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Surface regulation enables high stability of single-
crystal lithium-ion cathodes at high voltage
Fang Zhang 1, Shuaifeng Lou1, Shuang Li2, Zhenjiang Yu1, Qingsong Liu1, Alvin Dai3, Chuntian Cao4,

Michael F. Toney 4, Mingyuan Ge5, Xianghui Xiao 5, Wah-Keat Lee5, Yudong Yao6, Junjing Deng 6,

Tongchao Liu3, Yiping Tang7, Geping Yin1, Jun Lu 3✉, Dong Su 8✉ & Jiajun Wang1✉

Single-crystal cathode materials for lithium-ion batteries have attracted increasing interest in

providing greater capacity retention than their polycrystalline counterparts. However, after

being cycled at high voltages, these single-crystal materials exhibit severe structural

instability and capacity fade. Understanding how the surface structural changes determine

the performance degradation over cycling is crucial, but remains elusive. Here, we investigate

the correlation of the surface structure, internal strain, and capacity deterioration by using

operando X-ray spectroscopy imaging and nano-tomography. We directly observe a close

correlation between surface chemistry and phase distribution from homogeneity to hetero-

geneity, which induces heterogeneous internal strain within the particle and the resulting

structural/performance degradation during cycling. We also discover that surface chemistry

can significantly enhance the cyclic performance. Our modified process effectively regulates

the performance fade issue of single-crystal cathode and provides new insights for improved

design of high-capacity battery materials.
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S
pecific capacity improvement has been reported in high Ni
content lithium nickel cobalt manganese oxide (NCM)
electrodes for lithium-ion batteries (LIBs) charged at high

voltage. However, the increased voltage cutoffs also aggravate
material decomposition and impede the battery performance1–3.
It is commonly accepted that these transitions from layered to
spinel or rock-salt phases, and migration/segregation of transition
metals (TMs) induce structural reconstruction that facilitates
capacity fade4–6. During delithiation, the layered oxide material
may transform into a spinel-type phase and then to a completely
disordered rock salt-type structure, which is believed to inhibit
the diffusion of lithium ions. In addition, the dissolution,
migration, and segregation of TMs on the surface further dete-
riorate battery performance7–9. Although some traditional
methods doping and coating strategies have been reported to
inhibit cation mixing and suppress interfacial reactions, the
excessive coating layer (>20 nm) and unregulated doping strategy
may hinder the migration of Li+, resulting in poor rate
capability10,11. Therefore doping strategies would consequently
decrease specific capacity. Another issue was recently raised that
uneven stresses, observed in cycles driven at high voltage, induced
intragranular cracks in polycrystalline, which exacerbated struc-
tural collapse and capacity loss in Ni-rich NCM12–14. To solve the
deficiencies caused by different reasons, creative strategies are
necessary to improve structural stability in NCM particles15. Ideal
methods should be able to simultaneously tune structural and
morphological characteristics to restrict both structural failure
and intragranular cracks13,16,17.

Single crystalline NCM with only one grain for one particle
(grain sizes of 2–5 μm) have attracted increasing attention for the
cathode of LIBs due to their superior capacity retention during
long cycle times, which exceeds conventional polycrystalline
battery particles18,19. It was believed that such good capacity
retention originated from their high levels of structural stabi-
lity19–22. First, the cracking problems of NCM can be potentially
suppressed because of the exhibited intrinsic integrity and con-
tinuous conductive networks in single-crystal particles23. Second,
without grain boundaries in particles, single-crystal electrodes
were theorized to provide increased oxygen loss resistance and
sound structural stability in interactions with electrolyte when
compared with polycrystalline materials24. Although single-
crystal NCM electrodes can eliminate the grain boundary resis-
tance, degradations from NCM electrodes itself still occur and
intrinsically hinder the further improvement of practical appli-
cations. Few studies elucidated the deterioration mechanism of
single-crystalline NCM at high voltage. Understanding the
structure-performance correlations of NCM single crystal can not
only solve the above issue but also provide fundamental insights
into the degradation mechanism of polycrystalline NCM elec-
trodes, with a clarification on the role of the grain boundaries.

