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Abstract

In this paper we present a new scheme for the representation of ob-
ject surfaces. The purpose is to model a surface efficiently in a coarse
to fine hierarchy. Our scheme is based on the combination of spher-
ical harmonic functions and wavelet networks on the sphere. The
coefficients can be estimated from scattered data sampled form a
star-shaped object’s surface. Spherical harmonic functions are used
to model the coarse structure of the surface, while spherical Gabor
wavelets are used for the representation of fine scale detail. The-
oretical background on wavelets on the sphere is provided as well
as a discussion of implementation issues concerning convolutions on
the sphere. Results are presented which show the efficiency of the
proposed representation.
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1 Introduction

Surface and 3D object representations have attracted intense re-
search efforts since the beginnings of computer vision and graphics as
well as in computational approaches in related disciplines like pho-
togrammetry, geography, seismology, and many other areas. Three-
dimensional representations are applied in rendering, design, con-
struction, shape recovery, tracking, segmentation, recognition, and
transmission of scene objects. Such representations can be paramet-
ric like generalized cylinders and superquadrics [13], globally or lo-
cally deformable models [17], implicit surfaces [24], or volumetric. In
the graphics community, polyhedral meshes are popular because of
the advance in graphics hardware. In shape models and CAGD func-
tion bases like splines or wavelets are used. Any attempt to review
the work over three decades would yield an incomplete and unfair
document. So, we refer to an older [3] and a most recent textbook
[23].

The goal of our approach is to establish representations efficient
for transmission of dynamic 3D objects. In this paper we concentrate
on static representations but we propose representations appropriate
for moving objects. The requirements for the representation we seek
are: (1) The data are irregularly sampled 3D measurements possibly
corrupted by noise and outliers. As opposed to computer generated
models they are obtained from sensors: laser scanners or stereo vi-
sion systems. (2) Local changes and deformations should not have a
global effect, in either case of motion or just data corruption. (3) The
approximation should be appropriate for transmission: the result-
ing code should be short and it should include multiple resolutions in
a coarse to fine hierarchy to facilitate progressive transmission. (4)
The approximation should be invariant with respect to motions, in
this case we address only rotations, so that tracking reduces to find-
ing the change in the approximation parameters and not in re-fitting
the model.

Due to the multi-resolution and the locality requirement, wavelet
families are the first coming in question. They have been proven
successful in image (JPEG2000) as well as in geometry compression
[21]. However, shifting or rotating the data change the representation
entirely.



In this paper, we propose networks of Gabor functions on the
sphere. Wavelet networks can satisfy the invariance property, they
are still a multi-resolution representation, and such approximations
are not affected by local changes. Wavelet networks [26,4] and ra-
dial basis functions [19] have been introduced for the approxima-
tion of continuous functions [26]. Recently Gabor wavelet networks
have been used for representing objects in images [14]. Like trun-
cated discrete wavelet decompositions wavelet networks approximate
functions by a linear superposition of wavelets. However, wavelet net-
works allow the wavelet parameters (position, scale, orientation) to
be optimized instead of taking values sampled from a regular grid in
space and frequency.

We will treat object surfaces as functions defined on the sphere.
To make this approach feasible we have to restrict ourselves to star-
shaped objects. Star-shaped objects contain a point in there interior
such that each ray originating from this point intersects the object
surface exactly once. While this allows us to treat the surface as
a function defined on the sphere, we are well aware that it also
imposes a severe restriction on the class of objects representable
by the proposed scheme. However, this is a question of segmentation
which we do not address yet.

The use of spherical harmonics for the representation of objects
was first proposed by Schudy and Ballard [22, 3]. They model the dy-
namic heart volume by spherical harmonics with periodically time-
varying coefficients. Spherical harmonics have later been used to
compress coarse scale head models [10]. Higher dimensional surface
harmonics have been used for static and dynamic object representa-
tions [16].

