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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Machine vision can greatly benefit from the development of accurate reflectance 

models. There zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare two approaches to the study of reflection: physical and geometrical 
optics. While geometrical models may be construed as mere approximations to physical 
models, they possess simpler mathematical forms that often render them more usable than 
physical models. However, geometrical models are applicable only when the wavelength of 
incident light is small compared to the dimensions of the surface imperfections. Therefore, 
it is incorrect to use these models to interpret or predict reflections from smooth surfaces, 
and only physical models are capable of describing the underlying reflection mechanism. 

This paper is directed towards unifying physical and geometrical approaches to de- 
scribe reflection from surfaces that may vary from smooth to rough. More specifically, we 
consider the Beckmann-Spizzichino (physical optics) model and the Torrance-Sparrow (ge- 
ometrical optics) model. We have chosen these two models in particular as they have been 
reported to fit experimental data very well. Each model is described in detail, and the condi- 
tions that determine the validity of the model are clearly stated. From studying the behaviors 
of both models, we propose a model comprising zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree reflection components: the diffuse 
lobe, the specular lobe, and the specular spike. The dependencies of the three components 
on the surface roughness and the angles of incidence and reflection are analyzed in detail. 
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1 Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Most machine vision problems involve the analysis of images resulting from the reflection of 
light. The apparent brightness of a point depends on its ability to reflect incident light in the 
direction of the sensor: what is commonly known as its reflectance properties. Therefore, the 
prediction or interpretation of image intensities requires a sound understanding of the various 
mechanisms involved in the reflection process. While shape extraction and object recognition 
methods are being refined, it is also essential for the vision community to research and utilize 
more sophisticated reflectance models. Once a "general" reflectance model is made available, 
we are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfree to make reflectance assumptions that are reasonable for the vision application at 
hand. The resulting more specific model may then be used to develop efficient perception 
techniques zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

Various reflectance models have been used in the areas of machine vision and graph- 
ics. Horn [8] used the Lambertian diffuse reflectance model and the double-delta specular 
reflectance model to develop shape-from-shading algorithms for machine vision. Horn [7] 
has also provided an excellent review of some of the early models used in graphics for 
hill shading. Phong [ 191 proposed a parametrized continuous function to represent specular 
reflectance, and used the model to produce computer-synthesized images of objects. Wood- 
ham [32] used the Lambertian model to determine object shape by means of photometric 
stereo. Ikeuchi [12] used the doubledelta specular model to determine the shape of specular 
surfaces by photometric stereo. Pentland [18] developed a local shape-from-shading algo- 
rithm that assumes Lambertian reflectance. Coleman and Jain [4] proposed the four-source 
photometric stereo, which discards specular reflections and uses the diffuse reflections and 
the Lambertian model to determine shape information. Sanderson, Weiss, and Nayar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[24] 
have used the doubledelta specular model to determine the shape of specular surfaces by 
means of the structured highlight technique. Recently, Nayar, Ikeuchi, and Kanade [16] have 
developed the photometric sampling method that uses a hybrid reflectance model, comprised 
of both Lambertian and specular models, to extract the shape and reflectance of Lambertian, 
specular, and hybrid surfaces. 

The above applications have proven that the Lambertian model does reasonably well 
in describing diffuse reflections. Moreover, its simple functional form has made it a popular 
reflectance model in the vision research community. On the other hand, the specular models 
used above perform well only when the object surface is very smooth, in which case, most 
of the reflected light is concentrated around the specular direction. Specular reflection from 
rough surfaces, however, requires careful examination, and its dependence on the imaging 
and illumination geometry can only be obtained by a formal treatment of optics. There 
are two different approaches to optics, and thus two different approaches to the study of 
reflection. The physical optics approach uses electromagnetic wave theory to study the 
reflection of incident light, The geometrical optics approach, on the other hand, uses the 
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short wavelength of light to simplify the reflection problem. Hence, geometrical models may 
be viewed as approximations to physical models. 

The Beckmann-Spizzichino physical optics model and the Torrance-Sparrow geomet- 
rical optics model have recently attracted considerable attention. Both models have been 
developed to describe specular reflection mechanisms, and both have been found to fit ex- 
perimental data quite well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ l l ]  [30]. Owing to its simpler mathematical form, the Torrance- 
Sparrow model is more popular than the Beckmann-Spizzichino model, and has been used in 
the areas of computer vision and graphics. Healey and Binford [6] have used the Torrance- 
Sparrow model to determine local shape from specular reflections. Wolff [31] has used the 
model to develop spectral and polarization stereo methods. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACook and Torrance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ]  have 
modified the model and used it to render images of objects. Tagare and Figueiredo [29] have 
discussed both the Beckmann-Spizzichino and the Torrance-Sparrow models in their survey 
of various reflection mechanisms. 

When applying physical and geometrical models, it is important to satisfy the con- 
ditions that determine the validity of the models. This requires an understanding of the 
restrictions imposed by the assumptions made while developing the models. Most of these 
assumptions are related to the microscopic shape and physical properties of the reflecting 
surface. In this paper, we seek answers to the following questions: How are surface shapes 
modeled, and when is a surface rough? How are physical optics and geometrical optics 
models developed? Under what conditions are the Beckmann-Spizzichino and the Torrance- 
Sparrow models valid? How do the reflectance curves predicted by the two models compare 
with one another, and how are the surface roughness parameters of the two models related to 
each other? What are the primary components of surface reflection, and which model should 
be used to represent each of the primary components? How are the reflection components 
dependent on the surface roughness, and on the angles of incidence and reflection? 

In section 2 of this paper, we define radiometric concepts that are useful in the analysis 
of surface reflection. In section 3, we look at different approaches to modeling surface 
profiles. In section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, we highlight the main steps that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare involved in the derivation of 
the Beckmann-Spizzichino and Torrance-Sparrow models, and clearly state the assumptions 
made in the process of their development. On the basis of the reflectance curves predicted 
by the two models, we propose a reflectance model that has three primary components: 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd i m e  lobe, the specular lobe, and the specular spike. In section 5 ,  we study these 
reflectance components in detail. 

2 Radiometric Definitions 

In this section, we present definitions of radiometric terms that are useful in the study 
of surface reflection. Detailed derivations and descriptions of these terms are given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 1: Basic geometry needed to define radiometric terms. 

Nicodemus et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[17]. As shown in Figure 1, all directions are represented by the zenith 
angle 8 and the azimuth angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. The light source is assumed to lie in the x-z plane and is 
therefore uniquely determined by its zenith angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAei. The monochromatic flux d@i is incident 
on the surface area dA, from the direction Bi, and a fraction of it, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd@r, is reflected in the 
direction (er, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#r ) .  The irradiance I,' of the surface is defined as the incident flux density: 

The rudiunce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, of the surface is defined as the flux emitted per unit fore-shortened area per 
unit solid angle. The surface radiance in the direction (er, q$) is defined as: 

The BRDF (Bi-Directionul Reflectance Distribution Function) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfr of a surface is a measure of 
how bright the surface appears when viewed from a given direction, when it is illuminated 

'Irradiance is usually [8] denoted by the symbol E. In the following sections, we will be using E to denote 
the electric field, and therefore we will denote irradiance by I to avoid confusion. 
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from another given direction. The BRDF is defined as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Is 

L = - *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) 

In the following sections of this paper, we will frequently use the above radiometric defini- 
tions. 

3 Surface Model 

The manner in which light is reflected by a surface is dependent on, among other factors, 
the microscopic shape characteristics of the surface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA smooth surface, for instance, may 
reflect incident light in a single direction, while a rough surface will tend to scatter light 
in various directions, maybe more in some directions than others. To be able to accurately 
predict the reflection of incident light, we must have prior knowledge of the microscopic 
surface irregularities; in other words, we need a model of the surface. All possible surface 
models may be divided into two broad categories: surfaces with exactly known profiles and 
surfaces with random irregularities. An exact profile may be determined by measuring the 
height at each point on the surface by means of a sensor such as the stylus projlometer. This 
method, however, is quite cumbersome and also inapplicable in many practical situations. 
Hence, it is often convenient to model a surface as a random process, where it is described 
by a statistical distribution of either its height above a certain mean level, or its slope with 
respect to its mean (macroscopic) slope. In this section, we discuss these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo approaches 
to surface modeling in greater detail and explain how surface roughness is pertinent to the 
study of reflection. 

