ·(∇F |∇φ| + F∇ |∇φ|) = 0

(5)
which makes use of the fact that φ is initialized as a Euclidian
distance function (i.e. |∇φ| = 1 ⇒ ∇ |∇φ| = 0), and ∇φ ·
∇F = 0, since Eq. (3) is solved to a steady state.

When using Eq. (2) during advection of the Lagrangian
tracker particles, the speed function is derived from clos-
est distance transforms and therefore does not need to be
extended. Consequently we must explicitly renormalize φ to
a Euclidian distance function in order to ensure numerical
stability of the morph. For this renormalization we solve

∂φ(x, t)

∂t
= S[φ(x, t)] (|∇φ(x, t)| − 1) (6)

to a steady state. The sign function in Eq. (6) plays the
same role as in Eq. (3).

The third order accurate TVD Runge-Kutta scheme de-
scribed in [38] is used to accurately integrate these equa-
tions with appropriate CFL time steps. Godunov’s scheme
[35] with a fifth order WENO upwind scheme [23] is used for
the numerical discretization in space.

2.7 Closing the ends of the reconstructions

In order to complete the reconstruction the first and last
contours must be closed off. One approach is simply to cap
the ends with flat planes since no information is available
(from the input) beyond the first and last contours. This is
done in Figs. 5, 6 and 10. Another approach is to let extrap-
olation of the calculated speed-functions guide the morph
until the surface closes. This approach is used in Fig. 7 and
9. The success of this approach of course depends on the em-
ployed interpolation scheme and the fact that the first and
last contours are beginning to terminate (i.e. are shrinking).
The user may manually specify additional external contours



to form a cap. This is done in Fig. 8, where a top-most
contour is added and the speed-function is constrained to
produce a smooth result. Finally, these three approaches
can of course be used in combination.

3 Results

We have applied our reconstruction algorithm to a variety
of contour datasets. Fig. 1 presents a reconstruction of the
bones of the human pelvis region. It was produced from
35 contours represented by binary images with a resolution
of 420 × 300, and clearly demonstrates our method’s ability
to produce reconstructions with complex topology. Fig. 7
presents a reconstruction of Mount Everest produced from
only five 276×276 binary topographic contour images. This
is a good example of how few contours our approach needs
to produce useful results. Note also that fine sharp details
present in the input contours are correctly captured in the
3D reconstruction. Fig. 8 shows a reconstruction of the up-
per half of a human figure produced from 12 155×522 binary
contour images. Remark that in this example the distances
between contours varies significantly, in particular in the fa-
cial area. Fig. 9 presents a reconstruction of a mouse embryo
produced from only eight 122 × 187 binary contour images.
In this example the first and last contours are rounded sim-
ply by extrapolating the level set morphs. Finally Fig. 10
shows an artificial example of a reconstruction from three
contour slices, one with two small circles, one with a square
and one with a single large circle. Observe how the resulting
morph accurately captures the sharp corners of the interme-
diate square as well as the changing topology.

All results presented in this paper were rendered using the
standard mesh extraction technique of [24]. The compu-
tational times on a 2.5GHz Macintosh G5 were 107 CPU-
seconds for Mt. Everest, 220 CPU-seconds for the mouse em-
bryo, 240 CPU-seconds for the human torso and 1100 CPU-
seconds for the pelvis data set. It should also be stressed that
none of the reconstructions required any user input other
than the initial contours with associated time-of-arrivals.

Figure 10: An artificial reconstruction with changing topology. Note
that our method accurately captures the difficult rectangular shape.
The interpolation scheme is using a natural cubic spline.