Multiresolution representations of surfaces have first been pro-
posed in [9]. Based on this work a discrete spherical wavelet trans-
form was introduced [21]. This construction works on a semi-regular
triangulation of the sphere. The sphere is parameterized by an in-
dexing scheme of the grid vertices.

Since we are interested in invariances of the representation against
rotations we turn our attention to methods using continuous param-
eterizations of the sphere. There are two different approaches to Ga-
bor filters on the sphere. The first one is based on the definition of
Gabor functions as windowed harmonic functions [11]. Since on S?



this approach leads to windowed spherical harmonics, the character-
istics of Gabor filters as directional filters is not carried over from the
plane to the sphere. This can be achieved by using a stereographic
mapping of planar directional filters to the sphere [8]. The founda-
tion of this approach lies in a group theoretical approach to wavelet
transforms on the sphere [2].

Our algorithm proceeds in two steps as follows: As described
above the data is assumed to be given as a scalar function defined on
the unit sphere. In the first step, to represent its coarse structure, this
function is expanded into a series of spherical harmonic functions.
We refrain from representing fine detail using spherical harmonics
since these functions are globally supported. Fine detail will rather
be represented by local functions on the sphere. This is accomplished
in the second step using spherical Gabor filters. These filters are
optimized on the residual function remaining after the first step. A
non-linear minimization yields the optimal offsets, orientations, and
scales for the Gabor wavelet network. Starting values for the iterative
minimization are established through convolution with Gabor filters
with a fixed set of scales.

Though the original contribution of the paper is in the use of
Gabor wavelet networks as an efficient surface representation, we
believe that presenting the properties of convolution on the sphere
is of independent interest to the graphics and vision community.

2 Mathematical Preliminaries

In this section we summarize some facts about spherical harmonics
functions which we will use in the rest of this article. As an overall
reference on this subject we refer to [6, 5]. In the following we param-
eterize the unit sphere S? embedded in R? using standard spherical
coordinates. Thus, an element of € S? will be written as

n := (cos(p) sin(¥), sin(y)sin(d), cos(?)), (1)

with ¢ € [0,27) and 9 € [0, 7].

The spherical harmonic functions Y}, : S2 — C are defined as the
everywhere regular eigenfunctions of the spherical Laplace operator.
These functions constitute a complete orthonormal system of the



space of square integrable functions on the sphere L?(S?).

Vi) = \/ P eos@)em, @

With | € N and |m| < [. Here P/" denote the associated Legendre
functions

—1)™(1 _3,/.2 m/2 dl+m
Py = ST oy )

Any function on the sphere can be expanded into spherical harmon-

lEN |m|<I

The coefficients f;,, can be extracted from a given function f as
follows
fim = f(n) Yim(n) dn. (5)
neS?

For the surface element on the sphere we use the shorthand notation
dn :=sin(9) ddde. If fi,, =0 foralll > L, f is called band-limited
with band-width L. The set of coefficients f;,, is called the spherical
Fourier transform of f.

If we deal with a real function f we can expand it as well using
real coefficients only:

-3

leN

: (6)

l
o Vg + Y (aum Yilt + bum Vi)
m=1

with

Y = V23(Yim), Yiif = R(Yo), and V[t = V2R(Yip), for m > 0,
(7)

and
. R . 1
A 2= /77 ESZf(n) Y () dn, by, = /77 ES2f(77) Yim(m)dn. — (8)

Rotations in R? will be parameterized by Euler angles such that any
g € SO(3) will be written as

9(7,8,a) = R.(7)Ry(B)R:(a), (9)



where R, and R, denote rotation about the y-, and z-axis, respec-
tively. In matrix notation R, and R, take the form

[ cos(B) Osin(ﬁ)-l [cos(a) sin(a )O-I
R,(B) = 0 1 0 , R,(a) = }sin(a) cos(a) 01 .
[—sin(,B) Ocos(ﬂ)J [ 0 1J
(10)
Rotating a function f € L?(S?) will be performed by the operator
A(g) which is defined by