3.1 Height Distribution Model 

The height coordinate h of the surface may be expressed as a random function of the coor- 
dinates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and y, as shown in Figure 2. The shape of the surface is then determined by the 
probability distribution of h. For instance, let h be normally distributed, with mean value 
ch> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, and standard deviation a h .  Then, the distribution of h is given by: 

The standard deviation b h  is also the root-mean-square of h and represents the roughness 
of the surface. The surface is not uniquely described by the statistical distribution of h, 
however, as it does not tell us anything about the distances between the hills and valleys of 
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Figure 2: Surface height as a random function of the spatial coordinates. 

the surface. In Figure 3, both surfaces (a) and (b) have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe same height distribution function, 
i.e. the same mean value and standard deviation. In appearance, however, the two surfaces 
do not strongly resemble each other. In order to strengthen our surface model, we use 
an autocorrelation coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(T) that determines the correlation (or lack of independence) 
between the random values assumed by the height h at two surface points (x1,yl) and (x2,y2), 

separated by a distance T .  We describe the autocorrelation coefficient by the fairly general 
function: 

7 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ ( r )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-F , (5 )  

where T is the correlation distance, for which C(r) drops to the value e-’. We see that the 
surfaces (a) and (b) shown in Figure 3 have small and large correlation distances, respectively. 
By varying the parameters o h  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAour surface model, we can generate surfaces that match 
in appearance almost any rough surface met in practice. Moreover, if we are dissatisfied with 
the performance of the model, we can always use another height distribution function and/or 
another autocorrelation function than the ones given above. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2 Slope Distribution Model 

It is sometimes convenient to think of a surface as a collection of planar micro-facets, as 
illustrated in Figure 4. A large set of micro-facets constitutes an infinitesimal surface patch 
that has a mean surface orientation n. Each micro-facet, however, has its own orientation, 
which may deviate from the mean surface orientation by an angle a. We will use the 
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h=O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: Random surfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith (a) small, (b) large correlation distances. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Surface modeled as a collection of planar micro-facets. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 



parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa to represent the slope of individual facets. Surfaces can be modeled by a 
statistical distribution of the micro-facet slopes. If the surface is isotropic, the probability 
distribution of the micro-facet slopes can be assumed to be rotationally symmetric with 
respect to the mean surface normal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. Therefore, facet slopes may be described by a one- 
dimensional probability distribution function. For example, the surface may be modeled by 
assuming a normal distribution for the facet slope a, with mean value <a> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 and standard 
deviation 0,: 

The surface model in this case is determined by a single parameter, namely, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ,, unlike 
the height distribution model, which requires two parameters. Larger values of Q, may be 
used to model rougher surfaces. While the importance of an autocomlation coefficient was 
shown for the height model, the concept of slope comlation is more difficult to interpret and, 
therefore, is not of much use in the generation of surfaces. The advantages of using a single 
parameter come with the cost of a weaker model when compared to the height model. Given 
a probability distribution function for a, it is difficult to visualize the shape of the surface 
and to estimate the root-mean-square height of the surface. However, the slope distribution 
model is popular in the analysis of surface reflection, as the scattering of light rays has been 
found to be dependent on the local slope of the surface and not the local height of the surface. 
For this reason, the slope model, though relatively ambiguous, is more directly applicable 
to the problem of surface reflection. Shortly, we will see how both height and slope models 
are used to develop surface reflection models. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.3 What is a Rough Surface? 

One would expect humans to respond to this question with a variety of answers. We seem 
to have a rather loose definition of the term "roughness." A surface that appears to be rough 
from a short distance may appear to be smooth from far away. In some cases, by changing the 
direction of illumination, surface imperfections can be made less visible and a rough surface 
can be made to appear smooth. If the observer is unable to discern from its appearance how 
rough the surface is, he or she is inclined to feel the surface and make a judgment on the 
basis of the resulting sensation. 

In contrast to the human definition of roughness, surface reflection theories offer a 
stronger definition: one that relates surface irregularities to the wavelength of incident light 
and the angle of incidence. For incident light of a given wavelength, the roughness of 
a surface may be estimated by studying the manner in which the surface scatters light in 
different directions. If the surface irregularities are small compared to the wavelength of 
incident light, a large fraction of the incident light will be reflected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecufurly in a single 
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direction. On the other hand, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurface irregularities arc large compared to the wavelength, 
the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill scatter the incident light in various directions. Conversely, the same surface 
can be made zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto appear smooth or rough by varying the wavelength of incident light; or for 
the same wavelength it can be made to appear smooth or rough by varying the angle of 
incidence. 

Raleigh suggested a way of relating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurface roughness to wavelength and angle of 
incidence, and established a simple criterion for classifying surfaces as smooth or rough. 
Consider rays 1 and 2 in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  incident at an angle /3 on a surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith irregularities 
of height H. Since the two rays strike the surface at locally smooth patches, both rays are 
spccularly reflected. The rays originate from a source plane that is perpendicular to the rays, 
and they are rtceivcd by a detector plane that is perpendicular to the reflected rays. We 

Figure 5:  Analyzing surface roughness fnnn the view point of reflection. 

are interested in finding the difference between the paths traveled by the two rays. Using 
basic geometry it can be shown that ray 2 and the imaginary ray 3 travel the same distance. 
Therefore, the path difference Ad between rays 1 and 2 is equal to the path difference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAOB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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between rays 1 and 3, and is determined as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ad zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWsinP , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the wavelength of the incident rays, the phase difference between the rays received 
by the detector may be determined from the path difference as: 

4xH 
x A 0  = -sin@ . 

When A 0  is very small, the two rays received by the detector will be almost in 
phase with each other, and the received energy will be nearly equal to the sum of the 
energies carried by the two rays. In this case, the surface reflects light specularly. However, 
as the phase difference approaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  the the two rays will be in phase opposition and will 
tend to cancel the effects of each other. In fact, at AR = x no energy will flow in the 
direction of the detector. The incident energy is thus redistributed in other directions, and 
the law of conservation of energy is preserved. Hence, the extreme cases are: AR = 0, 

when the surface reflects light specularly and is thus smooth, and AR= T ,  when the surface 
scatters light and is rough. We can thus classify surfaces as smooth and rough by picking 
an arbitrary threshold between AR = 0 and AR = x.  By selecting a threshold value of x/2 
we have the Raleigh criterion that states that a surface is considered to be rough when: 

x 
&in@ ' 

H > -  (9) 

This is, of course, a rather simple approach to determining the roughness of a surface. 
Some papers that discuss the height distribution model have defined a rough surface as one 
whose root-mean-square height is much greater than the wavelength of incident light, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAah 

>> A. More sophisticated criteria have been developed since the Raleigh criterion was first 
proposed. We will not pursue these criteria here but direct the interested reader to [ 13 for a 
more detailed treatment. In fact, we have described the Raleigh criterion only to bring forth 
the concept of roughness and to emphasize its significance in the study of surface reflection. 

4 Reflection Model 

When light is incident on a boundary interface between two different media, it is reflected ac- 
cording to well-known laws. There are two different approaches to optics and, consequently, 
two different approaches to the study of reflection. Physical or wave optics is based directly 
on electromagnetic wave theory and uses Maxwell's equations to study the propagation of 
light. Geometrical or ray optics, on the other hand, uses the short wavelength of light to 
simplify many of the light propagation problems. Geometrical optics is generally able to 
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explain the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgross behavior of light when the wavelength is small compared to the pertinent 
physical dimensions of the system (in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAour case, the surface imperfections). 

In this section, we study surface reflection from the perspective of physical and 
geometrical optics. More specifically, we discuss a physical optics reflection model, namely, 
the Beckmann-Spizdchino model, and a geometrical optics reflection model, namely, the 
Torrance-Sparrow model. We highlight the main steps that are involved in the derivation of 
both models and clearly state the assumptions made in the process of their development. The 
derivations will draw on the surface modeling approaches discussed in the previous section. 
Later, the two models are compared by plotting the predicted reflectance as functions of 
viewer and source directions. 

4.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPhysical Optics Model 

Light is an electromagnetic phenomenon. Therefore, in a strict sense, optics should be 
studied as a branch of electrodynamics. Optics is usually treated as a separate field because 
it was studied long before its electromagnetic character was realized. Before we address the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
scattering of incident light waves by smooth and rough surfaces, we feel that a very brief 
introduction to electromagnetic waves is in order. 

4.1.1 Electromagnetic Waves 

In the atomic theory of matter, electromagnetic effects are considered to arise from the forces 
exerted on each other by elementary charged particles. The elementary positive and negative 
particles are the proton and electron, respectively. Consider two charged particles placed in 
the vicinity of each other. Due to their respective charges, the particles will exert a force 
on each other. If the particles are at rest, they zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill experience a constant electrostatic force 
resulting from the electric field generated by them. However, if the particles have different 
relative velocities with respect to a common frame of reference, the force acting between them 
will differ from the electrostatic force. This statement can be verified by simple experiments 
[2]. The discrepancy between the forces experienced when the particles are at rest and when 
they are in relative motion suggests the presence of another field, namely, the magnetic 
field, in addition to the electric field. In fact, Maxwell’s equations may be interpreted 
as a mathematical formalization of the following physical phenomenon: associated with a 
time-varying electric field is a magnetic field. Therefore, the forces experienced by a moving 
charge can be conveniently represented by means of electromagnetic field vectors: the electric 
field intensity E and the magnetic field intensity H. Conversely, an electromagnetic field may 
be generated by applying forces and physically moving charges in some region of space. The 
electromagnetic field does not require a medium for its existence. Therefore, electromagnetic 
energy can be radiated from the space in which the charged particles are moving, to form 

10 



a traveling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAelectromagnetic wave. The field equations for the electromagnetic wave can be 
derived directly from Maxwell's equations. 