4 Conclusions and Future Work

We have presented a robust method for 3D reconstruction
of closed surfaces from sparsely sampled parallel contours.
Our method is based on a morphing process applied to neigh-
boring contours that sweeps out a 3D surface as one contour
morphs into the next. The morph is performed with an Eule-
rian formulation (i.e. fixed grid) augmented with Lagrangian
particles (i.e. interface tracking). This is accomplished by
propagating the input contours as 2D level sets with care-
fully constructed continuous speed functions. We utilize
particle advection to estimate distances between the con-
tours, monotonicity constrained spline interpolation to com-
pute continuous speed functions without overshooting, and
state-of-the-art numerical techniques for solving the level set
equations. Our approach robustly reconstructs objects with

complex branching structures, provides a superior technique
for interpolating between sparse slices, and produces closed
surfaces from contours with both smooth and sharp features.
It addresses the previously overlooked, but crucial, problem
of adjusting the local velocities of the morphing contours in
order to guarantee smooth surface transitions at the contour
boundaries.

Future work includes implementing user interaction tech-
niques for processing datasets with non-overlapping con-
tours, similar to [10]. This will allow the user to control
the direction of the morph, thus offering an approach to
applying expert knowledge about anatomically correct re-
lationships between different segments of the reconstructed
object. As described in [27] multiple non-aligned datasets
may be generated from a single scanning session for a partic-
ular specimen. Our approach may be extended to create 3D
surfaces from the contours of these non-uniform, arbitrarily-
oriented, multiple datasets. Finally we plan to extend our
level set method with the more efficient data structures and
algorithms of [28] which will allow for reconstruction at ex-
treme resolutions.
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A A Fast Narrow Band Implementation

For optimal computational complexity we use a modified
version of the narrow band scheme presented in [33]. It
employs two dynamic tubes that enclose the level set
interface; a T tube of width γ and an N tube that is
one pixel wider than the T tube. We employ simple
C-style arrays as defined in the following pseudo-code
to implement efficient data structures for these tubes.

int dim = 1,X[m],Y [m],Mask[m][m];
foreach pixel (i, j) do

Mask[i][j] = 0; /* outside both tubes */

if |φ(i, j)| < γ then
Mask[i][j] = 2; /* inside both tubes */

X[dim] = i; Y [dim++] = j;
else if |φ(i ± 1, j ± 1)| < γ then

Mask[i][j] = 1; /* inside the N tube */

X[dim] = i; Y [dim++] = j;
end

end

m is always chosen to be larger then the number of pixels
in the narrow band (dim). The level set equation is
then solved exclusively in the T tube by looping over
all elements in the arrays, for k = 1, . . . , dim, and only
updating elements for which Mask[X[k]][Y [k]] = 2. Next,
renormalization is performed by solving Eq. (6) in the N
tube, i.e. for pixels where Mask[X[k]][Y [k]] ≥ 1. This
implies that the overall computational complexity of
solving the level set equation is linear in the size of the
interface and not of the embedding. To rebuild N and
T after each time propagation we could apply the above
algorithm again (as suggested in [33]), but this is inefficient
since it visits all pixels. To maintain a linear computa-
tional complexity we instead use the following algorithm.



Figure 7: Reconstructed model of Mt Everest from only five topographic contours. The interpolation scheme for the speed-function is a natural
cubic spline and the top of the reconstruction is closed with speed function extrapolation. The final resolution is 276× 276× 97.

Figure 8: Reconstructed human model from 12 input contours. Note that the method nicely sweeps out the face even the though the input is
very sparse. The resolution is 155 × 522 × 270. The interpolation scheme for the speed-function is a natural cubic spline and the top of the
reconstruction is closed by manually adding an extra contour combined with spline extrapolation.

foreach pixel (i, j) ∈ Nold do
if |φ(i, j)| < γ then

add (i, j) to Tnew and Nnew;
else

foreach (i, j)’s neighbors (p, q) /∈ Nnew do
if |φ(p, q)| < γ then add (i, j) to Nnew;

end

end
if (i, j) /∈ Told but (i, j) ∈ Tnew then

foreach (i, j)’s neighbors (p, q) /∈ Nnew do
add (p, q) to Nnew

end

end

end
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