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Abstract. A surface reconstruction technique based on the L1-
minimization of the variation of the gradient is introduced. This leads to
a non-smooth convex programming problem. Well-posedness and conver-
gence of the method is established and an interior point based algorithm
is introduced. The L1-surface reconstruction algorithm is illustrated on
various test cases including natural and urban terrain data.

1 Introduction

In geometric modeling and image reconstruction, one often tries to extract a
shape or recover a piece-wise smooth surface from a set of measurements. That
is, one wants to find a surface that satisfies constraints or measurements and is
visually good looking. The objectives could vary with the applications but the
intuitive goal is to preserve the shape of the object. For example, one may want
to reconstruct a convex body if the underlying data comes from a convex object,
a flat surface if the data is locally flat, or preserve a particular structure of the
level sets. Sometimes, this type of problems are solved by minimizing a Lp-norm
of the curvature or the total variation of the gradient, see for example [1,2,3,4].
In this paper we take a different approach which we think is well suited for
man made surfaces and Digital Elevation Maps (DEM). Namely, we minimize
the total variation of the gradient of a function constructed on a finite element
space satisfying interpolatory constraints. Similar minimization problems have
been introduced by Lavery [5,1] and are hereafter referred to as the L1-spline
techniques. Minimizing the total variation of the gradient of a smooth function
amounts to minimizing the L1-norm of its second derivatives. The key observa-
tion from Lavery’s work is that using the L1-norm in the minimization process
produces oscillation free surfaces.

In recent years, the idea of using the L1-metric instead of the usual L2 met-
ric was exploited in many different areas with great success. For example, in
compressed sensing [6,7] l1-metric is used in the decoding step and in Partial
Differential Equations the L1-norm is used to measure the residual of the equa-
tion [8,9,10,11,12,13]. In all of the above applications, using L1 is critical to
obtain good numerical results and prove theoretical estimates.

One key ingredient in Lavery’s work is the use of C1-splines. The novelty of the
approach in the present paper is to relax the C1-smoothness on the finite element
space which is used in the data reconstruction process. The discrete space is
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composed of continuous finite elements with possibly discontinuous gradients.
This is the natural discretization setting for functions that are in W 1,1 and
whose gradient has bounded total variation.

The paper is organized as follows. In Section 2 we describe our scheme and in
Section 3 we present different numerical tests for various types of data.

2 L
1-Minimization Problem

2.1 The Semi-discretized Functional

Let Ω be a bounded polygonal domain in R2 and let Th be a partition of Ω
composed of open triangles and quadrilaterals

Ω =
⋃

T∈Th

T .

The mesh Th is conforming in the sense that for any pair of distinct elements T ,

T ′ in Th, the intersection T ∩ T ′ is empty and T ∩ T
′
is either a common vertex

or a common edge. For any element T in Th, we denote by hT the diameter of
T .

We introduce the discrete space Xh composed of continuous functions that
are piecewise cubic on the mesh Th:

Xh = {u ∈ C(Ω) : u|T ∈ P3 if T is a triangle or,

u|T ∈ FT (Q3) if T is a quadrilateral, ∀T ∈ Th} (1)

where

Pp =

⎧
⎨
⎩

p∑

i=0

p−i∑

j=0

cijx
iyj : cij ∈ R

⎫
⎬
⎭ , Qpq =

⎧
⎨
⎩

p∑

i=0

q∑

j=0

cijx
iyj : cij ∈ R

⎫
⎬
⎭

and the mapping FT is defined by

(FT q̂)(x) = q̂(F−1
T (x)), ∀x ∈ T, q̂ ∈ C([0, 1]2),

where FT is the transformation that maps the reference unit square (0, 1)2 to
the quadrilateral T . We henceforth denote Qp := Qpp.

The set of all the interior edges of the partition Th is denoted by F i
h. Let

F ∈ F i
h be one of the interior edges and let T, T ′ ∈ Th be the two elements

whose intersection is F = T ∩ T
′
. Also, let nTF denote the normal vector to F

pointing from T to T ′. We define the jump of the normal derivative of a function
u to be

[[un]]|F = (∇u|T ) · nTF + (∇u|T ′) · nT ′F .