In this work, we seek to understand underlying recession
mechanisms in single-crystalline battery materials with using
operando synchrotron X-ray spectroscopic microscopy and X-ray
nanotomography. Ni-rich single-crystal LiNi0.6Co0.2Mn0.2O2

(NCM622) was selected as a model electrode because it exhibits a
high specific capacity of over 220mAh g−1. To correlate struc-
tural/morphological changes with cycle capability, mesoscale
phase distributions during long-term cycling were visualized at
single-crystalline levels. Results from comprehensive testing reveal
that surface physical character, such as phase transitions from
homogeneity to heterogeneity during cycling, induce particle crack
formations, and play a dominant role in the structural robustness
of single crystals. Moreover, we discover that surface regulated
approaches could mitigate this undesirable phase evolution in
single-crystal NCM and significantly enhance cycle performance.
Our gather evidence consequently elucidates the relationship

between surface chemistry, phase transition, and performance
retention, while providing new guidelines for the rational design of
high performance, stable, layered cathode materials25–27.

Results and discussion
Performance decay of single crystals at high-voltage cycling.
Singe-crystalline NCM particles exhibit well-defined polyhedral
shapes with particle sizes of 1–5 μm (Fig. 1a and Supplementary
Fig. 1). We have performed a transmission electron microscope
(TEM) analysis on single particles of NCM. From the bright-field
TEM images and corresponding selected area electron diffraction
patterns, as shown in Supplementary Fig. 2, we concluded that
these single particles are single crystal. Major X-ray diffraction
(XRD) reflections in Fig. 1b can be indexed as R-3m space group
(JCPD, 09-0063), which is in good agreement with the hexagonal
α-NaFeO2 type crystal structure21. The clear splitting peaks of
(006)/(012) and (018)/(110) imply a well-organized crystalline
layered structure. Rietveld refinement exhibits a well-ordered
layered structure with no evidence of other impurity phases. Also,
the results show that the mixing of Li/Ni in the NCM is common
in the synthesis of layered oxides (Supplementary Table 1). NCM
single crystals showed a high specific capacity of 197.8 mAh g−1,
which is equivalent to most reported results in NCM samples
(Fig. 1c). Furthermore, we carried out electrochemical stability
measurement with different upper cutoff voltages (4.1, 4.3, and
4.7 V) (Fig. 1d and Supplementary Fig. 3). When cut-off voltages
were below 4.3 V, single-crystal NCM exhibited significantly
increased cycling performance. However, at a high charge cutoff
voltage of 4.7 V, single-crystal NCM displayed decreased stability
with a capacity retention of only 25.6% after 200 cycles. Never-
theless, in order to increase specific capacity, battery materials
must be stable at higher charge voltages. Therefore, insight into
the failure mechanism of high-voltage NCM single-crystal cath-
odes holds great value for capacity enhancement.

Structural analysis of cycled single-crystal material. The surface
chemistry of single-crystal NCM was conducted with TEM, and
the line scan and mapping of the electron energy loss spectro-
scopy reveal the presence Ni-rich phase on the surface (Fig. 2a, b
and Supplementary Fig. 4), which often corresponds to a rock-salt
phase5,28. To further visualize this surface structure at atomic
resolutions, we performed high-angle annular dark-field
(HAADF)-scanning transmission electron microscopy (STEM)
on pristine single-crystal NCM. The inner zone of NCM corre-
sponds to the layered phase, while the surface region (~3 nm)
shows a rock-salt phase, which confirms the presence of a thin
Ni-rich rock-salt layer on the single-crystal particle surface
(Fig. 2c)29. As for polycrystal sample, it is generally accepted that
the surface configuration of this thin rock-salt layer can sig-
nificantly affect the electrochemical behavior of NCM layered
oxide cathode (Fig. 2d). Nevertheless, the true relationship
between surface chemistry and structural stability for single
crystal NCM remains unclear, which requires comprehensive
studies to understand its configuration and mechanism of impact
on electrochemical performance.

