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Surface roughness of specimens is an important area of research since it influences the performance of machined parts.
Meanwhile, employing a vision system to judge the roughness of the machined surface of specimens via captured images
acquired from the specimen is an innovative and extensively used method. In this investigation, a vision system is used to
capture the SEM images of the machined surface. The two-dimensional images of the machined surface of the Nimonic263
alloy are used to approximate the profile of the surface of specimens in finish turning. Surface roughness was detected in
simulated images of specimens in a variety of machining conditions using the imaging technology. In this research work, the
surface texture is extracted using a technique that combines 2D surface images and wavelet transform approach. The 2D
wavelet transform has the capability to disintegrate a machined surface image into multiresolution depiction for several surface
characteristics and can be utilized for surface evaluation. The difference in the histogram frequency of an illuminated region of
interest (ROI) from turned surface images was analyzed to aid in the evaluation of surface roughness with an average
prediction error of less than 3.2%.

1. Introduction

In the production and development of industrial parts, both
the microstructure of the surface on a μm-scale and integrity
strongly influence the characteristics and functions of
components, such as wear, precision, anticorrosion, fitting,
friction, and antifatigue attributes. Direct methods and indi-
rect methods are the two types of techniques available for
surface roughness evaluation. Using a toolmaker’s micro-
scope, 3D surface profiler, optical microscope, or SEM (off-
line method) or a CCD camera, significant procedures
evaluate the surface profile of machined surfaces. These

observing systems are often based on a comparison of an
optimum cutting process reference signal with the actual
process signal [1, 2]. Electrical discharge machining was
recently used to machine Nimonic super alloy (EDM) [3].
The measurement scale (L) and root mean squared rough-
ness (Rq) are determined to comprehend the surface prop-
erty based on scaling analysis [4]. Researchers have
developed a method to determine the degree of tool wear
by evaluating the machined surfaces’ texture using an image
processing methodological approach to the image of the
machined surface to overcome these limitations. Tool wear
measurement, surface quality control, workpiece surface
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texture measurements, and other machining processes can
all benefit from digital image processing (DIP) with machine
vision. Image processing techniques were used to determine
the surface roughness of large-scale SEM images [5, 6].

Response surface methodology (RSM) was employed to
do mathematical modelling of surface roughness and flank
wear. ANOVA is assessing the impact of each individual
parameter on responses. Between the simulated and experi-
mental data, there was a maximum inaccuracy of 13% and
7% in flank wear and roughness of the surface, respectively
[7]. Machining of Nimonic alloy and Inconel alloy is
regarded as critical, and it is necessary to investigate the
impact of machining factors on machining responses in
order to identify the best machining/control factors and
their levels in order to improve the machined surface’s integ-
rity/machinability [8–10]. The majority of image processing-
based machined surface roughness evaluation approaches
depend on feature extraction processes [11].

A review of tool condition monitoring based on image
processing approaches was presented by Dutta et al. The
findings of Dutta et al. suggest that in a single experimental
setup, direct approaches will be employed to validate the
outcomes of indirect procedures. The tool wear was evalu-
ated based on the workpiece’s rough surface. The gray-
level cooccurrence matrix (GCLM) is an efficient technique
for selecting the best texture based on entropy metric [12].
Shahabi and Ratnam [13] proposed surface roughness eval-
uation by capturing the images of the machined surface in
cycle using computer vision in this investigation. Grayscale
imaging was used to detect simulated pictures of specimens
in a variety of machining conditions. The results demon-
strated that this method may be utilized to mimic and ana-
lyze a specimen’s surface profile in finish lathe machining
as a tool tip fingerprint.

Dutta et al. [14] designed an improvised GLCM algo-
rithm to monitor the tool condition with an offset parame-
ter. According to the findings, the GLCM analysis focussed
on the pixel pair spacing (PPS) value selection that is entirely
reliant on the variances of feed marks having been turned
[15]. Using response surface methodology, the impact of
drilling parameters like tool rotational speed, geometrical
parameters, flank wear, and feed rate on surface roughness
was investigated. GLCM-based texture analysis of workpiece
surface images was employed to obtain waviness informa-
tion through spatial correlation of pixels [16]. DWT-based
texture analysis has also been used to machine surface
images to gather information on modification in surface tex-
ture due to the increase in tool flank wear via Ga, GRMS,
and energy in space-frequency localization.