The set of all the vertices of the triangulation Th is be denoted by Vh.
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We now assume that we are given a real-valued function (data) taking values
over the vertices of the mesh, dh : Vh → R. We denote by Yh the affine set of
functions in Xh interpolating the data

Yh = {u ∈ Xh : u(x) = dh(x), ∀x ∈ Vh} .

Our goal is now to find a function in Yh that oscillates as little as possible. We
think of such a function as one that best fits the data map dh. For this purpose,
we introduce the following functional

J̃h(u) =
∑

T∈Th

∫

T

(|uxx| + 2|uxy| + |uyy|) + α
∑

F∈Fi
h

∫

F

|[[un]]| , u ∈ Xh

representing the total variation of the gradient of u with a weight, α > 0. Note
that J̃h defines a semi-norm which vanishes if and only if its argument is a linear
function on Ω.

The data reconstruction problem is formulated as follows: Find uh ∈ Yh such
that

J̃h(uh) = min
vh∈Yh

J̃h(vh). (2)

Whenever we have at hand a family of meshes (Th)h>0 and a corresponding
family of data functions (dh)h>0, we say that a sequence (vh)h>0, with vh ∈ Yh,
is a sequence of almost minimizers if there is a constant Ca, uniform with respect
to h, so that

J̃h(uh) ≤ Ca min
v∈Yh

J̃h(v).

The following result clarifies the approximation properties of (2):

Proposition 1. Assume that the mesh family (Th)h>0 is shape regular. Assume
that there is u ∈ W 2,1(Ω) so that dh(x) := u(x), ∀x ∈ Vh. Let (uh)h>0 be a
sequence of almost minimizers, then the following error estimates hold:

∑

T∈Th

hj−2
T |u − uh|j,1,T ≤ C|u|2,1,Ω, j = 0, 1.

2.2 Quadratures

The computation of the functional J̃h is not practical due to the integration
of absolute values. Therefore we discretize J̃h by replacing the integrals with
quadrature rules I = {(p, ω)} which we view as sets of pairs (p, ω) of points

p ∈ R2 and weights ω > 0. The terms of the functional J̃h are be approximated
using quadrature rules I(S,L):

∫

S

|Lu| ≈
∑

(p,ω)∈I(S,L)

ω|(Lu)(p)|

where either S ∈ Th and L is one of the linear operators {∂xx, 2∂xy, ∂yy}, or
S ∈ F i

h and L = α [[∂n]]. We require that the integration rules I(S,L) satisfy the
following two conditions:
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1. Be exact when the sign of the integrant Lu does not change;
2. Give an approximation that is equivalent to the exact integral, i.e., there are

constants c1, c2 independent of S, L, and h so that:

c1

∫

S

|Lu| ≤
∑

(p,ω)∈I(S,L)

ω|(Lu)(p)| ≤ c2

∫

S

|Lu|, ∀u ∈ Xh.

In general the second condition requires the use of integration rules with more
points than required by the first one. For example, if T is a triangle and L = ∂xx

then uxx is linear and the midpoint rule satisfies the first condition but not
the second. The following proposition gives a natural construction of quadrature
rules satisfying both the above conditions under an easily verifiable assumptions:

Proposition 2. Let Ŝ be a (closed) reference element (e.g. triangle, square,

segment), and T be an invertible affine transformation mapping Ŝ to S. Also,

let P̂ be a finite-dimensional subspace of C(Ŝ) (e.g. polynomials) and P = T P̂

be its image under the transformation T : C(Ŝ) −→ C(S) defined by

u(x) := T(û)(x) = û(T−1(x)), ∀x ∈ S.

Let Î = {(p̂i, ω̂i)}
n
i=1 be an integration rule with positive weights on Ŝ. If Î is

exact for every function in P̂ and the quadrature points are such that
[
û ∈ P̂ and û(p̂i) = 0, i = 1, . . . , n

]
implies

[
û(x̂) = 0, ∀x̂ ∈ Ŝ

]
,

then the integration rule I = {(pi, ωi)}
n
i=1 with pi = T (p̂i) and ωi = |S|

|Ŝ|
ω̂i (where

| · | denotes the measure of the corresponding set) is exact for every function in
P and

c1

∫

S

|u| ≤
n∑

i=1

ωi|u(pi)| ≤ c2

∫

S

|u|, ∀u ∈ P

with constants c2 > c1 > 0 that depend on Ŝ and P̂ but do not depend on the
transformation T .