Electrodes harvested from cells were analyzed using various
techniques to understand the structural evolution and degrada-
tion of single-crystal NCM at high potential. First, synchrotron
XRD was performed on samples cycled at a high cut-off voltage
(4.7 V) to understand structural transformations. As shown in
Fig. 3a, the shift at the (003) peak indicates low reversibility of
lithium deintercalation in single-crystal NCM after 200 cycles23.
Fine chemical and structural information were also analyzed
using hard X-ray absorption spectroscopy (Fig. 3b). The cycled
single-crystal electrode exhibits a ~1.5 eV edge energy shift
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Fig. 1 Performance decay of single-crystal batteries at high-voltage cycling. a SEM images of NCM. Scale bars 2 μm. b Rietveld refinement results for

NCM samples (the illustration is the crystal structure of NCM). c Charge–discharge profiles of NCM at different rates. d Cycling performances at 1 C

(1 C= 270mA g−1) under different cut-off voltages (4.1, 4.3, 4.7 V).
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toward higher energy in the Ni K-edge X-ray absorption near
edge structure (XANES) spectrum, which reflects an oxidation
state increase for Ni in single-crystal NCM. Extended X-ray
absorption fine structure (EXAFS) spectroscopy results (Fig. 3c),
which are more sensitive to local chemical and structural changes,
clearly show that Ni–O and Ni–M interatomic distances are
shortened after electrochemical cycling. Changes in the chemical
state of Ni and the atomic environment could be ascribed to the
presence of unfilled lithium vacancies during lithiation30. Surface-
sensitive soft X-ray absorption spectroscopy (XAS) measurements
were also conducted to further understand the surface chemical
change in single-crystalline NCM. Nickel L-edge spectra have an
L3 (2p3/2→ 3d) and an L2 (2p1/2→ 3d) region due to spin–orbital
coupling. The shape, energy, position, and peak intensity ratio
contain information on sample valence states. A decreased L3/L2
ratio was found in the spectrum after cycling, which provides
evidence of Ni elements that have undergone oxidation reactions
in at the single-crystal surface (Fig. 4d)31 This result was also
confirmed with X-ray photoelectron spectroscopy analysis
(Supplementary Fig. 5). With such comprehensive X-ray analysis,
we decisively conclude that serious structural degradation and

surface configuration transitions occur in single-crystal NCM
after high-voltage cycling (Fig. 1c).

The heterogeneity of phase distribution has been observed in
polycrystalline NCM32. It is generally accepted that this phase
heterogeneity at the chemically delithiated samples is similar to
that of electrochemically charged samples in large polycrystals.
However, the mapping study of phase distribution was seldom
reported in single-crystal battery materials33. Therefore, we
propose that surface configuration plays a role in the cycling
capability of pristine single-crystal particles. After 200 cycles, the
single crystals showed a disordered layer (~5 nm depth) on the
surface of the particle as expected (Fig. 3e), which suggests that
the cycled cathode exhibited extreme instability. This surface Ni-
rich rock-salt phase will hinder lithium-ion transport, and we
speculate that it will affect the inner chemical phase of the single-
crystal particles during long-term cycling. In order to further
quantitatively describe structural transformation at particle-
scales, we conducted spatially resolved synchrotron transmission
X-ray microscopy (TXM) to probe chemical changes in single
NCM crystals after cycling (Fig. 3f). Inhomogeneous distributions
of Ni3+ and Ni4+ oxidation states were found to coexist in the
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single-crystal particle, which indicated irreversible chemical
changes to NCM after battery cycling. This inhomogeneous
phase distribution may be caused by lithium-ion diffusion within
single crystals, which is related to surface chemical features in
single-crystal particles.