Consider the light waves radiated by a point source of light. When the source is at a 
large distance from the point of observation, the spherical waves radiated by the source may 
be assumed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto be plane waves, like the one shown in Figure 6. The electric and magnetic 
field vectors of the plane wave may be expressed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows: 

-ik.r ,iwr E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E,ee zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H ik.r &ut H,  h e- 

where k is the wave propagation vector, r is the displacement vector that determines the 
observation point in space, the unit vectors e and h correspond to the directions of the 
electric and magnetic fields, respectively, and the complex coefficients E, and H ,  represent 
the strengths of the electric and magnetic fields, respectively. It is important to note that, in 
general, the above expressions give E and H complex values. However, the actual field is 
determined only by the real components of the field vectors, i.e. Re[E] and Re[H], and the 
complex notation is used only for ease of mathematical manipulation. Bearing this point in 
mind, we will continue to use the complex forms of E and H. 

The first exponential term in the above field equations suggests that the magnitudes of 
electric and magnetic fields vary sinusoidally as a function of the distance along the direction 
of propagation. The direction of the vector k corresponds to the direction of propagation 
of the wave, while its magnitude k, called the propagation constant, determines the spatial 
frequency of the wave. The propagation constant is related to the wavelength X of the plane 
wave as follows: 

27r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A '  k = -  (1 1) 

If the wavelength lies between 400 nanu-meters and 700 nano-meters, the wave can be 
detected by the human eye and is called monochromatic light. 

The second exponential term in the field equations indicates that the field intensities 
also vary sinusoidally as a function of time at a radian frequency of oscillation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw.  The 
functions that describe the spatial and temporal field variations are dependent on the function 
that represents the forces applied to the charged particles to generate the wave. In most 
engineering applications dealing with plane waves, the field is considered to be sinusoidal 
steady state. Using Maxwell's equations, it can be shown that the unit vectors e and hare 
orthogonal to each other and both these vectors are orthogonal to the propagation vector k. 
The direction of either e or h determines the polarization of the plane wave. In Figure 6, the 
plane wave is shown at a particular instant in time. At that instant, all points on the plane P 
experience the same electric and magnetic field intensities, namely, E and H', respectively. 
Therefore, the plane wave can be thought of as being constituted of infinitely large "equi- 
field" planes, where each plane is perpendicular to the propagation direction k.  
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Figure 6: A plane electromagnetic wave. 

Since time variations in the electric field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare the cause of the magnetic field, and 
vice-versa, the amplitudes E, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH, 
related as follows: 

of the two fields are dependent on each other, and are 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE and p are the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApennitrivity 
r 

H, = , / C E O ,  
cc 

and permeubility of the medium, respectively. The 
coefficient ,/&/p is often referred to as the wave impedance of the medium. Due to the 
above stated dependencies between the electric and magnetic field vectors, we see that an 
electromagnetic wave is completely defined by either of the two field vectors, E or H. 

While studying surface nflection, we will be interested in determining the energy of 
light reflected by the surface in various directions. However, as we will see shortly, reflection 
models based on physical optics estimate the electromagnetic field scatted by the surface 
rather than the energy. Therefore, a relationship between the field and the energy carried 
by an electromagnetic wave would be useful. The rate of flow of complex energy per unit 
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area in an electromagnetic wave can be described by a vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS called the complex Poynting 
vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2].  S is defined as: 

and the quantity 

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE x H * ,  (13) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(14) 

defines the time-averaged rate of flow of physical energy per unit area and has the dimensions 
watts/mete3. Let E, H, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASa be the scalar values of the E, H, and Sa, respectively. Then 
the average rate of flow of energy per unit area is determined from equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14 and 12 as: 

1 
2 

S a  = Re[S] = - Re[E x H*] 

This equation will be used later to find the radiance of a surface from the electromagnetic 
field scattered by the surface. 

4.1.2 Beckmann-Spizzichino Model 

The Beckmann-Spizzichino model uses physical optics to describe the reflection of plane 
waves from smooth and rough surfaces. Owing to the electromagnetic character of light, this 
model is directly applicable to the reflection of light by surfaces. A detailed derivation of 
this model can be found in [l]. Our intention is to highlight the key steps involved in the 
derivation of the model and to clearly state the assumptions made during its development. 
Later, we will study the reflectance curves predicted by the model for surfaces of differing 
roughness. 

Consider a plane wave incident on a surface, as shown in Figure 7. All vectors and 
surface points are defined using the Cartesian coordinates x, y ,  z with origin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 and unit 
vectors x, y ,  and z. The height of the surf= is determined by the function h = h(x,y), 
and the mean level of the surface is the plane z = 0. The location of a surface point Q is 
described by its displacement vector r: 

r = xx + yy  + h(x,y)z. (16) 

All quantities associated with the incident field will be denoted by the subscript 1 and all 
those associated with the scattered field by the subscript 2. We will represent the plane wave 
by its electric field intensity only, keeping in mind that the magnetic field intensity may be 
determined from the electric field. The incident field at the surface point Q may be written 
as: 

(17) ik 1 .r &w t El = Eolele- 

where Eo] repments the electric field amplitude, el is the direction of the electric field, kl 
is the wave propagation vector, and w is the radian frequency of field oscillation. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7: A plane wave incident on a rough surface, scattered in various directions. 

We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare interested in the instantaneous scattering of the incident plane wave by the 
surface. Hence, we can drop the second exponential term in the above equation, which 
represents the temporal variation of the incident field The incident propagation vector kl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
will be assumed to always lie in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx-z plane of the coordinate frame. The angle of incidence 
ei of the plane wave is the angle between the propagation vector kl and the z ax is  of our 
coordinate frame. If we are interested in the field scattered by the surface in the direction kz, 
the corresponding scattering angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, is the angle between k2 and the z axis. For scattering 
directions that lie outside the plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof incidence (k1, z), we must introduce an additional 
angle $r, as shown in Figure 7. The propagation constant k corresponding to the propagation 
vectors kl and k2 is related to the wavelength X of the incident wave by equation 11. 

The polarization of the incident wave is determined by the direction of the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel. 
For parallel polarization, el lies in the the plane of incidence; for perpendicular polarization, 
el is normal to the plane of incidence. An unpolarized incident wave is one whose el vector 
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is neither parallel nor perpendicular to the plane of incidence, and in general, can vary in 
direction as a function of time. We will zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee later how the polarization of the incident field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
El affects the intensity of the scattered field E2. We will not, however, concern ourselves 
with the polarization of the scattered field E2, as we are only interested in the intensity of 
E2. From here on, we will assume the polarization of the incident wave to be either parallel 
or perpendicular, and the incident field will be denoted by the scalar El, where: 

E1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= el.E1. 

What happens when the incident plane wave strikes the surface? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA simplistic descrip- 
tion of the physical situation is as follows. A conducting surface will have an abundance of 
electrons that are very loosely bound to their atoms. When these electrons are subjected to 
the electromagnetic field carried by the incident wave, they experience forces. These forces 
result in a movement of the electrons, often referred to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas surface currents. The surface cur- 
rents give rise to new electromagnetic fields that interact with the incident field to determine 
the resultant field at the surface. Mathematically, the resultant field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(E) ,  at a surface point Q 
must satisfy the wave equation2: 

where k is once again the propagation constant. Therefore, the field (E), at the surface may 
be determined by solving the wave equation for the boundary conditions imposed by the 
surface profile. 

The field scattered by the surface in any direction can be determined from the field 
at the surface. Let P be the point of observation, and let the variable R' denote the distance 
between P and points on the surface S, as shown in Figure 7. We would like to find the 
scattered field E2 at the point P. To this end, let us consider a volume V that is bounded 
almost everywhere by the surface S but is extended such that the point P lies just outside 
the volume. Then, it is reasonable to assume that the field (E), is continuous, and the above 
wave equation must therefore be satisfied everywhere inside V. Furthermore, the point inside 
the volume that is nearest to P will experience almost the same field as the point P. Using 
these assumptions and Green's first and second theorems, the scattered field E2 at the point 
P can be determined [l] from equation 19 as: 

where: 

$ = - *  

R' 

21t can be shown 121 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthat for a source-free region of space, Maxwell's equations reduce to the wave equation. 
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This is called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHelmholtz integral, which gives us the solution of the wave equation at 
any point inside zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P is almost inside) a region in terms of the values of the function (surface 
field (E)s) and its normal derivative on the boundary (the surface S) of the region. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA detailed 
derivation of the Helmholtz integral is provided in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[l]. Though it is derived for a closed 
surface, it is also applicable to open surfaces like the one in Figure 7. 

In order to evaluate the above integral, we must find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(as and (i3E/i3n)s, i.e. the field 
and its normal derivative on the surface S. In general, these two quantities are unknown. 
Kirchofs assumption may be used to approximate the values of the field and its normal 
derivative at each point on the surface. The approximation is obtained by assuming that the 
surface does not have any sharp edges, and thus the field at a point on the surface is equal 
to the field that would be present on a tangent plane at that point. Under this assumption, 
the field on S may be determined as: 

And, by differentiating this equation, the normal derivative of the field is determined as: 

where n’ is the normal to the surface at the point under consideration and F is the Fresnel 
reflection coeficient for a smooth plane. 