Based on the above proposition we use the following quadrature rules:

– When S ∈ Th is a triangle and L ∈ {∂xx, 2∂xy, ∂yy} then L(Xh|S) = P1 =

P̂ = P and therefore the 3-point quadrature rule using the midpoints of the
sides of the triangle satisfies the conditions of the proposition (this rule is
exact for P2).

– When S ∈ Th is a rectangle with sides parallel to the coordinate axes we use
three different quadrature rules for the three different second derivatives. For
L = ∂xx we have L(Xh|S) = Q1,3 = P̂ = P and therefore we could use the
2 × 4 tensor product Gaussian rule; however, numerical experiments show
some undesired oscillations which can be avoided by using the 3 × 4 tensor
product Gaussian rule. For L = 2∂xy we have L(Xh|S) = Q2,2 = P̂ = P
and we use the 3× 3 tensor product Gaussian rule. For L = ∂yy, L(Xh|S) =

Q3,1 = P̂ = P and we use the 4 × 3 tensor product Gaussian rule.
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– When S ∈ Th is not a rectangle with sides parallel to the coordinate axes
we have P̂ 	= P and it is more convenient to replace the second derivatives
in J̃h by second derivatives in directions parallel to the sides of S. This case
is not considered in the numerical experiments reported in this paper.

– When S ∈ F i
h and L = α [[∂n]] we have two cases: 1) S is the edge of two

triangles and 2) S is a side in a quadrilateral. P and P̂ are composed of one-
dimensional quadratic polynomials in the first case and cubic polynomials
in the second case. Therefore, we use the 3 point Gaussian rule in the first
case and the 4 point Gaussian rule in the second.

Using the above quadrature rules we obtain the approximate functional

Jh(u) =
∑

T∈Th

L∈{∂xx,2∂xy,∂yy}

∑

(p,ω)∈I(T,L)

ω|(Lu)(p)|+α
∑

F∈Fi
h

∑

(p,ω)∈I(F,[[∂n]])

ω| [[un]](p)|.

Note that Jh defines a semi-norm on Xh which is equivalent to that induced by
J̃h with constants independent of h.

The fully discretized version of problem (2) is the following: Find uh ∈ Yh

such that
Jh(uh) = min

vh∈Yh

Jh(vh). (3)

2.3 Matrix Formulation

Let {φi}n̂
i=1 be a basis for Xh. The functional Jh can be re-written as follows

Jh(u) = |Âx|1 where x ∈ Rn̂ : u =

n̂∑

i=1

xiφi

and the entries of the matrix Â are given by

Âij = ωi(Liφj)(pi) i = 1, . . . , m j = 1, . . . , n̂.

Here {(pi, ωi)}m
i=1 is an enumeration of all the quadrature points (and weights)

in all the quadrature rules used in the discretization of J̃h and Li is the lin-
ear operator corresponding to the quadrature rule. Thus, the total number of
quadrature points is given by

m =
∑

T∈Th

L∈{∂xx,2∂xy,∂yy}

# (I(T,L)) +
∑

F∈Fi
h

# (I(F, [[∂n]]))

where #(I) denotes the cardinal number of I.
Let us further assume that {φi} is the standard nodal basis for Xh and the

basis functions corresponding to the vertices in Vh are the first n̂1 functions
φ1, . . . , φn̂1

. The matrix Â can be written in 1× 2 block form Â = (Â1A) where

Â1 is m×n̂1 and A is m×n, (n = n̂−n̂1). Let d ∈ Rn̂1 be the vector representing
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the data dh at the vertices and set b = −Â1d. Then the discrete problem (3) can
be re-written as follows: Find x ∈ Rn such that

|Ax − b|1 = min
y∈Rn

|Ay − b|1. (4)

It can be shown that A is full rank.

2.4 Discrete Problem

In this section we study properties of ℓ1-minimization problems of generic form
(4). Let A be an m×n real matrix (m > n) and b ∈ Rm. We define the Lagrangian

L(x, λ) = (b − Ax)tλ, x ∈ Rn, λ ∈ Rm

and the primal and dual functions, f and g, respectively

f(x) = max
λ∈R

m

|λ|∞≤1

L(x, λ) = |b − Ax|1

g(λ) = min
x∈Rn

L(x, λ) =

{
btλ Atλ = 0

−∞ Atλ 	= 0.