Spatially-resolved structural evolution. In order to gain a deeper
understanding of the correlation between surface chemistry and
performance decay, in operando TXM was performed to monitor
the compositional and structural evolution before and after 200
cycles25,34. During the initial cycle, the redox reaction occurs
along all directions and phase-transition fronts propagate dras-
tically, as visualized by the in operando quantitative chemical
mapping in Fig. 4a. A near-complete phase transition occurs at
the final charge and discharge stage, indicating highly electro-
chemical reversibility. Nevertheless high reversibility cannot
survive after 200 cycles, which is unambiguously revealed through
operando TXM chemical phase mapping. During the 201st charge
cycle, it was found that around 50% of the phase composition
could not recover to a pristine state, and a highly heterogeneous
phase distribution appears in single-crystal NCM. Moreover,
phase transition at the same location is highly irreversible during
the 201st cycle, as evidenced in the composition analysis of
Fig. 3b. Four representative regions from the bulk to the surface
were selected and the corresponding content of Ni oxidation
states were illustrated in Fig. 4b. The 2D histogram highlights
inhomogeneous Ni oxidation state distribution within the single-
crystal particle. Reaction heterogeneity and high irreversibility
could be ascribed to the characteristics of surface chemicals (Ni-
rich rock-salt phase) on pristine single NCM crystals, which may
induce heterogeneous internal strain within the particle, and

further result in structural/performance degradation, as evidenced
with the chemical composition analysis of Fig. 4b and Supple-
mentary Fig. 6.

To probe the influence of trace surface elemental rearrange-
ment on chemical and physical functions, we sought a novel
analysis tool with high elemental sensitivity. X-ray fluorescence
microscopy (XFM) provides unparalleled sensitivity for trace
element distribution measurements in many micrometer-thick
specimens (true microscale battery particles) and facilitates
significantly improved sensitivity relative to electron probes35.
With X-ray ptychrography, an emerging method that images
ultrastructures at beyond-focus-optic resolution, a combined
approach with XFM and ptychography can be employed to
study elemental localization within the high-resolution struc-
tural context, which aids the elucidation of phase transition
mechanisms36–38. The fluorescence maps (Mn, Co, Ni) in Fig. 5
indicate homogeneous elemental distributions of Ni, Co, and
Mn within the pristine single-crystalline particle, while Mn
metal segregation and Ni deficiencies are observed within the
single-crystalline particle after 200 cycles7. The phase images
given by ptychography reveals the projected electron density
distribution of the particle along the X-ray beam direction. For
the pristine sample in Fig. 5b, the phase map shows a single
intact crystal with several facets, which is consistent with the
SEM image of pristine particles (Fig. 1a). However, ptycho-
graphic image of the particle after 200 cycles shows inhomo-
geneous morphology, several example locations indicated by
white arrows have lower electron density, which is presumably
due to the formation of cracks. In addition, small particles with
weak phase (indicated by black arrows in Fig. 5c) were observed
around the particles, which come from the electrolyte. In all, the
projected phase image of the cycled particle is well consistent
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with the surface morphology given by SEM (Fig. 5d). To better
visualize the internal structures and further directly correlate
microstructural changes to electrochemical cycle stability, we
performed synchrotron X-ray nanotomography39. Fig. 6a illus-
trates the 3D microstructure of pristine and 200th cycled single-
crystalline NCM. Significant amounts of cracks in single-
crystalline particles indicate that the integrity of the original
microstructural morphology has been destroyed. Close exam-
ination of NCM particles after the 200th cycle reveals multiple
microcracks on the particles (indicated by the arrow in Fig. 5),
which are gaps between primary particles that arose from
inhomogeneous diffusion during the cycling process. Figure 6b
reveals the internal structural information of the split sample
from the 2D projection images extracted along the Z vertical
axis. For cycled samples, present internal cracks and fractures
can be attributed to heterogeneous phase transition-induced
internal strains during long-term cycling. This is consistent with
results obtained from SEM (Fig. 6c, d).