Liu et al. [17] investigated the explored flank face surface
texturing on the WC/Co carbide tools with various geomet-
rical features. The tools with microscale grooves parallel to
the primary cutting edge on the flank face had the best flank
wear resistance. The tool wear was assessed using the DWT
method on machined surface images [18]. The DWT was
used to perform a microscale study of a turned surface with
average coefficient of determination values of 0.957 and
0.953, respectively; an exponential association of GRMS
and energy values with progressing flank wear of the tool

is discovered. Illumination-compensated pictures were sug-
gested by John and Arunachalam to evaluate the surface
roughness of turned surfaces in the grinding process [19].

Gandla et al. investigated surface roughness using incre-
mental forming [20]. Taylor Hobson Talysurf is used to
measure the surface roughness of manufactured parts, which
varies from 0.61 to 3.61mm. Few images were acquired from
each formed part and saved in an image dataset for machine
vision-based surface roughness evaluation. The wavelet trans-
form method, Euclidean distance method, and Hamming dis-
tance approach were used to classify these images into three
classes predicated on the range of surface roughness. The
wavelet-based technique has a maximum classification perfor-
mance of 95.4 percent, according to the results. The classifying
effectiveness of the Hamming and Euclidian distance
approaches is 78.39 percent and 81.48 percent, respectively.
Ali and Dhar [21] proposed an ANN technique for forecasting
surface roughness in turning. This model may be used to opti-
mize the cutting process for efficient and economical
manufacturing by predicting tool wear and surface roughness
in the turning process. CNN algorithms have gained popular-
ity in the assessment of surface roughness in recent years
[22–25]. Because feature extraction is included into the net-
work during the convolution phase, this technique eliminates
it. Five loss functions are selected and evaluated for the predic-
tion models based on their potential application and accuracy.
The actual and expected surface roughness values are com-
pared using a stylus-based profilometer.

The vibration and communication particle swarm opti-
mization (VCPSO) algorithm, developed by Xu et al.,
included self-random vibration and interparticle communi-
cation processes [26]. When estimating tool wear, the
ANFIS learned by the VCPSO algorithm (ANFIS-VCPSO)
outperformed other intelligent models. The VCPSO algo-
rithm was tested using benchmark functions, and the results
showed that it is capable of global optimization. All the
while, the VCPSO algorithm was used to determine the best
milling parameter combinations under a variety of tool wear
conditions. The technique proposed in this article extracts
the surface texture by combining two-dimensional surface
photography and a wavelet approach. Then, the future sur-
face roughness is predicted by extracting the time delay
parameters, the embedding dimension, and the false nearest
neighbour of the produced surface texture. All offline and
online approaches can estimate surface roughness parame-
ters based on evidence from the surface image [27]. The sty-
lus tracing (ST) technique became the most widely known
way of evaluating the surface properties of components in
recent decades, due to the implementation of tactile profil-
ometers [24, 25]. The ST involves measuring the texture of
the surface and calculating the Ra roughness parameter but
in contact with the surface. The noncontact approach pro-
vided in this work, on the other hand, can predict surface
texture and roughness characteristics more precisely and
with less prediction error by using DWT histogram equali-
zation and Laplacian filtering. This technology represents a
significant advancement in the development of smart surface
roughness measuring devices that may be used in the smart
manufacturing sector in the near future.

2 Journal of Nanomaterials



2. Experimental Setup

In this experiment, a super alloy Nimonic C263 workpiece
was machined in dry cutting mode with CBN inserts. After
cutting the entire length of the workpiece, the machined sur-
faces were imaged as 640 × 480-pixel gray-level image data
using a CCD camera connected to a personal computer with
machine vision capacity at 5 different locations on the sur-
face of the workpiece. The photos were taken with a diffused
lighting setup online. With relation to the workpiece, the
camera and lighting source were put in place. For the most
part, the illumination source was managed to hold at a 30-
degree angle. The average flank wear of the insert (VB aver-
age) was also determined using a Leica S6D microscope at 10
magnification and Leica QWin-V3 image capturing
software.