A(9)f(n) = f(g™"n). (11)
An important property of spherical harmonics is that the subspaces
L*(S*) DY :={Vim|Im| <1}, 1€N (12)

are invariant under the action of SO(3). Thus, a rotated spherical
harmonic function can be expressed by

=Y Utn9)Yin(n), (13)

m|<t
where the matrix (2/ + 1) x (21 + 1) matrix U}, (g) is given by
Unn (907, 8, @)) = ™™ Py (cos(8))e ™. (14)

The explicit form of the generalized associated Legendre polynomials
P! . can be found in [5]. Finally, we note that

n(g291) Z ik (92) U (91)- (15)

k<l

3 Spherical Wavelet Networks

3.1 Wavelet Networks

Wavelet networks have emerged as a tool for function approximation
from the combination of wavelet decompositions with ideas from
the theory of neural networks. Networks of radial basis functions



for function approximation have been investigated in [19]. Wavelet
theory investigates families of functions

—m/2

D ={gmn(r) =ay '“glag™x — nby)|m,n € Z} (16)

which are derived from a single function g € L*(R), satisfying [ g(z) dz =
0, by dilations and translation of fixed step size. An important result

is that there exist values ay > 1 and by > 0 for a given function ¢
such that the family @ constitutes a frame for L?(R). That is num-
bers A > 0 and B < oo exist such that

AFIP <37 Kgmns NI < BIFIP (17)

m,nEL

for all f € L*(R). The frame property guarantees that f can be re-
constructed in a stable way from the coefficients ¢y, := (gmn, f)- In
practice a finite number of wavelets can be used for the approxima-
tion of f in a truncated wavelet decomposition

fl@) =) wpdr(z), ¢ €. (18)

The idea behind wavelet networks developed by Zhang and Ben-
veniste! [26] is that a superposition of N wavelets should give a bet-
ter approximation if the translation and dilation parameters were
not restricted to a discrete lattice. They propose to approximate a
function as

N

Fo) ~ folw) = 3 wko (

Ji—bk

) , ar €RT b eR. (19)

g
where 0 is the vector containing all free parameters
0= (01,92,...,01\]), with 91 = (wi,ai,bi). (20)

The parameter vector @ has to be adjusted in order to minimize the
objective function 3
E(0) == ||f — fell* (21)

! Zhang and Benveniste introduced wavelet networks for approximating n-dimensional
functions. In order to keep notation simple we sketch the main idea only for n = 1.



In wavelet networks for the approximation of n-dimensional func-
tions other parameters, especially rotations, can be taken into ac-
count in order to increase flexibility [26, 14]. Recently, wavelet net-
works using odd 2D Gabor filters have been used for the represen-
tation of face images and head pose estimation [14].

Discrete families of Gabor functions are known to constitute
frames [7]. The frame bounds are also known in the case that an
additional discrete rotation parameter is introduced [15].

3.2 Wavelets on the Sphere

In order to apply wavelet-networks to functions on the sphere, we
first have to define the set of wavelet-functions on the sphere. This
involves the definition of a mother-wavelet ¥ € L?(S?) and a set of
transforms on the sphere which generate a function space by act-
ing on V. These transforms should correspond to translations, rota-
tions and dilations in R? which are used in order to define planar
CWT’s [1] and wavelet-networks [26]. The set of motions on the
sphere (corresponding to translations and rotations in R?) is easily
identified with the group of rotations in 3D space SO(3). A more
serious problem arises with the definition of dilations on the sphere.
The naive approach of defining a dilation about the north-pole by
D, : 5% = 5% (p,9) — (p,ad) is doomed to fail since it is ei-
ther not surjective (¢ < 1) or not injective (¢ > 1). For a < 1
this could be remedied by assigning some value, say 0, to the sec-
tor {(¢, )9 > ar}. However, a > 1 leads to ”overlapping” around
the south-pole, so this dilation is not well-defined. Recently, the fol-
lowing definition of dilation on the sphere has been proposed [2]:
Dilating a function on the sphere about the north-pole is performed
by subsequently (1) projecting the function stereographically from
the south-pole to the plane tangent to S? at the north-pole, (2) di-
late the mapped function within the tangent plane, and (3) map the
dilated function back to the sphere by inverse stereographic projec-
tion. Along the same line the construction of a mother wavelet on
the sphere can be performed [8]. A mother wavelet is defined in R?
and mapped by inverse stereographic projection to the sphere. We
will follow this approach here.