It is well known that the Ni-rich rock-salt phase on the surface
caused by cation mixing may inhibit lithium-ion transport, which
can trigger surface-phase transformations from layered to rock-
salt structures and induce inhomogeneous lithium-ion
distribution40,41. We employed diffusion-induced stress models
to understand the Electrochem-mechanical degradation mechan-
ism and investigate stress change in single-crystal NCM15. Fig. 6e
illustrates the heterogeneous stress distribution caused by the
inhomogeneous distribution of lithium-ion concentration in
single-crystal NCM particles. Such inhomogeneous lithium
distribution may cause mismatched strains, which leads to
high-stress concentrations near the phase interface (Fig. 6f, g).
As cycles proceed, the particles will be lacerated when the fracture
strength is unable to sustain the strains, which quickly induces
polarization and plummets cycle performance. This mechanism is
schematically illustrated in Fig. 6h. As for untreated NCM single
crystals, the Ni-rich rock-salt phase of a single-crystal surface
inhibits near-surface lithium-ion transport, which results in
heterogeneous chemical particle distribution and causes stress
generation. Deep lithium extraction/intercalations and stress
release further increase internal strain and the presence of
intergranular cracks, which decreases the structural robustness of
NCM materials.

Single-crystal NCM with modified surface chemistry. Our
results reveal that the surface Ni-rich rock-salt phase plays a
major role in the cycle stability of single-crystal NCM. To address
this issue, efforts should be made to eliminate surface chemical
reconstruction in single crystals. It is well known that lithium
could redeposit into the single crystals surface lattice via oxida-
tion of the rock-salt Ni2+ phase to layered Ni3+, which can
restore the particle surface to a well-ordered lattice structure.
Inspired by this finding, we attempted to modify the surface Ni-
rich rock-salt phase using a feasible lithium source to replenish
lattice sites during re-calcination under oxygen flow and high-
temperatures (denoted as t-NCM)42,43. From a fundamental
perspective, when the NCM is calcined at high temperature with
O2 flow, the lithium ions from LiOH could return to the lattice.
Simultaneously, Ni2+ in the Ni-rich rock-salt structure can be
reoxidized to Ni3+ and restored to the layered structure (Fig. 7a).
SEM images in Fig. 7b help conclude that our heat-treatment
process has a negligent effect on particle morphology and size.
From XRD analysis, the treated single crystals exhibit the layered
R-3m phase which is the same as the untreated one (Fig. 7c). The
intensity (003) to (104) peak ratio, which is an indicator of the
degree of cation mixing in layered structures with an R-3m space
group, increases from 1.56 to 1.79, which indicates a decrease in
cation mixing after treatment29. (Supplementary Table 2). It
could be reasoned that this vanished Ni-rich rock-salt phase may
be related to the lithium source supplements during re-
calcination. From synchrotron X-ray absorption analysis, no
drastic variation of Ni K-edge XANES in t-NCM single-crystal
samples (Supplementary Fig. 7a) is observed, which suggests the
average valance state of Ni does not change after heat treatment.
Noticeably, the amplitude of the Ni-O and Ni-TM peaks in Ni K-
edge EXAFS spectra decreases significantly after treatment
(Supplementary Fig. 7b) This further verifies decreased LiNi6
cation ordering in transition metal layers of modified NCM and is
in good agreement with prior XRD analysis44.

Slight structural changes in the single crystals before and after
treatment may be easily overlooked by some conventional
characterization technologies. In addition, we assume this subtle
change may probably occur near-surface region of single crystals
as the treatment occurs in oxygen under high temperatures.
HAADF-STEM study was carried out and it was found that
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t-NCM exhibits a layered phase on the surface, which indicated
that our surface treatment can replenish the disordered surface
structure (Fig. 7d). In the Ni L-edge spectra of the NCM and t-
NCM samples, the positive shift of the adsorption edge t-NCM
indicates the removal of Ni-rich rock-salt structure layer after
treatment (Fig. 7e)31, which is consistent with the results obtained
in Fig. 7d. We evaluated the electrochemical properties of single-
crystal t-NCM. Both initial charge/discharge capacity and
electrochemical reversibility were remarkably enhanced after
surface chemistry treatment (details in Supplementary Fig. 8). In
particular, cycle stability is increased significantly from 25.6% to
58.8% (Fig. 8a and Supplementary Fig. 9) and t-NCM also shows
excellent rate performance (Fig. 8b). These improved electro-
chemical performances can be attributed to the disappearance of
the Ni-rich rock-salt phase layer on the single-crystal surface.
Even after 200 cycles, the layered structure of the modified single-
crystal t-NCM is still well maintained, as shown in Fig. 8c.