Simultaneously, the surface roughness of the turned sur-
face (Ra) was measured at the appropriate locations, where
Ra stands for average surface roughness. Table 1 summarises
the cutting conditions of turning operations performed on
Nimonic 263. For each of the machining conditions, three
sets of experiments were carried out (as listed in Table 1).
Table 2 summarises the camera setup and surface roughness
tester specifications. Each image was cropped to 210 × 210
pixels before processing. The MATLAB® environment was
used for all image processing (version 7.8.0.347 R2021).

2.1. Materials. Nimonic C263 alloy with 150mm length and
70mm diameter with hardness of 32HRc was considered
the work material. It is a material with good resistance to
high temperature and oxidation owing to its Ni, Cr, and
cobalt content. The following are the chemical components
of the workpiece material (in % weight): 0.48 Al, 2.94 Ti,
0.15 W, 0.04 Nb, 0.02 C, 0.02 V, 0.007 Ta, 0.001 S, 0.19 Si,
52.49 Ni, 20 Cr, 0.46 Mn, 0.07 Cu, 6.29 Mo, 16.7 Co, 1.0
Fe, 0.48 Al, and 1.94 Ti.

2.2. Methods. The experimental study was carried out on a
NAGMATI175 lathe. Figures 1(a)–1(d) show the experi-
mental setup, insert, tool holder, and flank wear. The Sand-
vik makes Cubic Boron Nitride (CBN) inserts to the
specifications of CNGA 120 408S01030A, 7025 grade was
chosen as the insert for the tests, and a PCLNR 2020 K12
tool holder was being used to fix the insert. Back rake angle
(BRA) (6°), side rake angle (SRA) (6°), end relief angle (ERA)
(6°), side relief angle (SRA) (6°), end cutting edge angle
(ECEA) (5°), side cutting angle (SCEA) (5°), and nose radius
(NR) (0.8mm) are the tool signatures of the insert. The cut-
ting parameter’s effect on surface roughness in turning the
Nimonic C-263 alloy was investigated. All turning trials
were carried out by a new cutting edge. The experiment
was carried out using an L9 orthogonal array. The machin-
ing factors such as feed rate, cutting speed, and depth of
cut were considered, and their ranges are listed in Table 3.

A tool maker’s microscope was used to measure the sur-
face roughness offline at regular intervals. The measuring
range is X-200mm and Y-100mm, the microscope stand
tilting range is 12, the maximum distance between centres
is 700mm, the maximum diameter accommodating between

centres is 100mm, the plane stage area is260mm × 270mm,
and the resolution is 0.2 lm (linear) (1 minute). Table 4
shows the L9 orthogonal array and surface roughness mea-
sured using conventional and unconventional methods.

3. Methodology

Machine vision systems by default initiate with the image
acquisition stage. Machine vision-based methods are
extremely recommended for safe evaluation in in situ inves-
tigation of machined surfaces. Turned surface images are
captured utilizing a high-end vision camera to evaluate the
surface texture. The machine vision camera acquires the
machined surface images after turning operation, to examine
the surface texture. The captured machined surface images
undergo normalization to cope up with lighting changes that
might affect the image quality. The overall process is encap-
sulated in the block diagram as shown in Figure 2.

Table 1: Machining Nimonic C263—experimental setup.

Machine tool

NAGMATI175: lathe
H: 165mm
S: 305mm

Speed: 54–1200 rpm
Feed: 0.048–0.716mm/rev

Power: 1HP

Insert PVD-coated carbide insert

Cutting speed 80m/min, 125m/min, 195m/min

Feed 0.055mm/rev, 0.096mm/rev, 0.159mm/rev

Depth of cut 0.25mm, 0.50mm, 0.75mm

Table 2: Machining Nimonic C263—imaging setup.

Equipment Specifications

Scanning electron
microscopy

Imaging module: 17” touch screen
monitor rotary knob, magnification

range: 120x to 24,000x

Surface roughness tester

Cutoff: 0.8mm
Filter: Gauss
l: 0.8mm

Evaluation “l”: 4.00mm
Measuring speed: 0.5mm/s

Workpiece(a) (b) (c) (d)

Figure 1: (a) Experimental setup, (b) tool holder, (c) insert, and (d)
SEM image of flank wear.