The stereographic projection IT : S*\{(0,0,—1)} — R? (¢, ) —
(@ (¢, 9), y(p, ¥)) is given by

2sin (1) cos(y) 2sin (1) sin(y)
9) = V)= —————= 22
(e, 0) = —— cos(d) ylp,9) = —— cos(0) (22)
Lets consider a three-parameter family of odd Gabor function in R2:
1
G(z,y; 04, 0y, w) 1= Gr— exp (— [332/03 + y2/0§D sin(wz). (23)

Here 0, and o, denote the standard deviation of the Gaussian enve-
lope function and w is the spatial frequency.
We define the spherical Gabor function Gg as

GS(T’; Oz, Oy, a,w, 770) = A(Q(QD(), 1907 OJ))G(Z'(QO, 19)’ y((p’ 19)7 Oy Oy, LU)

(24)
Here z(p, 1) are y(¢,9) are defined as in (22). Note, that z and y
are not defined for ¥ = 7. Since /22 + y? goes to infinity for ¥ — 7

and our Gabor filters go to zero for /x? + y? goes to infinity, we set

GS(T/; Oz, 0y, &, W, 770) = 07 for n="mo (25)

The rotation g(@o, Yy, @) has the following effect. First the function
is rotated about the north-pole by a. This has the same effect as a
rotation about the origin in R? prior to inverse stereographic pro-
jection would have. The remaining rotations by ¥, and ¢, take the
north-pole to

no = (cos(pg) sin(dy), sin(ypp) sin(dy), cos(ty)), (26)

An example of a spherical Gabor filter is shown in Fig. 1. The set of
Gabor functions Gg constitutes a wavelet family only if all functions
in the set can be derived from a single mother wavelet by dilations
and motions on the sphere. In order to achieve this, the parameters
Oz, 0y, and w must be coupled

g
CLi= 2, €y = OpWw (27)

Oy
where ¢; and ¢y are constants. ¢; is the aspect ratio of the Gabor
function and c; determines the number of oscillations of the sin func-
tion that fall into the Gaussian window. Freezing ¢; and ¢, reduces

the number of free parameters of a spherical Gabor filter to 4.



pil2 pi 3pil2 2pi
phi

Fig. 1. Left: A planar Gabor filter G with o, = 0.3, oy = 0.5, and w = 10. Middle
and Right: The filter Gs as obtained by inverse stereographic projection of G. No
rotation is applied (g = Id).

3.3 Spherical Wavelet Networks

In this section we will use the idea of wavelet networks as introduced
in Sect. 3.1 and combine it with Gabor wavelets on the sphere as
defined in (23) and (24). The aim is to approximate a given function
fer*(s?) by f

N
fo(n) = ZwiGS(n;o'ziain:a’iawz‘aUOi)a (28)

=1

where 0 is the vector containing the parameters of the wavelet net-
work

0= (01,0>,...,0n), with 0; = (wi, 004,044, s, wi,Mos)-  (29)
The objective function which is going to be minimized is again

E(6) = ||f — foll* (30)

Optimization Procedure. The functions fg constitute a model for
functions in L?(S?). This model is non-linear in the model-parameters

0. In order to minimize the objective function (30) we use the Levenberg-

Marquart algorithm which is a standard method for non-linear model
fitting [20]. Instead of optimizing the whole vector 8 at once, we opti-
mize the Gabor wavelets separately. Let fig,,. 9, ;) be the optimized
approximation of f using the first n — 1 wavelets. The nth wavelet
is then optimized in order to minimize

||f - f(@l,...,en_1) - wnGS(na Ogn,Oyn, Op, Wnp, 770n)||2 (31)



As mentioned in Sect. 3.2 ¢; and ¢y representing the aspect ratio
and the number of osciallations of the functions should be kept con-
stant for the filters to be called wavelets. In order to allow for more
flexibility, we will allow these values to vary in a given range. In our
experiments we use the ranges

1§01S3, 1S02S4 (32)

As a further constraint we allow o, to vary only within an interval
[0%/2,20%], where o' is the initial value.