Consider a plane wave incident on a smooth surface, as shown in Figure 8. As 
described above, the intensity of the reflected wave is determined by the surface field (as, 
which in turn is dependent on the surface currents. The surface currents induced by the 
incident wave are determined by the angle of incidence, the polarization of the incident 
wave, and the electrical properties (permittivity, permeability, and conductivity) of the surface 
medium. A fraction of the incident electromagnetic energy, determined by these factors, will 
be reflected by the smooth surface, and the remaining energy transmitted by the surface. The 
Fresnel reflection coefficient F determines the fraction of incident energy that is reflected by 
the smooth surface. It is often written as F(8/, q’), where 0; represents the angle of incidence, 
and 7’ is the complex index of refraction whose value is determined by the electrical properties 
of the surface medium. In equations 22 and 23, F represents the fraction of the incident field 
that is reflected by a smooth surface. As we have shown before, the reflected energy may be 
determined from the reflected field by using equation 15. In deriving their reflectance model, 
Beckmann and Spizzichino have assumed that the incident wave is of either perpendicular 
or parallel polarization. The Fresnel coefficients for parallel and perpendicular polarization 
are, respectively zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11: 
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Figure 8: Light waves incident on a smooth surface. 

smooth surface 
boundary 

It is important to note the difference between the angle of incidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8i shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 
and the angle of incidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8; in the above equations. As shown in Figure 9, the angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0: is 
the "local" angle of incidence, i.e. the angle between the incident wave propagation vector 
kl and the normal vector n' at the surface point under consideration. Therefore, the angle 0: 

will have different values at different points on the surface, while 8i is constant for a given 
incident wave. The term Y in the above equations is called the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnomlized admittance of the 
surface medium and is a function of the complex index of refraction q'. Hence, Y is also a 
function of the electrical properties of the medium. For a conductor, Y approaches infinity, 
while for a dielectric (non-conductor), Y is almost zero. 

Let us now return to the problem of finding the scattered field E2 by evaluating the 
Helmholtz integral given by equation 20. Let us assume that the surface under consideration is 
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Figure 9: The "local" scattering geometry. The local angle of incidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand the local 
surface orientation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn' may differ from the global angle of incidence 6'i and the mean surface 
orientation n. 

a rectangular patch of m a  A and dimensions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2X and 2Y in the x and y directions, respectively; 
i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4XY. Further, we assume that the observation point P is at a great distance from 

the surface compared to the physical dimensions of the surface patch and, as a result, the 
vector k2 is constant over the entire surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarea. TheFefort, it can be Seen from Figure 7 

that, for any surface point, the distance R' can be expressed in terms of the distance R, and 
the displacement vector r as: 

(26) 

By substituting equations 22, 23, and 26 in equation 20, we can express the scattered field 

kR' = kR, - k 2 . r .  

where 

v = (vI, v,,, vz) = k(sin6i - sine, C o S d r )  x + k(sinB,sind,) y - k(cos6i + cos6,) z 

a = (1 - F)sinSi + (1 + F)sinB,cosd, 

b = (1 + F)cosO, - (1 - F)cosOi 
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c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+F)sine,sin4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(28) 

If the admittance of the surface is finite, we can see from equations 24 and 25 that the Fresnel 
reflection coefficient F is an involved function of the local angle of incidence el. For a rough 
surface, the local orientation will depend on the local slope of the surface. In other words, 
the factors a, b, and c in equation 27 will not be constant over the surface area. Therefore, 
for finite admittance, the integral becomes very cumbersome to evaluate, and no solution to 
the scattering problem is known that is general and exact at the same time. This leads us to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
our next assumption: the surface medium is considered to be a perfect conductor, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY -, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
00. From equations 24 and 25, we then see that: 

and the terms a, b, and c in equation 27 are independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and y .  We also assume the 
incident wave to be of perpendicular polarization, i.e. F = Fpvp = - I .  

The terms h', and h', in equation 27 denote the slopes of the surface h(x,y) in the 
x and y directions, respectively. If the surface is perfectly smooth, we see that h = 0, h', = 
0, and hfY = 0. A perfectly smooth surface will reflect light only in the specular direction 
0, = ei, and for this direction we see that v.r = 0. Therefore, the field EzsJ scattered in the 
specular direction by a smooth perfectly conducting surface is: 

or: 

The magnitude of the field scattered in the specular direction by the smooth perfectly con- 
ducting surface is: 

We see that for a perfectly smooth surface, the scattered field is obtained with ease. 
However, a perfectly smooth surface is only the limiting case of a rough one. We will assume 
that our surface has random irregularities. By using a statistical model for the irregularities, 
we can predict the reflection characteristics of the surface. The uncertainty in height of a 
surface point can be described by a probability distribution function. Though Beckmann and 
Spizzichino have discussed a variety of distributions, they consider the normal distribution 
to be the most important and typical of a rough surface. 

The normal height distribution model was described in the previous section. The 
surface height has the mean value <h> = 0, standard deviation oh, and correlation distance T. 
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The normal distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,(h) is given by equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and the autocorrelation function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(T) by 
equation 5. Since h and the scattered field E2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare related by equation 27, the statistics of E2 

can be determined from the statistics of h. Beckmann and Spizzichino have derived in detail 
the mean field and mean power scattered by the surface in an arbitrary direction for any 
given angle of incidence. They normalize the field and introduce the scattering coeflcient p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= E2/EzJs, and present a detailed derivation of the first and second order statistics of p. This 
normalization gets rid of the factor in front of the integral in equation 27 and helps reduce the 
number of terms involved in the derivation. Since E2, is constant, p and E2 are proportional 
to each other, and the statistics of E2 can be determined from those of p. It turns out that 
the mean field < E 9  will be non-zero in the specular direction (e, = Oi)  but will tend rapidly 
toward zero as e, deviates from the specular direction. Since <Ez> is a complex quantity, a 
physical interpretation of its dependency on Bi and 8, is not obvious. For example, it does 
not follow from <E2> = 0 that <I E2 I> = 0. Therefore, Beckmann and Spizzichino have only 
used as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa stepping stone to derive the mean scattered power <E2Ez*> = <I E2 I2r. For 
an incidence angle ei, the mean power scattered in the direction (e,, dr) by a rough surface, 
whose height h is normally distributed with mean value dt> = 0, standard deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoh, and 
correlation distance T, is given by: 

where 

g =  

Po = 

D =  

vxy = 

sinc (vxX) sinc (v,Y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f 1 + cosei cos8, - sin& sine, cos&\ 
I I 

cosei ( cos& + cos& ) 1 

In the previous section, the Raleigh criterion was described to illustrate how the 
roughness of a surface is related to the wavelength of incident light. We see from equation 
34 that the factor g in equation 33 is proportional to the square of aJA. Therefore, g represents 
the roughness of the surface, and the three cases g << 1, g x 1, and g >> 1 correspond to 
smooth surface$, moderately rough surfaces, and rough surfaces, respectively. It is important 
to note that the model under consideration only attempts to describe the reflection mechanism 
that is often referred to by the vision research community as "specular reflection". As seen 
from equation 33, the mean scattered power is the sum of two terms. The first term, e-gpO2, 

We define a s m d  surface as one that is either perfectly smooth or "slightly" rough. 
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is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecular spike component of the specular reflection. It is seen from equation 35 
that when the surface dimensions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare small, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo becomes a very sharp function of 8i and 
8, and is equal to zero for all scattering directions except a very narrow range around the 
specular direction. Since the mean slope of the surface is constant and is independent of the 
roughness of the surface, a privileged scattering in the specular direction is expected. The 
second term in equation 33 corresponds to the specular lobe4, i.e. the diffusely scattered 
field that results from the roughness of the surface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs we will zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee shortly, the specular lobe 
component is distributed around the specular direction. For a perfectly smooth surface, g = 0 
and the specular lobe vanishes, while the specular spike is strong. As the roughness measure 
g increases, the spike component shr inks rapidly, while the lobe component increases in 
magnitude. The exponential series given by the summation in the lobe component may be 
approximated for smooth (g << 1) and very rough (g >> 1) surfaces. The approximations 
result in simpler expressions for the scattered power for these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo extreme surface conditions: 

The above equations for scattered power represent the Beclanann-Spizzichino re- 
flectance model. Before we study the reflectance curves predicted by this model, it is 
important to understand the conditions that ensure the validity of the model. We therefore 
summarize the assumptions we have made during the derivation of the model and discuss 
the restrictions imposed by these assumptions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.1.3 Assumptions and Related Comments 

0 The surface height is assumed to be normally distributed. However, Beckmann and 
Spizzichino have derived reflectance models for surfaces with other height distributions, 
and also surfaces with periodic profiles. 

0 The radius of curvature of surface irregularities is large compared to the wavelength 
of incident light (Kkhoff's assumption). This assumption is required to approximate 
the electromagnetic field and its normal derivative on the surface. The approximation 
will break down if the surface irregularities include sharp edges or sharp points. 