It is clear that for all x ∈ Rn and all λ ∈ Rm, |λ|∞ ≤ 1 we have

f(x) ≥ L(x, λ) ≥ g(λ).

The primal problem is defined to be

minimize f(x) = |b − Ax|1 (5)

and the dual problem is defined to be

maximize g(λ) = btλ

subject to Atλ = 0, |λ|∞ ≤ 1.
(6)

Proposition 3. (Strong duality) For any pair of solutions x∗ and λ∗ to (5) and
(6), respectively, we have f(x∗) = g(λ∗).

Corollary 1. If x∗ is a solution of (5) and (b − Ax∗)i 	= 0 for some index i
then every solution λ∗ of (6) satisfies λ∗

i = sign (b − Ax∗)i. In particular, if
λ∗ is a solution of (6) and |λ∗

i | < 1 then for every solution x∗ of (5) we have
(b − Ax∗)i = 0.

We now assume that A and b have the following block structure

A =

(
A1

αA2

)
b =

(
b1

αb2

)

which is exactly the structure they have in problem (4) where A2 and b2 cor-
respond to the rows generated by the terms

∫
F
| [[un]]|, F ∈ F i

h. The primal
function has the form

f(x) = |b − Ax|1 = |b1 − A1x|1 + α|b2 − A2x|1.
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Proposition 4. Assume the rows of A2 are linearly independent. Then there
exists a number ᾱ such that when α > ᾱ every solution x∗ of (5) satisfies

b2 − A2x
∗ = 0.

Proof. We will show that when α is large enough the feasible set of the dual
problem (6) (and therefore any solution) satisfies |λ2|∞ < 1 which, in view of
Corollary 1, implies the proposition. Indeed, if λ is dual feasible we have

0 = Atλ = At
1λ1 + αAt

2λ2.

The assumption on A2 implies the existence of right inverse R of A2:

A2R = I or RtAt
2 = I

and thus we have λ2 = − 1
αRtAt

1λ1. Now, if we define ᾱ = |RtAt
1|∞ and take

α > ᾱ we get

|λ2|∞ =
1

α
|RtAt

1λ1|∞ ≤
1

α
|RtAt

1|∞|λ1|∞ < 1.

Proposition 5. There exists a number ᾱ such that when α > ᾱ and b2 ∈ ImA2

every solution x∗ of (5) satisfies b2 − A2x
∗ = 0.

Proof. Let Ã2 denote the matrix whose rows are a maximal linearly independent
set of rows of A2. Without loss of generality we can write

A2 =

(
Ã2

A3

)
b2 =

(
b̃2

b3

)
.

We have the following property: if b2 ∈ ImA2 and Ã2x = b̃2 then A3x = b3. Let
us now define

Ã =

(
A1

αÃ2

)
b̃ =

(
b1

αb̃2

)

and consider the reduced minimization problem

minimize f̃(x) = |b̃ − Ãx|1 = |b1 − A1x|1 + α|b̃2 − Ã2x|1 (7)

obtained from (5) by replacing A and b with Ã and b̃, respectively. Since the

rows of Ã2 are linearly independent we can apply the previous proposition to this
problem and conclude that for α > ᾱ every solution x̃ of (7) satisfies Ã2x̃ = b̃2.
We now assume that α > ᾱ and b2 ∈ ImA2, and we want to show that problems
(5) and (7) are equivalent. First we note that ∀x ∈ Rn

f̃(x) = |b1 − A1x|1 + α|b̃2 − Ã2x|1

≤ |b1 − A1x|1 + α|b̃2 − Ã2x|1 + α|b3 − A3x|1 = f(x)
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and therefore for any two solutions x∗ and x̃ of (5) and (7), respectively, we have

f̃(x̃) ≤ f(x∗). Since Ã2x̃ = b̃2 and we assumed that b2 ∈ ImA2 we conclude that
A3x̃ = b3 and therefore

f(x̃) = f̃(x̃) ≤ f(x∗) ≤ f(x̃)

which shows that f̃(x̃) = f(x∗) and x̃ is a solution to (5). For f̃(x∗) we have

f̃(x∗) ≤ f(x∗) = f̃(x̃) ≤ f̃(x∗)

which shows that f̃(x∗) = f̃(x̃) and therefore x∗ is a solution to (7). Since we

already saw that Ã2x̃ = b̃2 and A3x̃ = b3, that is A2x̃ = b2, and since x̃ was an
arbitrary solution to (7) (or as we just proved, to (5)) this completes the proof.