Initialization. In [14] a pyramid like initialization is proposed:
Wavelet positions are initialized on regular grids on different scales.
Starting from a coarse grid for large scale wavelets, finer grids are
chosen for small scale wavelets. This method cannot be extended
directly to spherical wavelets, since there is no regular grid on the
sphere. We compare two different initializations here. In both schemes
the initial scale, aspect ratio and frequency will be set to fixed, pre-
defined values. (1) The initial wavelet positions are drawn randomly
from a uniform distribution on the sphere. The initial values for the
orientation o will be drawn from a uniform distribution on the in-
terval [0, 7). (2) Another possible way to initialize the positions is
data-dependent. Given a function d; : S? — [0, 1]. We draw random
initial positions n° € S? from a probability distribution proportional
to d f-

We select n initial positions as follows. Draw a random 7 from the
uniform distribution on the sphere. Draw another number ¢ from the
uniform distribution on the interval [0, 1]. If £ > d;(n) add 7 to the
set of initial wavelet position and update dy. Repeat until n initial
positions have been selected.

We will now present the function d; used in our experiments
and explain the "update d;” step in the above algorithm. We will
make use of the relation between the wavelet transform and wavelet
networks which was mentioned in Sect. 3.1. Convolving the function
f € S? with a Gabor filter G5 will lead to high filter responses at
positions which are likely to be close to optimal wavelet positions.
The convolution will be defined as

(f*h)(g)=/ (A(g)f(m)h(n)dn, g€ SO@B).  (33)

nes?



For a given Gg = Gs(n; 04,0y, 0,w,0) we have

(Gs*h)(g(@,9,0)) = (Gs(; 02, 04, 0, w0, m(@, D)), ). (34)
We define dy as

2

ot = | [ Gsemlato)ida] . (35)

The initial orientation «; at position n(p, ) is determined as

a; = arg max |(Gg * h)(g(p,?, a))|. (36)

a€0,m)

In the "update d;” step we subtract from d; a Gaussian function
with standard deviation o, centered at 7. This reduces the chance
of selecting another initial position too close to 7.

3.4 Combining Spherical Harmonics and Gabor Wavelets

Our motivation for the use of Gabor filters as opposed to spherical
harmonics was that the energy of Gabor filters is locally concentrated
while the energy of each spherical harmonic function is distributed
all over the sphere. Fine local detail is therefore more appropriately
represented by Gabor filters. The spherical harmonics with low [,
however, represent low-frequency components and thus model the
coarse structure of the object well. We therefore propose to combine
the two approaches in the following way. Let f be the function to be
approximated. The coarse structure of f is given by

L

fc = Z Z flmyim- (37)

1=0 |m|<i

for some small value of L. In our experiments we used L = 5. The
wavelet network is then optimized on the residual f..; := f — f..
Since rotated spherical harmonics are related to an unrotated basis
by the matrices U’ as shown in (13) we can use this representation for
pose estimation as well. It follows from (5), (13), and the unitarity of
the matrices U, that the spherical Fourier coefficients of an object



in two different orientations (related by the rotation g € SO(3)) are
related by

(A9 Him =Y Ubpn(9) fin (38)

In|<

Given (A(g)f)im and f, for a given value [ this allows us to recover
g. This means that a rotation of the object can be recovered from
the object’s spherical Fourier transform.