Table 3: Machining parameters and assigned levels.

S. no Factors Unit L1 L2 L3
1 Speed (S) mm/rev 0.055 0.096 0.159

2 Feed (F) m/min 80 125 195

3 Depth of cut (ap) mm 0.25 0.50 0.75

3Journal of Nanomaterials



Normalization is performed as given below:

s m, nð Þ = r p, qð Þ −min rð Þ
max rð Þ −min rð Þ ∗ 255: ð1Þ

The normalized image matrix is represented by sðm, nÞ.
The intensity of each pixel in the image matrix is represented
by rðp, qÞ. The image matrix’s minimum and maximum
pixel intensity values are denoted as min ðrÞ and max ðrÞ,
respectively. The machined surface images obtained after
turning operation at varied cutting conditions had an enor-
mous flank wear resulting in variation in workpiece textures.
This increased flank wear (VB) reduces the cutting insert
noise radius, which affects the machined surface. Machine
vision system-refined machined surface images contain
flaws such as nanoparticle settlings and feed marks.

The digital camera output is

p m, nð Þ = b m, nð Þ + ε m, nð Þ, ð2Þ

where bðm, nÞ is the original image and εðm, nÞ is the added
noise.

Wiener filtering is utilized to retrieve the images bðm, nÞ
disrupted by noise.

λ = 1
MN

〠
p1,p2∈p

b p1, p2ð Þ, ð3Þ

where λ is the local mean intensity surrounding every
pixel. Also, p denotes M-by-N neighborhood of every pixel,
and bðp1, p2Þ is the location of every pixel in the local neigh-
borhood mask p. Also, variance of intensity surrounding
every pixel is obtained by

σ2 = 1
MN

〠
p1,p2∈p

b2 p1, pð Þ − λ2: ð4Þ

The Wiener filter reduces the noise depending upon the
statistical variables by lowering the variance of the neighbor-
ing pixels. In stage 3, the image segmentation is performed
to segment the object from its surrounding pixels. This is
utilized to set the cutting tool pixel intensity to 0 and the
background to 1; it is explained in the below equation:

f1 m, nð Þ = 1 if f m, nð Þ ≥ T , 0 if f m, nð g ≤ Tf g, ð5Þ

Table 4: L9 orthogonal array, experimental trail results, and unconventional method results.

Exp. trail no.
Coded
values

Actual setting
values Surface roughness (experimental values) (Ra) Unconventional measured values (Ra)

S F ap S F ap
1 1 1 1 80 0.055 0.25 3.3057 1.25

2 1 2 2 80 0.096 0.50 3.55 1.75

3 1 3 3 80 0.159 0.75 2.43 2.10

4 2 1 2 125 0.055 0.50 4.89 1.50

5 2 2 3 125 0.096 0.75 3.77 1.10

6 2 3 1 125 0.159 0.25 2.73 1.50

7 3 1 3 195 0.055 0.75 0.844 1.075

8 3 2 1 195 0.096 0.25 2.27 0.90

9 3 3 2 195 0.159 0.50 3.65 0.85

-
Input
machined
surface
image

Median
filter (noise
removal)

Image
segment
-ation

Canny
edge
detection

Turrned
image
after
machining

2-d
wavelet
transform

Surface
roughness
evaluation

Laplacian
filter
sharpening

Figure 2: DWT histogram equalization.
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where f ðm, nÞ denotes the actual image of the tool tip after
noise removal in the algorithm step 2 and f1ðm, nÞ
denotes the tool tip image after segmenting the cutting
tool image. Also, T is the threshold value set by default
utilizing the MATLAB command. The machine details
and machining conditions considered for the study are
given in Table 5.