4Beckmann and Spizzichino have referred to this component as the "diffuse" component. The term "diffuse" 
has historically been used by the vision community to describe the reflection component that results from other 
mechanisms such as multiple reflections and internal scattering. To avoid confusion we will refer to the diffuse 
component of specular reflection as the specular lobe. 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe surface is assumed to be a perfect conductor. This assumption forces the quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a,  b, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA27 to be constants, thus making it easier to evaluate the 
Helmholtz integral. Beckmann and Spizzichino claim that this assumption is not as 
severe as it may first appear and that surface roughness has a greater effect on the 
scattered field than the electrical properties of the surface medium. Moreover, it is 
possible to approximate the scattered field and power for finite conductors by averaging 
the Fresnel coefficient F over the entire surface area and using the resultant value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<F> 
as a constant in the Helmholtz integral. This way the mean field and mean power 
scattered by a finite conductor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAam found [l] to be 

where the indices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf and 00 denote finite and infinite conductivity, respectively. 

0 We have ignored the masking and shadowing of surface points by adjacent surface 
points. Adjacent points may obstruct either the wave incident at a given point or the 
waves scattered from it. Clearly, these effects am functions of the angles of incidence 
and reflection. It is possible to compensate for the shadowing and masking effects by 
replacing the height function h(x,y) by S(x,y)h(x,y), where S(x,y) is the shadowing 
function [27] that tends toward unity for surface points that are illuminated and zero 
for those that are not. 

0 We have assumed that the incident wave is reflected only once and does not bounce 
between surface points before it is scattered in the direction of the observation point 
P. Without this assumption it would be very difficult to compute the scattered field; 
no closed-fonn solution that takes multiple scatterings into account is known at the 
present time. 

0 The incident wave is assumed to be perpendicularly polarized. The mean field and 
power can also be determined for parallel polarization. Beckmann and Spizzichino 
have also discussed possible approaches to solving the scattering problem when the 
polarization vector el of the incident wave is neither parallel nor perpendicular to the 
plane of incidence. 

0 The incident wave is assumed to be a plane wave. This assumption is reasonable when 
the source is at a great distance from the surface, relative to the physical dimensions 
of the surface. If the source is relatively close to the surface, the incident waves must 
be considered to be spherical waves. We have also assumed the observation point to 
be sufficiently far removed from the surface to regard the scattered waves as plane 
waves. 

22 



4.1.4 Surface Radiance and Image Irradiance from Scattered Field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The physical optics reflection model predicts the mean field and mean power scattered by a 
rough zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurface. We are interested in the radiance of the surface since we know that radiance 
can be related to image irradiance [lo]. Radiance was defined in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 as: 

Consider the image formation geometry shown in Figure 10. For convenience, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill use 

Figure 10: Image formation: light waves radiated by the surface area dA, and gathered by 
the lens are projected onto an area dAh on the image plane. Adapted from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 101. 

the areas and solid angles shown in the figure to determine the surface radiance. The surface 
element dA, is projected by the lens onto an area dAk on the image plane. Since the solid 
angles subtended from the center zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP of the lens by both areas dA, and dAh are equal, we can 
relate the two areas as: 

dA, = 

As the viewing direction 8, changes, we see that the surface area 
the same image element (pixel) area changes as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8,. 

(43) 

dA, that is projected onto 
Since the image element 
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area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdAh is constant for a given sensor, the surface area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd4, must be determined from dAh. 
All light rays radiated from d4, that are incident on the lens area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdA1 are projected onto the 
image area d4h. Therefore, dw, in equation 42 corresponds to the solid angle subtended by 
the lens when viewed from from the area dA,, and is determined as: 

The flux zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdz@, in equation 42 is the energy of light received by the lens area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&I, and can be 
determined from equation 15 as: 

d@, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Sa d41cos.y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf < E2E2* > cosy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 E  

By substituting equations 43,44, and 45 into equation 42, we obtain: 

I p R 2 f 2  < E2E2' > 
Lr = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-6 

2 E z2dA&osy 

(45) 

It is not possible to determine the exact value of the radiance from the statistics of the scattered 
field. The radiance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL., in the above equation is actually the mean (expected) radiance, d,l>. 
The mean scattered power <E2E2*> was determined as an integral over the entire area of the 
surface. In Figure 10, we see that the image element d4h receives light radiated only by 
the surface element dA, and, therefore, the mean scattered power must be computed as an 
integral over the surface area A = dA,. Since the image element area d4h is constant for all 
viewing directions e,, the area of integration d4, is determined by equation 43. Thus, for a 
given incidence angle ei, the radiance in the direction (e,, $r) of a rough surface, whose height 
h is normally distributed with mean value c b  = 0, standard deviation o h ,  and correlation 
distance T, is given as: 

Similarly, from equations (38) and (39), the surface radiance for smooth and rough surfaces 
may be written as 

As stated in Section 2, we can also obtain the BRDF,f,(ei; e,, 4,) of the surface from 
its radiance and irradiance. From Section 2, we see that surface irradiance I ,  is defined as 
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the light energy incident per unit area of the surface. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE1 is the scalar value of the incident 
plane wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEl, the surface irradiance can be obtained by once again using equation 15: 

where the term cos@; accounts for the fact that the same amount of incident energy is received 
by a greater surface area when the angle of incidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8i is increased. Hence, the BRDF of 
the surface is determined using equations 47 and 50 as& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= LJIs. 

Using the imaging geometry shown in Figure 10, Horn [lo] has established a rela- 
tionship between surface radiance and image irradiance I h .  The image irradiance is found 
to be proportional to surface radiance and is given by: 

When the image covers only a narrow angle of the scene, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 0 and it is 
reasonable to assume that cosy = I in the above equations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.1.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARadiance Diagrams 

The pexfonnance of a physical optics reflectance model is usually illustrated by scattering 
diagrams [ 11 in which either the scattered field or the scattered power is plotted as a function 
of the source and viewing angles. In radiometry, surface reflectance is often represented by 
the BRDF&(&; e,, 4,) normalized by the BRDF,f,, in the specular direction [30]. Since we 
are interested in interpreting image irradiance values, however, and since image irradiance is 
proportional to surface radiance, we will illustrate surface reflectance properties by radiance 
diagram, where absolute surface radiance is plotted as a function of viewing angle (e,, 4,) 
and incidence angle Bi. Radiance diagrams will be plotted for different values of the surface 
roughness parameters. For simplicity, we will assume that the observation point P lies in the 
plane of incidence, i.e. 4, = 0. In this section, we will plot radiance as a function of the 
viewing angle 8, for fixed values of the incidence angle 8;. Later, we will investigate how 
the radiance changes as a function of Bi,  for fixed values of 8,. 

As mentioned earlier, the parameter g in equation 47 represents the roughness of the 
surface. We see from equation 34 that g is a function of the ratio aJX. In Section 3 we 
have also seen that the shape of a normally distributed surface can be represented by the 
ratio o n .  We would like to see how the radiance diagram changes with the two ratios odX 
and a n .  We will vary the values of the two ratios by keeping ah constant and varying X 
and T. Figure 11 shows radiance diagrams for different values of a h / X .  All the radiance 
diagrams are generated by using the general radiance expression given by equation 47. The 
specular lobe component of the radiance was computed by summing the first 100 terms of the 
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exponential series. In Figure l la, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa h / X  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.002, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg = 0. From equation 47 we 
see that when g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 0, the lobe component is near zero and the spike component is dominant. 
The surface behaves in a mirror-like manner and reflects light only in the specular direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8i. Also note that the radiance in the specular direction is constant for different values 
of Bi. This is consistent with our real-world experience; when we look at a perfect mirror 
from the specular angle, we see a virtual image of the source. Further, the image appears the 
same irrespective of the angle of incidence. We have found that this mirror-like behavior is 
observed when a h / X  < 0.025. In Figure l la, the spike component look like a delta function. 
However, from equation 35 we see that the spike component is really a sinc function. This 
is seen in Figure 1 lb, where one of the radiance curves in Figure 1 la is magnified. 

As a h / X  is increased above the value 0.025 (Figures l lc  and l ld) ,  we find that the 
spike component decreases rapidly in magnitude5. However, the spike component is still very 
strong for large values of 0, and 8i. This is because g (equation 34) is a function not only of 
ah/X, but also of (cos&+ cos&). Therefore, for large values of Bi and e,, g approaches zero, 
the spike component increases, and the surface tends to behave like a mirror. However, we 
see that when a h / X  is increased further (Figures l le and 110, the spike component fades 
away, and the lobe component begins to dominate the radiance value. We have found that 
when a h / X  > 1.5, the spike component disappears, and the radiance value is determined 
solely by the lobe component. 

Figure 12 and Figure 13 illustrate how the radiance diagram is affected by the surface 
roughness ratio ah/T. For the radiance diagrams in Figure 12, a h / X  = 0.002. We see that the 
spike component is unaffected by changes in the correlation distance T. In other words, for a 
given wavelength of incident light, the spike component would be the same for two surfaces 
with different shapes but the same root-mean-square height a h .  However, in Figure 13 we 
see that the shape and magnitude of the lobe component are greatly dependent on the ratio 

In Figure 13a, we compare the radiance diagrams generated by using the general 
radiance expression (equation 47) and the approximate radiance expression for rough surfaces 
(equation 49) for u h / X  = 10.0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAah/T = 0.1 . We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that the expression Lm,&, approximates 
the lobe component of the L, quite well, and may be used when the spike component is 
negligible. In Figure 13b, we see that the lobe component is sharp and concentrated around 
the specular direction. We have found that when ah/T < 0.02, the shape of the lobe component 
resembles that of the spike component. However, the magnitude of the lobe peak increases 
with the incidence angle 0,. This effect results from the term llcos8, in equation 49. From 
Figure 13c-l3f, we see that as the ratio ah/T increases, the lobe gets wider and the lobe 
peak decreases in magnitude. In fact, for ah/T c 0.05 the lobes may be approximated by 

a h  /T. 