Corollary 2. Assume that all elements of the mesh Th are quadrilaterals. Then
there exists ᾱ such that when α > ᾱ every solution uh to (3) is in C1(Ω).

Proof. Note that uh ∈ C1(Ω) is equivalent to A2x = b2 where (d, x) is the
coefficient vector of uh. Thus, b2 ∈ ImA2 is equivalent to the existence of vh ∈
Yh ∩ C1(Ω). In the case of quadrilateral elements such vh can be constructed
using Bogner-Fox-Schmit type interpolation in which one can prescribe not only
the values of the function at the vertices but also its gradient and mixed second
derivative. For triangular meshes, all solutions uh are C1 if and only if the data
and the mesh allow it, that is Yh ∩ C1(Ω) 	= ∅.

Remark 1. In the above proof the value of ᾱ is not a priori uniform with respect
to the typical mesh-size h. However, numerical tests indicate that using α = 5
guarantees C1-smoothness independently of h.

2.5 Primal-Dual Interior-Point Method

We now describe an approach for solving the minimization problem (4). First,
we reformulate (4) as a linear programming problem: Find y ∈ Rm and x ∈ Rn

so that

minimize yt1 =

m∑

i=1

yi, subject to

{
y ≥ b − Ax

y ≥ Ax − b.

Then we apply the primal-dual interior-point method described in [14,15].
After some simplifications, which we omit here, the above problem is solved

using the following algorithm:

input: A, b, x, λ; µ, ǫ
r = b − Ax;
a = (|r|1 − rtλ)/m; yi = |ri| + a, i = 1, . . . , m;
while (|r|1/(rtλ) − 1 ≥ ǫ)

t−1 = (yt1 − rtλ)/(2mµ);
s1 = y + r; s2 = y − r;
d1 = (1 − λ)/(2s1); d2 = (1 + λ)/(2s2);
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d = 4d1d2/(d1 + d2);
v = t−1(s−1

2 − s−1
1 ) + (d2 − d1)/(d1 + d2)[1 − t−1(s−1

1 + s−1
2 )];

w = Atv;
∆x = (Atdiag(d)A)−1w;
v = A∆x;
∆y = [−1 + t−1(s−1

1 + s−1
2 ) + (d1 − d2)v]/(d1 + d2);

∆λ = −λ + t−1(s−1
2 − s−1

1 ) − (d1 + d2)v + (d1 − d2)∆y;
s = max{σ ∈ (0, 2] : λ + σ∆λ ≥ −1, λ + σ∆λ ≤ 1,

y + σ∆y ≥ r − σv, y + σ∆y ≥ −r + σv};
s = min{1, 0.99s};
x = x + s∆x; y = y + s∆y; r = r − sv; λ = λ + s∆λ;

end while

output: x, λ;

The input parameter µ is a positive real number (we use µ = 10) and ǫ is a given
tolerance. The initial input value of the dual variable λ is assumed to be strictly
dual feasible, that is Atλ = 0 and |λ|∞ < 1 (we use λ = 0). In the algorithm,
a, t, and s are scalar variables; r, y, d, v, ∆y, ∆λ ∈ Rm; w, ∆x ∈ Rn; the vectors
s1, s2, d1, d2 do not need to be stored since their components can be evaluated
one by one when needed (one time when computing d and v, and another time
when computing ∆y and ∆λ). All operations in the definitions of d1, d2, d, v, ∆y,
and ∆λ are component-wise. We use diag(d) to denote the diagonal matrix with
main diagonal given by the vector d.