4 Implementation

4.1 Converting 3D Data to Functions on the Sphere

The data is usually given as a set of points {x;} sampled from the
object surface. We attempt to find the desired interior point (the
origin) by matching a sphere to the data-points. We minimize the
mean square algebraic distance of the data points to the sphere [27]:

n
Z[al (@ + 7 + 2]) + agx; + agy; + asz;i + as]’. (39)
i=1
It is well known that the solution is the singular vector corresponding
to the smallest singular value of the resulting data matrix. Once a
sphere is fitted we move the coordinate origin to the center of the
sphere and consider the distances of the data points from the origin
as scalars given on the sphere. We attempt to approximate these
scattered data points by a scalar function on the sphere.

4.2 Discrete Spherical Harmonic Transform

To speed up computations we will interpolated the data on a regular
grid in the following. It is possible to uniformly sample the sphere by
inscribing a regular polyhedron into the sphere and identify its ver-
tices with the sample locations. Unfortunately, the regular polyhe-
dron with the highest number of vertices is the dodecahedron which
has 20 vertices [12]. Thus, instead of sampling the sphere uniformly
we decide to sample the (19, ¢)-plane regularly.

ok
{(0j,sok): (%%) j,keZ,0§j<M,0§k<N}

(40)




If scattered data is given we will interpolate it to obtain values on
these grid points.

There exist fast algorithms for computing the spherical harmonic
transform (see [18] and references given therein). Even without using
sophisticated algorithms, a speedup can be achieved by observing the
separability of the discrete spherical Fourier transform.

ZZf i k) €k P (cos(9;)) sin(9;) (41)

7=0 k=0

This allows for the use of an FFT algorithm in the ¢, coordinate.
We used this latter method in our experiments.

4.3 Convolution on the Sphere

During the initialization procedure of a spherical wavelet network
we have to perform the convolution of two functions given on the
sphere. We will present a fast method to perform this convolution.

For functions defined on R", the convolution theorem states that
convolution in the spatial domain corresponds to multiplication in
frequency domain. Thanks to FFT algorithms this can consider-
ably speed up practical implementations for convolutions of discrete
signals. There exists an analogous theorem for convolutions on the
sphere.

Theorem 1 (Spherical Convolution). Let f,h € L?(S?) and g €
SO(3) then

lEN |m|<I \n|§l

where, f1, and hy, are the spherical Fourier transforms of f and h.

Proof. Using definition in (33) and the fact that the Y}, constitute
an orthonormal basis of L?(S?) we obtain

[ @saian= [ S ST (40 ndinn) 3 S FaaTin(n)d

1€5% 1eN |m |<k keN |n|<k

leN \m\gl



The coefficients (A(g) f)in are related to the f;,, by (38): Inserting
this results into (43) completes the proof. O

Theorem 1 allows to calculate the convolution of two functions on the
sphere from their spherical Fourier transform. However evaluating
(42) directly is very time-consuming since for each value of g € SO(3)
the matrices U!  (g) must be calculated up to some maximum value
of [.

We show an elegant solution to this problem which is a special
case of a method recently introduced by Wandelt et al. [25]. First
let us notice that all g € SO(3) can be expressed in the form

9(75 57 Oé) = g(fy + 7T/2: 7T/2’ O)Q(,B + 7T,7T/2, o+ 7T/2) =: g29:1- (44)
Using this factorization in (42) yields

f* h Z Z Z 9291 flnhlm

leN |m|<l|n|<

= Y)Y Ul (92)Uhn(90) hum. (45)

1EN [m| <l |n|<l [k <I

The factorization introduced in (45) has the effect that all three
Euler angles occur in the complex exponential functions rather than
in the polynomials P (see Eq. (14)). Combining these results yields

f * h Z flke (v+7/2) Pl (0) fm(ﬁ—}—w)Pﬂl’m(o)efim(a—kvr/?)]Tle
Imnk

= 3 (1) (i) fu Pl (0) Pl (0)¢ 7454 m by (46)
Imnk

The inverse Fourier transform of (46) is found as

1 .
(ms/ummwwww%wwv
™
[0,27]3
_ Z )™ ( k-l'mflKPIl(N(())P]lVM(O)iLlM = Z(f * 1) e nrad7)
leN en

Here, (f * h)%n is defined to be zero if any of |K|, |M], or |N| is
greater than [. In practice we will assume f and A to be band-limited
with band-width L such that we have a finite sum in (47). From (47)
we can derive (f * h)(g) using a 3D inverse FFT algorithm.