51f the radiance or the BRDF is normalized by the corresponding value in the specular direction, the decrease 
in the spike component is not observed. It is for this reason that we have chosen to plot the absolute radiance 
value. 
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1.C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e,- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

h.0 

(a) oh = 0.001, T = 0.01, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.5 

60' 
45' 

30' IS 

& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c 

(d) oh = 0.001, T = 0.01, h = 0.01 

(e)  oh = 0.001, T = 0.01, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh = 0.003 
Note change of scale between (d) and (e) . 

(f) oh= 0.001, T = 0.01, h = 0.002 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 11: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARadiance diagrams pmi.~ctcd by the Bcckmann-Spizzichino model for different 

values of a,,/X. 
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O i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoh = 0.001, T = 0.05, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh = 0.5 

-? 

:b) = 0.001, T = 0.02, h = 0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ei= 0 

L- 

i ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS- 

i 

- 
, 

(d) o h  = 0.001, T = 0.006 , h = 0.5 

Figure 12: Radiance diagrams of the specular spike component predicted by the Beck- 

mann-Spizzichino mudel for different values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,/T. 
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Oh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.001, T = 0.01, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh = 0.0001 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I O 3  

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

(C) (Th = 0.001, T = 0.015, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh = O.OOO1 

IO 

ei*4 

(e)  oh = 0.001, T = 0.007, h = 0.0001 (f) b h  = 0.001, T = 0.005, h = O.OOOI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 13: Radiance diagrams zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the specular lobe component predicted by the Ekck- 

mann-Spizzichino model for dif€crcnt values of q / T .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Gaussian functions with mean values corresponding to the specular direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 8,. For 
larger values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAah/T, however, the the lobes tend to peak at viewing angles greater than 
the specular angle; these are called of-speculurpeuks. Also note that as 8, approaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90 
degrees, the radiance values approach infinity. By using a shadowing function, this effect 
can be minimized, while preserving the shape of the radiance curves for smaller values of 
8,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2 Geometrical Optics Model 

An outstanding feature of visible light is its short wavelength. Often, the wavelength of 
incident light is far shorter than the physical dimensions of the surface imperfections it 
encounters, and in such cases it is possible to solve the problem of reflection in an approximate 
way. The approximation that is valid for short wavelengths of light is known as geometrical 
optics, and it allows us to treat the reflection problem in a way far simpler than the physical 
optics approach of solving Maxwell's equations. 

In this section, we will discuss the Torrance-Sparrow model, which uses geometrical 
optics to describe the specular reflection mechanism. To their specular reflection model, 
Torrance and Sparrow have appended the Lambertian model to account for internal scattering 
and multiple reflection mechanisms. We will very briefly describe the Lambertian model and 
proceed to explain the Torrance-Sparrow model, once again highlighting the important steps 
and assumptions. Later, we will present radiance diagrams predicted by the Torrance-Sparrow 
model for different surface roughness values, and compare it to the Beckmann-Spizzichino 
physical optics model. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2.1 Lambertian Model 

Lambert [15] was the first to investigate the mechanisms underlying diffuse reflection. Sur- 
faces that satisfy Lambert's law appear equally bright from all directions. In other words, the 
radiance of a Lambertian surface is independent of the viewing direction. Broadly speaking, 
there are two mechanisms that produce Lambertian reflection. In one case, the light rays 
that impinge on the surface are reflected many times by surface undulations before they are 
scattered into space, as shown in Figure 14a. If these multiple reflections occur in a random 
manner, the incident energy is distributed in all directions, resulting in diffuse reflection. 
Another mechanism leading to Lambertian reflection is the internul scattering of light rays. 
In this case, the light rays penetrate the surface and encounter microscopic inhomogeneities 
in the surface medium, as shown in Figure 14b. The light rays are repeatedly reflected and 
refracted at boundaries between regions of differing refractive indices. Some of the scattered 

6 ~ b e r t i a n  reflection is n-y categorized as "body" reflection rather than surface reflection. The model 
is discussed here only because it is used later to represent one of the primary reflection components. 
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rays find their way zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the surface with a variety of directions, resulting in diffuse reflec- 
tion. When diffuse reflection produced by either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor both of the above mechanisms produce 
constant surface radiance in all directions, we have Lambertian reflection. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Multiple Reflections 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~~ ~ ~ 

Internal Scatte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri ng 

Figure 14: Diffuse reflection resulting from multiple reflection and internal scattering mech- 
anisms. 

The surface radiance L, of a Lambertian surface is proportional to the irradiance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 
(incident energy per unit area) of the surface. Consider an infinitesimal surface area dA, 
illuminated by an infinitesimal source area dAi, as shown in Figure 15. The flux incident on 
dA, may be determined from the source radiance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALi as: 

From the solid angles subtendeb by the surface and source areas, we obtain: 

dAi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh i ? ,  (53) 
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Substituting equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA53 and 54 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinto equation 52, we obtain: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dGi  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALi dA, cosei . 

The surface irradiance is determined from the above equation as: 

d G i  
I, =-, 

&a 

(55) 

Since surface radiance is proportional to surface irradiance, and since it is meaningful only 
when it attains positive values, it can be expressed as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I+ = r ~ , i g m a ~ [ O ,  ( L , & ~ c o s ~ ~ ) ] ,  (57) 

where KW detexmines the fraction of the incident energy that is diffusely reflected by the 
surface. 

Figure 15: Dependence of the incident light zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAenergy on the source direction. 

4.2.2 Torrance-Sparrow Model 

The Torrance-Sparrow model was developed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith the aim of describing the mechanism for 
specular reflection by rough surfaces. Based on geometrical optics, this model is valid only 
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when the wavelength of light is much smaller than the root-mean-square surface roughness. 
The surface is modeled as a collection of planar micro-like facets. As explained in Sec- 
tion 3.2, the surface has a mean surface orientation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, and the slope cy of each planar facet 
with respect to the mean orientation is described by a probability distribution. Each facet 
reflects incident light in the specular direction determined by its slope. Since the facet slopes 
are randomly distributed, light rays are scattered in various directions. Therefore, it is pos- 
sible to assign a specific distribution function to the facet slopes and determine the radiance 
of the surface in any given direction. 

Torrance and Sparrow have assumed the facet slopes to be normally distributed. 
Further, they have assumed the distribution to be rotationally symmetric about the mean 
surface normal n. Hence, facet slopes may be represented by a one-dimensional normal 
distribution: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcy2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P,(4 = c e  2aaz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(58)  

where c is a constant, and the facet slope cy has mean value <a> = 0 and standard deviation 
0,. As we have stated earlier, for this surface model, roughness is represented by the 
parameter C T ~ .  

Consider the geometry shown in Figure 16. The surface area dA, is located at the 
origin of the coordinate frame, and its surface normal points in the direction of the z-axis. 
The surface is illuminated by a beam of light that lies in the x-z plane and is incident on the 
surface at an angle 9i. We are interested in determining the radiance of the surface in the 
direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e,, 4,). Only those planar micro-facets whose normal vectors lie within the solid 
angle dw’ are capable of specularly reflecting light flux that is incident at the angle 9i into 
the infinitesimal solid angle d w r .  From the angles 8i, e,, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 r ,  we can determine the local 
angle of incidence e{ and slope cy of the reflecting facets: 

1 
2 

e; = - cos-’ ( coser cosei - sine, sinei CoSdr  

cy = cos-’ ( codi  cos@! + sinei sine: cos( sin-’ ( sin#, sine, / sin241 

, (59) 

(60) 

The number of facets per unit area of the surface that are oriented within the solid 
angle dw’ is equal to @,(a) dw’). Therefore, the number of facets in the surface area dA, that 
are oriented within dw’ is equal to @,(cy) dw’ dA,). Let uf be the area of each facet. Then, 
the area of points in dA, that will reflect light from the direction 8i into the solid angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdw, 
is equal to (u fp , (o )  dw’ a,). All the reflecting facets are assumed to have the same local 
angle of incidence, 81. From equation 55, the flux incident on the set of reflecting facets is 
determined as: 

(61) 

The fraction of incident light that is reflected by each planar facet is determined 
by the Fresnel reflection coefficient. The Fresnel coefficients FPa(&’, q’) and Fpcrp(Oi’, $) 

. 