It can be shown that all vectors λ generated by this algorithm are strictly dual
feasible provided that the input λ is strictly dual feasible. Thus, the stopping
criterion we use guarantees that

f(x) − f(x∗) ≤ f(x) − g(λ) = |r|1 − rtλ < ǫ rtλ ≤ ǫf(x∗)

which means that x is an almost minimizer for (4) with a tolerance 1 + ǫ.
The most expensive step at each iteration of the while loop is the solution

of the equation for ∆x. Since direct solution methods are not practical for large
n, we use an iterative method to solve the linear system approximately. In the
resulting algorithm the vectors λ do not satisfy Atλ = 0. However, numerically
we observe that solving iteratively with relative tolerance ǫ/10 produces results
that are very similar the results obtained by solving almost exactly. The iterative
method we use is the preconditioned conjugate gradient (PCG) method with a
simple symmetric Gauss-Seidel preconditioner.

3 Numerical Examples

We illustrate our data reconstruction technique in this section. In all numerical
experiments Ω is the unit square and we use a uniform rectangular mesh with
equal step size in both x and y directions. The tolerance in the interior-point
(IP) method is ǫ = 10−2 and the linear systems for ∆x are solved with relative
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tolerance 10−3. The initial approximation for the vector x in the IP method is
obtained from the Q1 interpolant of the data.

3.1 Test 1: Piece-Wise Smooth Data

The data for this set of experiments is obtained from a single function

u(x, y) = f(max{|x − 1/2|, |y − 1/2|}),

where

f(r) =

⎧
⎪⎨
⎪⎩

5/3 r ∈ [0, 1/8]

1 r ∈ (1/8, 5/16]

16(1/2 − r)/3 r ∈ (5/16, 1/2]

and we use meshes with step size, h, varying from 1/16 to 1/256. Note that
u(x, y) is discontinuous at Γ1 = {r = 1/8} and its gradient also has jumps at
Γ2 = {r = 5/16} and at Γ3 = ({x = y} ∪ {x + y = 1}) ∩ {5/16 ≤ r ≤ 1/2}.
Away from those discontinuities the function is linear. Figure 1 shows the two
reconstructed surfaces obtained with α = 3 and α = 5 on 16 × 16 mesh. The
solution obtained with α = 5 is C1 everywhere and that obtained with α = 3 is
C1 almost everywhere but around the edges defined by Γ3. In Table 1 (left side),
we present results for the convergence of the IP method as we refine the mesh.
We see a very small increase in the number of IP iterations of order ln(1/h). The
total number of PCG iterations is given along with the increase in those numbers
from one level to the next and we multiply that ratio by 4 which roughly gives
the increase in the computational cost per level. If we compare these ratios with
the actual increase in computing time, we see that both are fairly close. These
numbers indicate an order O(nβ), β = ln(6)/ ln(4) ≈ 1.29, for the computational
complexity and time.

Fig. 1. Test 1: reconstructed surfaces with α = 3 and α = 5, h = 1/16

3.2 Test Cases: Real Terrain Data

Next, we present results for two data sets taken from real terrain data. Test 2
is defined on a 20 × 20 mesh and it is one of the reference tests in [16]; Test 3
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Table 1. Results for test 1 (left), 2, and 3 (right) with α = 3

1/h 16 32 64 128 256

IP iter. 15 16 17 18 19

n̂ 2 401 9 409 37 249 148 225 591 361

m 10 368 41 728 167 424 670 720 2 684 928

PCG iter. 1 512 1 599 2 437 3 628 4 751

Ratio×4 — 4.23 6.10 5.95 5.24

Time, sec. 4.62 21.22 126.68 754.37 3 908.27

Ratio — 4.59 5.97 5.95 5.18

20×20 100×100

21 28

3 721 90 601

16 240 409 200

4 656 3 923

— —

21.78 498.55

— —

Fig. 2. Test 2: Q1 interpolant and reconstructed surface with α = 3

Fig. 3. Test 2, reconstructed with α = 5, and Test 3, reconstructed with α = 3

is defined on a 100 × 100 mesh and represents a 3 × 3 km terrain near Barton
Creek in Austin, Texas. The results for test 2 are shown in Figures 2 and 3, and
Figure 3 also shows the reconstructed terrain for test 3. In Table 1 (right), we
present the computational results for the IP method applied to tests 2 and 3.
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4 Conclusion

As claimed by Lavery [5,1], we have observed that the L1-metric is suitable
for reconstructing piecewise smooth data in the sense that it is non-oscillatory.
We have proposed a finite element technique which is more flexible than cu-
bic splines. We have proposed a preconditioned interior-point technique whose
complexity scales like n5/4.
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