Preprocessing is required to improve image quality
through contrast stretching, histogram equalization, noise
reduction through filtering, and inhomogeneous illumina-
tion compensation, among other things. Low-pass filtering
(median filter) is very effective at reducing noise in
machined surface images, particularly cutting tool images,
because noise can occur due to dirt, oils, and precision
machining dust and dirt on the surface of an object. The
Laplacian filter is a second-order temporal high-pass filter
that is used to sharpen machined surface images so that
the feed marks can be seen clearly. The segmentation
method and feature extraction are carried out after pre-
processing. By calculating the image gradient and direc-
tion, the feature extraction ensures the information of
the edges of the workpiece surface images. Because of its
noise immunity and ability to detect actual edges with
minimal flaws, the Canny edge detector is used in the field
of machine vision. Convolution is performed between both
the machined surface image and a Gaussian smoothing fil-
ter with a standard deviation of s in the Canny edge iden-
tification technique. The gradient computation for the
smoothened image is the next step. This technique can
be used to fetch the edges of a workpiece surface texture.
To capture turned images with good contrast, a dispersed
lighting prototype such as fibre optic-guided light with a
DC-regulated light source and infrared interference filter
is used. Segmentation is the process of dividing an image
into multiple sections according to a set of rules. The
feature-state method collects pixel characteristics into fea-
ture vectors, which are then used to assign pixels to classes
by selecting a threshold value. Because the 2D wavelet
transform can disintegrate a workpiece surface impression
into multiresolution depictions for several surface mor-
phologies, it can be used to evaluate surfaces. Signal vec-
tors derived from feed mark images are used to
represent the image’s grayscale intensity. Use the 2D wave-
let transform and the key local intensity variation tech-
nique to decompose the image signal vector. Wavelet
transform is a time-frequency-conversion mathematical

procedure that is frequently used. The frequency analysis
of the signal into scalar analysis is dealt with by wavelet
analysis.

Φi,j yð Þ = 1
ffiffi

i
p φ

y − j
i

� �

, ð6Þ

where i seems to be the scale parametric quantity for
varying frequency and “j” is the interpretation parametric
quantity and i, jðxÞ is the wave function. Surface rough-
ness is an important parameter for evaluating and control-
ling manufacturing quality because it can affect the friction
coefficient, creep life, and fatigue strength of a machined
part. Surface roughness results due to enhanced tool wear;
it serves as an indication to replace the tool. Surface
roughness evaluation procedures based on image process-
ing can be performed online through E-evaluation. How-
ever, this facility is not available in traditional
procedures. A rough surface tends to scatter more quantity
of light. This causes larger dark regions to form that result
in decrease in the image signal RMS value. A rough sur-
face ends up with huge speckle patches that in turn reduce
the variance, within the fixed evaluation length. The histo-
gram mapping of an illuminated area of interest (ROI)
from machined surface photographs was studied to see if
there was any fluctuation in histogram frequency, which
helps with surface roughness evaluation [28].

3.1. Evaluation Parameters. The roughness average, also
known as the arithmetic average height (Ra), is a roughness
parametric parameter that is often used in quality control.

Ra =
1
N
〠
N

i=1
yij j: ð7Þ

“N” is the number of samples for a certain evaluation
duration and yi denotes how far the profile deviates from
the average line. The root mean square slope (Rdq) and arith-
metic mean slope (Rda) hybrid parametric quantities are
used.

Rda, ArithmeticMean Slope = 〠
N

i=1

δij j
N

: ð8Þ

δi is the slope at point “i” and “N” is the total number of
points.

Rdq, RootMean Square Slope =

ffiffiffiffiffiffiffiffiffiffiffiffi

〠
N

i=1

δi2

N

v

u

u

t : ð9Þ

4. Results and Discussion

4.1. Characterization of the Machined Surface Utilizing
Image Histogram. The surface profile of the workpiece sur-
face is used to measure surface roughness in this paper.
The MATLAB software is used to create an intensity

Table 5: Machining parameters to examine the effect of surface
roughness.