= L~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdwi (af p ,  (a) dw’d~,) case: . 
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incident beam zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
reflected beam 

X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 16: coordinate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem used to derive the Torrance-Sparrow model. 
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determine the electromagnetic field reflected in the specular direction by a planar surface 
when the incident wave is of parallel and perpendicular polarization, respectively. In this 
section, however, we are interested in the reflected flux, i.e. the energy flowing through a 
unit area. The reflection coefficients for energy reflectance may be determined from those 
for field reflectance as: 

Let us assume that the polarization vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel of the incident light wave lies outside the plane 
of incidence, and let h and v represent the magnitudes of the resolved components of el in the 
parallel and perpendicular polarization planes, respectively. The Fresnel coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF'(B:, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7') 
for the incident wave may be expressed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a linear combination of the Fresnel coefficients 
for parallel and perpendicular incident waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25]: 

where 
h , ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 O a n d h + v  = 1 .  

Torrance and Sparrow have also considered the masking and shadowing of one micro- 
facet by adjacent facets. Adjacent facets may obstruct flux incident upon a given facet or 
the flux reflected by it. In order to compensate for these effects, the geometrical attenuation 
factor' G(&, Or, $ r )  is introduced. The obstruction of incident or reflected light will depend 
on the angle of incidence and the angles of reflection. Each facet is assumed to be one 
side of a V-groove cavity, and light rays are assumed to be reflected only once. A detailed 
derivation of G(Bi, e,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4r) is given in [30], and the final expression is found to be: 

) -  
2 C O S ~  cos& 2 C O S ~  cos& 

G(ei,&, $ r )  = min case; case: 
Taking the Fresnel reflection coefficient and the geometrical attenuation factor into consider- 
ation, the flux d@p, reflected into the solid angle &, may be determined from the flux zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2@i 

incident on the reflecting facets as: 

The radiance Lr of the surface dA, in the direction (8r,  $ r )  is defined as: 

7 ~ i s  factor plays the role of the shadowing function S mentioned in the previous section. 
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Using equations 61 and 66, equation 67 may be written as: 

Earlier we stated that only facets with normals that lie within the solid angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdw' are 
capable of reflecting light into the solid angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd w r .  Therefore, dw' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd w r  are related to 
one another. Though Torrance and Sparrow have only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused this relationship and have not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

incident beam reflected beam 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17: The source-viewer plane, illustrated to establish the relationship between dw' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dwr.  

derived it, we feel that it is a very important one and deserves at least an informal proof. 
To this end, let us consider the plane shown in Figure 17, which includes the incident and 
reflected beams. We will assume all incident rays of light are parallel. This assumption is 
valid when the source is at a large distance from the surface. We see that the areas dA, and 
dA" subtend the same solid angle from the point I, and that IR = 2IP. Therefore, we can 
relate the two areas as dA" = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdAr/4. Similarly, we see that dA" and dA'" subtend the same 
solid angle dw' from the point 0. Noting that 0 P  = cos& we can relate the two areas as 
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dA” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdA’”/co28;. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFurther, the area dA’ is a projection of the area dA“ onto the surface of 
the unit sphere, i.e. dA‘ = dA“C0sOi. Using the above relations, we can relate dA’ to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdAr: dA’ 
= dAr/4cos8;. Since dw’ = dA’ and dwr = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd A r  (areas on the unit spheres), we have: 

Hence, for a given ab,, the shape and size of the corresponding dw’ is dependent on the 
local angle of incidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe:, which is in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAturn dependent on the angle of incidence 8i and the 
angles of reflectance (Or7q5r) (equation 59). Note that for a perfectly smooth surface, the 
parallel incident rays will be reflected in a single direction (the specular direction) and will 
not be scattered into a cone as shown in Figure 17. Therefore, for this limiting case, the 
above relationship between dw’ and dw, will not be valid. 

Substituting equations 58 and 69 into equation 68, we obtain: 

where 

Note the similarity between the above equation and the expression for the specular 
lobe predicted by the Beckmann-Spizzichino model (equation 49). Thus, the Torrance- 
Sparrow specular reflection model describes only the lobe component of specular reflection; 
there is no term in the above equation that represents the spike component of specular 
reflection. The radiance is determined only by the roughness parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr,, and unlike 
the Beckmann-Spizzichino model, there is no dependence on the wavelength X of incident 
light. However, from the physical optics model we have seen that the spike component 
is significant only when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa h / X  c 1.5. Torrance and Sparrow have clearly stated that their 
model is only valid when a h / X  >> 1.0. Therefore, this model must not be used to predict 
or interpret reflection from very smooth surfaces, i.e. when ah/X << 1.0. To make their 
model more generic, Torrance and Sparrow have appended the Lambertian model to their 
specular model to account for diffuse reflection that may result from multiple reflections or 
internal scattering. Thus, for an angle of incidence Oi, the radiance in the direction (Or )  q&) 
of a rough surface whose facet slopes are normally distributed with standard deviation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcra 
may be expressed as: 

where Kd# and Kspec determine the fractions of incident energy that are reflected as components 
of the diffuse and specular lobes, respectively. From the radiance and irradiance, the BRDF 
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of the surface may be obtained as& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALJI,. Once again, we will summarize the assumptions 
we have made during the derivation of this model and discuss the restrictions imposed by 
these assumptions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2.3 Assumptions and Related Comments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 The surface is modeled as a collection of planar micro-facets, and the facet slopes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are normally distributed. Other distributions, however, may be used to describe the 
facet slopes. For example, if the surface height is assumed to be normally distributed 
with standard deviation Oh and correlation distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, the slope distribution may be 
determined from the height distribution as [l]: 

0 The size of the planar facets is much greater than the wavelength of incident light, 
i.e. b h  >> A. Therefore, we can assume that the light rays are reflected by each facet 
in its specular direction only. Furthermore, bh >> X implies that the spike component 
of reflection is negligible and that the model determines only the lobe component of 
reflection. 

0 The geometrical model takes the Fresnel reflection coefficient F’ into account. There- 
fore, the polarization of incident light and the conductivity of the surface medium need 
not be constrained. As a result, the model is capable of predicting reflections from 
both conductors and dielectrics. 

0 Each facet comprises one side of a symmetric V-groove cavity. With this assumption, 
the shadowing and masking effects are compensated for by using the geometrical 
attenuation factor G. 

0 The source is assumed to be at a great distance from the surface, so that all light rays 
that are incident upon the surface area dA, are nearly parallel to one another. This 
assumption simplifies the relationship between the solid angles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdw’ and dw, (equa- 
tion 69). 

0 The final model includes the Lambertian model to account for diffuse reflection mech- 
anisms such as multiple reflection and internal scattering. 

4.2.4 Radiance Diagrams 

Torrance and Sparrow have evaluated the performance of their model by plotting the ratio 
of the BRDF in a given direction to the BRDF in the specular direction. The normalized 

38 



BRDF dismbutions predicted by the model for a dielectric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( M e )  and a conductor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Al) 
were found to fit the experimental data very well. We feel that plots of the normalized 
BRDF could lead to misinterpretation of the reflectance characteristics, however. Since 
image irradiance is proportional to surface radiance, we once again choose to plot absolute 
radiance diagrams. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAour intention is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto compare the Torrance-Sparrow model with the 
Beckmann-Spizzichino model, we will neglect the Lambertian component of the Torrance- 
sparrow model. Further, since the Torrance-Sparrow model is valid only when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>> A, 
we will only compare it with the Beckmann-Spizzichino model for rough surfaces given by 
equation 49. 

Figure 18: Typical plot of the Fresnel reflection coefficient as a function of the local incidence 
angle. 

Consider the Fresnel coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(e/,q’) and the geometrical attenuation factor 
G(&, e,, 4,) in equation 71. A typical plot of F’(B/, q’) as a function of el is shown in 
Figure 18. For metals and many other surfaces, it is observed [20] that F‘ has a nearly 
constant behavior until the local angle of incidence approaches 90 degrees. Therefore, we 
will assume that F‘ is constant with respect to 0, and e,. Figure 19 shows G(Bi, e,, 0) plotted 
as a function of e,, for different values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8i. We see that, for angles of incidence not near 
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the grazing angle, G equals unity over an appreciable range of 8,. In the following radiance 
diagrams, we will zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that it is within these ranges of 8, that the surface radiance attains 
maximum values. Therefore, we assume that G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI for all values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8i and 8,. With the 
a bove two assumptions, we see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKspec is constant for all values of 8i and 8,. 

, e;=o' 

above two assumptions, we see that Kspec is constant for all values of 8i and 8,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

40' 

Figure 19: Geometrical attenuation function plotted as a function of the viewing angle, for 
different values of the incidence angle. 

Figure 20 shows radiance diagrams for different values of the surface roughness 
parameter 0,. Very small values of 0, correspond to smooth surfaces, and for these values 
the specular lobes are similar in appearance to the specular spikes shown in Figure 1 la. If 
the normalized BRDF is plotted rather than the absolute radiance, the lobe peaks will have 
constant values for all angles of incidence, and the resulting plot will appear exactly like 
the radiance diagram shown in Figure l l a .  It is important to note that Figure 20a shows the 
specular lobes for a smooth surface and not the specular spikes. Therefore, the Torrance- 
Sparrow model is capable of predicting the specular lobe for smooth surfaces. However, for 
smooth surfaces, Oh is comparable to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, and the spike component is generally much stronger 
than the lobe component. 