5 Results

We demonstrate results on range data of human heads acquired by
a laser scanner. We first show an example of data interpolated on
a (¢,9) grid (see Fig. 2). We also show the probability distribution
ds (35) and initial wavelet positions drawn from this distribution.
Next we show the results for a combination of spherical harmonics

pil2

pil2 pi 3pil2 2pi

Fig. 2. Top row. Left: A sample data set interpolated on a regular grid in the (¢, 9)-
plane. Right: The residual image after subtraction of spherical harmonic reconstruction
up to L = 5. Bottom row. Left: The function ds (35) for 0, = 0.1, c1 = 1.5, and
c2 = 2. Right: 64 initial positions drawn corresponding to initialization method (2)
described in Sect. 3.3.

and a wavelet network. The data used in the first set of experiments
consisted of a set of 225.896 vertices. The data was interpolated on
a 158 x 313 regular (p,1) grid. Figure 3 shows the reconstruction
from the interpolated data and three approaches to data reduction.
(1) Triangulation and decimation of the original data.? A decima-
tion to 6374 (corresponding to 19122 floating point numbers (three
coordinates per vertex)) vertices is shown. (2) The interpolated data
was expanded into a spherical harmonic series up to [ = 35, which
corresponds to 1296 real coefficients. (3) A combination of a spher-
ical harmonic expansion up to [ = 5 and wavelet network contain-
ing 168 wavelets (corresponding to 1176 floating point numbers).
The wavelets were initialized on the scales o, = 0.4 (24 wavelets),

% For decimation we used the commercial Cyberware software, which is part of the
Cyberware 3D scanner system. See http://www.cyberware. com.



o, = 0.2 (48 wavelets), and o, = 0.1 (96 wavelets) as described as
method (2) in Sect. 3.3. Figure 4 shows the same methods as Fig. 3

Fig. 3. From left to right: Original data, interpolated on the grid. Decimated data.
Spherical harmonic expansion. Spherical harmonics and wavelet network. Number of
parameters to store (from left to right): 49454, 19122, 1296, and 1176. (See text for
details.)

for another data set. The original data was again interpolated on a
158 x 313 grid. The decimated triangulation contains 3671 vertices
(11013 numbers). The spherical harmonic expansion contains ver-
tices up to | = 40 (1681 coefficients). The wavelet network contains
238 wavelets (1702 parameters). All coefficients and parameters are
treated as floating point numbers. No quantization scheme has been
applied yet. It can be seen that both the spherical harmonic expan-

Fig. 4. Like Fig. 3. Number of parameters to store (from left to right): 49454, 11013,
1681, and 1702. (See text for details.)

sion and the combination with wavelet networks need much less co-
efficients than a decimation of the triangulated data. While smooth
surfaces appear "wavy” in the purely spherical harmonic expansion,
wavelet networks concentrate detail at real object features.



6 Conclusion

In this paper, we proposed a new approximation method for range
data using bases of spherical Gabor functions. Unlike, other wavelet
bases defined on a fixed grid in space, scale, and orientation, our
method finds the optimal values given an a priori number of basis
wavelets. We introduced the theory how to define and dilate wavelets
on the sphere. The properties of convolution on the sphere were intro-
duced and a first approximation is obtained by projection through
convolution. This approximation serves as an initialization for the
non-linear minimization with respect to the wavelet parameters.

We tested our method on human head data obtained with a laser
scanner and obtained a very promising data reduction with a visu-
ally compelling effect. We compared the results with a commercial
polygonal mesh simplification program and found out that our ap-
proximation is less susceptible to noise but also details. Our future
work will be on updating the spherical Gabor network during mo-
tion. Rigid motions can be estimated by updating the center of the
sphere and using (38) to compute the rotation.
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