X-ray technologies were further employed to understand
t-NCM structural changes. Robust crystal structures with no
obvious pattern change were confirmed from the XRD results of
cycled 9t-NCM single crystals (Supplementary Fig. 10). Ni K-
edge XANES spectra of cycled t-NCM samples display negligent
edge shifts, and information on the nickel local environment

(Ni-O and Ni-TM in EXAFS) also suggest high structural
stability (Supplementary Fig. 11). Soft XAS was also conducted
to visualize this structural change on modified single-crystal
particle surfaces and to probe surface character at the single-
crystal surface. The surface chemical states of these crystals can
be determined by examining the fine structures of L3, 2

absorption edges. As revealed in Fig. 8d, the low-energy
shoulder of L3-edge and the L3/L2 intensity ratio show negligible
change in t-NCM before and after 200 cycles, which is indicative
of high surface-chemical stability. In addition, t-NCM crystals
retain homogeneous phase distribution across single crystals, as
illustrated in X-ray spectroscopy imaging via TXM (Supple-
mentary Fig. 12). These cumulative results highlight the crucial
influence of surface chemistry on cycle capability in single-
crystal battery materials. We, therefore, suggest that homo-
geneous phase distribution in single crystals during delithiation
contributes to a negligible lithium-ion concentration gradients,
which delivers small variations in stress distribution over all
particles (Fig. 8e, f) and ensures excellent cycle performance. In
this work, t-NCM tailored with a feasible method retains
superior surface chemistry stability, contributing to homoge-
neous phase transformations observed in particles during long-
term electrochemical cycling. As a result, the structural integrity
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of t-NCM was well preserved and excellent electrochemical
performance could be achieved.

Discussion
Understanding the fundamental role of surface chemistry in
single-crystal structure stability can offer new insights into Ni-
rich, single-crystal, cathode materials used for lithium-ion bat-
teries. In this work, the structural evolution and degradation
mechanisms of Ni-rich single-crystal NCM622 were studied.
Within operando X-ray imaging, spectroscopic technologies, and
diffraction methods, we found that local structures around Ni
cations were more severely disordered during long-term cycling,
and unambiguously demonstrate close correlations between sur-
face chemical character, phase transformation, and structural
stability in single-crystal battery particles. Pristine surface
chemistry, accompanying phase heterogeneity, and induced
stresses deteriorate structural integrity along with cycle

performance. Surface chemistry regulation can induce homo-
geneous phase distribution across single crystals, contributing to
the improved surface chemical stability and performance reten-
tion. Our studies have shed new light on microstructural and
chemical evolution in single-crystal particles, and offer insights
into particle-level degradation mechanisms, which guides the
development of advanced single-crystal battery materials with
improved electrochemical and safety characteristics.

Methods
Materials synthesis. Large single-crystal NCM were synthesized using co-
precipitation methods22,45. Ni0.6Mn0.2Co0.2(OH)2 precursors: A co-precipitation
method was used here to fabricate Ni0.6Mn0.2Co0.2(OH)2 precursors. First, nickel sulfate
(99.8%, Alfa Aesar, 0.6 mol L−1), cobalt sulfate (99.8%, Alfa Aesar, 0.2mol L−1), and
manganese sulfate (99.8%, Alfa Aesar, 0.2mol L−1) were mixed to obtain a uniform
metal ion solution. Ammonia water, a complexing agent, was then used to perform a
complexation reaction with the metal ions. The obtained solution was subsequently
placed in a reaction kettle with NaOH solution, heated, and stirred to induce the co-
precipitation reaction. Finally, the mixed solution was centrifuged and dried to obtain a
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nickel–cobalt–manganese precursor. Dried precursors obtained from the process steps
were pre-calcined at 480 °C for 10 h.