We see from Figure 20 that the peak value of the specular lobe increases in magnitude 
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Figure 20: Radiance diagrams predicted by the Torrance-Sparrow model for different values 

of 6,. 
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(c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACYa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 9.0 

(e) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc& = 15.0 

(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC& = 7.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(d) C& = 13.0 

(f) ua= 17.0 

Figure 21: Radiance diagrams predictbd by the Torrancc-Sparrow model for different values 

of 6,. 

42 



with the angle of incidence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8i. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs in the case of the physical optics model, this effect results 
from the term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl/cos8, (equation 70). It is also clear that the width of the lobe increases 
with the roughness parameter ucr. In fact, for relatively small values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,, the lobe may be 
approximated by a Gaussian function that is symmetric with respect to the specular direction. 
However, for higher values of u, (Figure 21), the lobe peak occurs at reflection angles greater 
than the specular angle. As with the physical optics model, these off-specular peaks result 
from the term Zlcose, (equation 70). For large values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8i and near-grazing values of e,, the 
radiance values approach infinity. From Figure 19 we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that G approaches zero for near- 
grazing values of 8,. Torrance and Sparrow have proved that G approaches zero at a faster rate 
than the rate at which the plotted radiance approaches infinity. Hence, in practice, the surface 
radiance equals zero when 8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 90 degrees. In Figure 21d, we have compared the radiance 
diagrams predicted by the Torrance-Sparrow model and the Beckmann-Spizzichino model. 
Though the two models were developed using different approaches and different surface 
models, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that the resemblance between the two radiance diagrams is remarkable. In 
the following section, we relate the roughness parameters of the two models. 

5 Observations 

5.1 Primary Reflection Components 

From the physical and geometrical optics reflection models, we see that surface radiance may 
be decomposed into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree primary reflection components, namely, the diffuse lobe, specular 
lobe, and specular spike. Polar plots of these three components are illustrated in Figure 22. 
The sum of the three lobe components determines the surface radiance detected by the 
viewer for a fixed position of the source. The diffuse lobe is represented by the Lambertian 
model, and is constant with respect to the viewing direction. The specular lobe tends to 
be distributed around the specular direction, and has off-specular peaks for relatively large 
values of surface roughness. The specular spike is concentrated in a small region around 
the specular direction. The strengths of the specular lobe and specular spike components are 
related to one another. For a smooth surface, the specular spike component is many orders 
of magnitude greater than the specular lobe component. As the surface roughness increases, 
the spike component shr inks rapidly, and the specular lobe begins to dominate. We have 
seen from the radiance diagrams for the physical optics models that, for a given wavelength 
of incident light, the spike and lobe components are comparable to one another only for a 
small range of roughness values. 

Owing to its simplicity and its conformity with experimental data [30], the specular 
component of the Torrance-Sparrow model may be used to approximate the specular lobe 
component. However, this model does not have a spike component, so the spike component 
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sensor 

/- reflecting su dace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
\t&fQ&&& 

microscopic 
rough ness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 22: Polar plots of the h e  reflection components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas functions of the viewing angle 

for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfixed source direction. 
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of the Beckmann-Spizzichino model may be used. We see from equation 47 that the shape 
of the spike component is determine by the term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo. Since po is a very sharp function of 
Bi and er, we can approximate po by a Gaussian function with low standard deviation or a 
double-delta function. Using the above approximations, the image irradiance equation, for 
fixed source direction and varying sensor direction, may be written as a linear combination 
of the three reflection components: 

where, the constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACd, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,l, and C, repment the strengths of the diffuse lobe, specular 
lobe, and specular spike components, respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2 Moving Source and Fixed View 

In all the radiance diagrams we have presented so far, surface radiance was plotted as a 
function of viewing direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe,, for fixed values of the incidence angle 8i. In shape extrac- 
tion techniques such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas photometric stereo, structured highlight, and photometric sampling, 
however, images of the observed object are obtained by varying the source direction while 
keeping the viewing direction constant. Note that when the viewing direction is fixed, the 
term l/cosO, in the specular component of the Torrance-Sparrow model (equation 72) is 
constant, and the shape of the specular lobe is dependent solely on the term 

a? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-(-m) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(75) 

Since a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 when 8, = 8i, the specular lobe is found to be symmetric with respect to the 
specular direction. A similar analysis is applicable to the physical optics model for rough 
surfaces (equation 49). The only term that is significantly affected by variations in Bi is the 
term cVq2 ‘PZ2 Further, it can be shown [ 11 that 

VFY 

VZ 
tuna = -, 

where, as with the slope distribution model, a is the angle between the bisector of the incident 
and viewing directions and the surface normal vector n. Let us assume that tan a. = 2 a n .  

Then, we can write: 
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Many rough surfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare gently varying, and the slopes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) of most facets are small. There- 
fore, we may approximate the tangents in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA77 by their arguments, obtaining: 

From equations 78 and 75, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee that the roughness parameters of the Torrance-Sparrow 
model and the Beckmann-Spizzichino model may be related as: 

Figure 23 shows radiance diagrams plotted for surfaces with different roughness 
values using the Beclanann-Spizzichino model (left column) and the Torrance-Sparrow model 
(right column). Here again, only the specular lobe component is considered. Note that these 
radiance diagrams differ from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall  of the previous ones in that radiance is plotted as a function 
of the source angle Bi for fixed values of the viewing angle e,, rather than vice-versa. Once 
again we assume that 4, = 0, the geometrical attenuation factor equals unity, and the Fresnel 
reflection coefficient is constant. For each o n  ratio in the left column, we have used 
equation 79 to find 0, for the corresponding diagram in the right column. Three important 
observations can be made from these radiance diagrams: 

0 When the source direction, viewer direction, and surface normal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare coplanar, the 
radiance curves can be represented by Gaussian functions. This statement can be 
proved analytically by setting 4, = 0 in the specular lobe component of both models. 

0 The peak for each radiance curve is observed at the specular angle, i.e. Bi = 8,. 
Varying source direction, rather than viewing direction, prevents off-specular peaks 
from occurring. In addition, the radiance value exhibits reflection symmetry with 
respect to the viewer-normal plane. 

0 The radiance diagrams predicted by the physical optics and the geometrical optics 
models resemble each other very strongly. Therefore, even though the two models use 
two different surface modeling parameters (height and slope, respectively), equation 79 
does very well in relating the physical roughness parameters of the two models. 

We can further illustrate the difference between varying source direction and varying 
viewer direction by introducing a new representation of the reflection components. Figure 24 
shows polar plots of the diffuse lobe, specular lobe, and specular spike. This time, however, 
the magnitudes of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree components of the radiance value in the viewing direction are 
determined by intersections made by the lobes with the line joining the source and the 
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pecular spike 

reflecting surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 24: Polar plots of the three reflection components as functions of the source angle 

for a fixed viewing direction. 
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origin. In this case, the diffuse component varies with the position of the source, since it is 
proportional to the surface irradiance. Note that the specular lobe is symmetric with respect 
to the source specular angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e,, and the spike is concentrated around the same angle. 
From the above observations, the image irradiance equation, for fixed sensor direction and 
varying source direction, may be written: 

where the constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKd, Ksl, and Kss represent the strengths of the diffuse lobe, specular 
lobe, and specular spike components, respectively. Note that the ratio Ksl/Kss is dependent 
on the surface roughness and the angles of incidence and reflection. Seldom zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare KSl and 
K,, comparable to one another. In most instances, one of the two specular components is 
significant, while the other is negligible. 

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConcluding Remarks 

0 We propose a reflection model with three primary components: the diffuse lobe com- 
ponent, the specular lobe component, and the specular spike component. 

0 The Lambertian model may be used to represent the diffuse lobe component. This 
model has been used extensively to test shape-from-shading and photometric stereo 
techniques, and the results have indicated that it performs reasonably well. More 
accurate models [14] [21] may be used at the cost of functional complexity. 

0 The Beckmann-Spizzichino physical optics model predicts both the specular lobe and 
spike components. For a very smooth surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ah << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA), the spike component dominates 
and the surface behaves like a mirror. As the roughness increases, however, the spike 
component s h r i n k s  rapidly, and the lobe component begins to dominate. The two 
components are simultaneously significant for only a small range of roughness values. 

0 A sharp specular component may result from the specular spike component when the 
surface is smooth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(arJX e 1.5), and/or from the specular lobe component when the 
surface is gently undulating ( o n  e 0.02). 

0 The Torrance-Sparrow geometrical optics model provides a good approximation to 
the specular lobe component of the Beckmann-Spizzichino model. Both models are 
successful in predicting off-specular peaks in the specular lobe component. Owing to 
its simpler mathematical form, the Torrance-Sparrow model may be used to represent 
the specular lobe component. 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Torrance-Sparrow model is not capable of describing the mirror-like behavior of 
smooth surfaces, and it should not be used to represent the specular spike component 
as it would produce erroneous results. 

0 The specular lobes of both Torrance-Sparrow, and Beckmann-Spizzichino models tend 
to have specular peaks, rather than off-specular peaks, when the viewing direction is 
fixed and the source direction is varied. 

0 Though the two models were derived using different surface modeling approaches, 
their surface roughness parameters may be related to one another by comparing the 
equations that describe their specular lobe components. 
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