NCM and t-NCM. single-crystal NCM materials were produced using high-
temperature sintering. Mixing the NCM precursor with LiOH·H2O (Aladdin,
99.8%, Li: M ratio= 1.05:1), and the above mixture was then calcined at 950 °C for
10 h in pure oxygen to obtain single crystal NCM41,42,46. t-NCM material was
prepared by a simple surface regulation method. First, the above obtained single-
crystal NCM materials were mixed with extra LiOH using ball milling, and then the
mixtures were calcined at 800 °C for 2 h under pure oxygen flow to obtain t-NCM.

Electrode preparation and electrochemical measurement. Electrochemical tests
were performed in the CR2025 coin-type cells. A slurry was prepared at room
temperature by mixing of active material, conductivity agent (Super P), and binder
(polyvinylidene fluoride) according to a weight ratio of 80:10:10, dissolved in N-
methyl-1,2-pyrrolidone solution for 12 h. The slurry then was coated in a current
collector (Al foil) and dried in a vacuum oven for 12 h at 80 °C. Active material
mass loading in the electrodes was 2–3 mg cm−2. The coin-type cells were
assembled including Li foil, composite cathode, and separator (Celgard 2025) using

electrolyte (1 mol L−1 LiPF6, EC:EMC= 1:2 vol%) with 2 wt% vinylene carbonate
as an additive in a glovebox filled with Ar.

Cycle performance and rate capacity were tested on a battery testing system
(BTS-2004, Netware) ranging from 0.1 to 5 C between 2.8 and 4.7 V at room
temperature (25 °C). Cyclic voltammetry was conducted on the CHI660E
electrochemical workstation at 0.1 mV s−1 and 2.8−4.7 V potential. AC impedance
(EIS) was performed in the PARSTAT 2273 instrument at a 5 mV amplitude and a
frequency ranged from 0.1MHz to 0.01 Hz.

X-ray absorption spectroscopy. Hard XAS measurements were performed on
beamline 4-1 at the SLAC National Accelerator Laboratory (SLAC). Calibration
was carried out using the first inflection point of the K-edge spectrum of the
element foil (e.g., Ni, 8333 eV) as a reference. XANES and EXAFS spectra were
resolved by the Athena software package. Soft XAS experiments were performed in
TEY modes at beamline BL10B of the NSRL. Beam size was 1 mm in diameter.

Simultaneous X-ray fluorescence and ptychography. The combination of X-ray
fluorescence and ptychography gives two complementary contrast modes of the
sample: the fluorescence provides the distribution of many elements while XANES
provides the chemical state of a single element of interest; whereas the
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ptychographic image reconstructed from diffraction patterns shows quantitative
density map (or structure image) with a spatial resolution which can be much
higher than the TXM. Ptychography-XANES has been demonstrated to obtain the
chemical composition mapping on Li-ion battery particles with a state-of-the-art
spatial resolution reaching sub-10 nm.

Measurements were performed on cycled NCM single crystal particles at 2-ID-
D fluorescence microscope at the Advanced Photon Source (APS) in Argonne
National Laboratory. An 8.8 keV monochromatic X-ray beam was focused by a
Fresnel zone plate with an outermost zone width of 70 nm on to NCM particles.
The focused X-ray probe with a diameter of about 150 nm was raster-fly-scanned
across the sample, for every 60 nm sample motion a Vortex silicon drift detector
(mounted at 90° to the X-ray beam direction)and a Dectris Eiger X 500 k hybrid
pixel array detector (1.32 m downstream of the sample) were simultaneously
triggered for 50 ms to record fluorescence spectra and coherent diffraction patterns,
respectively47. At the end of the scan, those diffraction patterns were input into a
GPU-based code to reconstruct high-resolution structure images of particles with a
pixel size of 9.7 nm in real space48. The elemental fluorescence maps had a pixel
size equal to the scan step size of 60 nm, however, their resolution was limited by
the X-ray probe size which was about 150 nm.

2D TXM. In operando 2D TXM-XANES experiments were performed on FXI
beamline at NSLS-II. These electrodes were composed of active materials, carbon
black and binder (4:4:2 in weight). In the construction of cell models, carbon
papers and binders are necessary, but X-rays can transmit through these sub-
stances, so the authenticity of data will not be affected. To capture the correlation
of phase change to the state of charge, the phase distribution of the battery in the
1st and 201st cycles were collected. The TXM at FXI beamline can obtain indivi-
dual 2D projection images at 30 nm spatial resolution. A CCD camera with a field
of view of 40 × 40 μm2 was employed, which means multiple particles can be
observed simultaneously. The exposure times can be <50 ms per image, so one can
catch the fast electrochemical reaction process. The 2D TXM-XANES images were
collected at different states of charge by scanning Ni element K-edge ranging from
8313 to 8413 eV, with 1 eV step size, which generated 2k × 2k XANES spectra. In
this work, each image was collected with 0.02 s exposure time49.

HAADF-STEM. Electron tomography and HAADF-STEM imagings were collected
by a JEOL JEM-2100F operated at 200 kV. HAADF-STEM images and elemental
mapping analysis were conducted on a Hitachi HD2700C. And these images were
captured in sufficiently thin domains of the particles, owing to the resolution is
limited by the thickness of the material.

Computational method. Interfacial models were constructed for randomly dis-
tributed, non-reactive regions, that contained homogeneous phase transformations
within particles. Moreover, in the simulation of stress distribution the anisotropic
deformation of NCM was considered, and the detailed tensor Dij represents the
diffusion coefficient. We set D11=D22= 1 × 10−13m2 s−1, D33= 1 × 10−18m2 s−1,
and Dij= 0 for the other entries. The detailed calculation process is as follows.
Chemical strain invoked by lithium extraction was assumed to be proportional to
the normalized lithium concentration (c) at the fully lithiated state, as εcij ¼ βijc.

The diagonal tensor, βij, represents the lithiation expansion coefficients. As for
NCM622, we set β11= β22= 2.8%, β33=−4.0%, and βij= 0 for the other entries50.
Since it is an orthotropic crystal, the stiffness tensor of the layered structure
depends on nine independent material constants. We set the material constants of
NCM (c= 0) and LiNCM (c= 1) in the model, and assumed that the stiffness
tensor of the intermediate stages scale linearly with lithium concentration44.

Diffusion induced stress calculations were performed using the finite element
method with a commercial COMSOL Multiphysics package41. Diffusion induced
stress caused by the insertion and extraction of Li+ was formulated following the
thermal analogy. Constitutive equations describing the stress and strain are given
by

εij ¼ εeij þ εcij ¼
1

E
1þ vð Þσ ij � vσkkδij

h i

þ βijc;

σ
r
¼ λeþ 2μεr �

1

3
3λþ 2μð ÞΩ C � C0ð Þ;

σθ ¼ λeþ 2μεθ �
1

3
3λþ 2μð ÞΩ C�C0ð Þ;

where ɛij and σij are the stretch tensor and stress tensor, respectively. v is Poisson’s
ratio; E is Young’s modulus. For the diffusion problem, the transport of Lithium
ions can be described by modified Fick’s law, including the effect of stresses on
diffusion:

∂c

∂t
þ ∇ � �Dij∇cþ

Dijc

RTcref
∇

X

βijσ ij

 !

¼ 0;

μs ¼ μ0 þ RTlnC �Ωσm;

where Dij is the diffusion coefficient tensor, and R is the universal gas constant. T is
the temperature.
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