Lathe machine Nagamathi lathe machine

Specimen Nimonic C263

Cutting speed 498m/min

Feed rate 0.1mm/rev

Time 5, 7, and 9min

Cooling agent Air

Depth of cut 0.2mm
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histogram for the workpiece surface image. The histogram is
a visual representation of how the intensity of gray levels
increases as the surface quality of the machined surface
changes. The left portion of histogram denotes small inten-
sity values, and the right portion denotes larger intensity
values. The machined metal surface has high reflectivity;
hence, it is convenient to monitor the right side of the histo-
gram. Therefore, gray level of 125 is taken as the reference to
evaluate the number of histogram frequency. The reflectivity
is enhanced if the machined surface is smooth, thereby
resulting in greater frequency values. The histogram for the
machined surface is obtained by taking the gray-level inten-
sity values on the x-axis and surface roughness Ra values
taken on the y-axis. The machined surface is smooth posses-
sing a surface roughness value of Ra = 0:5 μm and gray-level
intensity of 125, at a frequency of 600Hz. In the second case,
the machined surface is coarse possessing a surface rough-
ness value of Ra = 1:075 μm and gray-level intensity value
of 100 at a frequency of 400Hz. By analyzing the histogram
of the machined surface image, it enables one to determine if
a given machine surface is coarse or smooth. The work
involves observing and inspecting the machined surface
while turning the Nimonic 263 material with coated carbide
inserts at various spindle speeds and feed combinations.
Variations in the histogram statistical characteristics that
aid in evaluating the surface finish were explored in the his-

togram form of an illuminated area of interest (ROI) from
turning machine surface images. The results clearly show
that the turning procedure’s cutting specifications have no
effect on surface roughness. Figure 3 shows the relationship
between machining time and histogram frequency for vari-
ous feed rates and a steady depth of cut of 0.2mm at 450
and 510 rpm spindle speeds. The graphs displayed give a
general sense of the machined surface’s histogram fre-
quency. Only the lowest and maximum feeds at two different
speeds are shown in the graphs. Again for entire cutting con-
siderations, the machined surface’s surface roughness
remains constant. Many investigations have determined that
the Ra value changes in a stable range, just as the histogram
frequencies of the machined surface obtained with a
machine vision system do. The results in Table 6 show that,
while the cutting speed and feed rate vary, they have no
effect on the machined surface’s histogram frequency. For
a consistent change in the histogram profile, changing the
feed rate causes a change in the form of the feed marks over
the machined surface. Various cutting speeds and feed rates
were used in the technique.

Figure 4 depicts the original machined surface image and
its histogram equivalent. The histogram graph is fetched by
taking the surface roughness values on the y-axis and feed
rate on the x-axis. An image histogram is a graphical repre-
sentation of a digital image’s tonal distribution. It assigns a

0
100
200
300
400
500
600
700

1 2 3 4 5 6 7 8 9 10
Feed rate (mm/rev) Depth of cut (mm)
Spindle speed (RPM) VB average (𝜇m)
Grey level intensity Surface roughness(Ra) (𝜇m)

Graph showing the variation in parametric quantities

Figure 3: Graphical representation of the variations in parametric quantities.

Table 6: Evaluation parameters in DWT histogram equalization.

Feed rate
(mm/rev)

Depth of cut
(mm)

Spindle speed
(rpm)

VB average
(μm)

Gray-level
intensity

Surface roughness
(Ra) (μm)

Machining time
(minutes)

Histogram
frequency (Hz)

0.05 0.25 450 80 60 1.25 0 310

0.07 0.50 450 100 65 1.75 4 310

0.2 0.75 460 130 65 2.10 8 330

0.25 0.75 470 165 70 1.50 12 360

0.26 0.25 480 210 80 1.10 16 380

0.28 0.50 490 260 90 1.50 20 390

0.28 0.50 500 295 100 1.075 24 400

0.28 0.75 510 320 115 0.90 28 410

0.28 0.25 520 360 120 0.85 32 540

0.28 0.25 540 390 125 0.5 33 600
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Figure 6: Reconstructed approximation and its histogram.
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Figure 7: Synthesized image and its histogram equivalent.
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pixel value to each tonal value. A viewer can quickly assess
the entire tonal distribution by looking at the histogram
for a specific image.

Figure 5 depicts the reconstructed machined surface
image and its corresponding histogram equivalent. The his-
togram graph is fetched by taking the surface roughness
values on the y-axis and the feed rate on the x-axis. Image
reconstruction is the process of putting together 2D and
3D images from scattered or insufficient data.

Figure 6 depicts the reconstructed approximation at level
1 and its corresponding histogram equivalent. The histo-
gram graph is fetched by taking the surface roughness values
on the y-axis and the feed rate on the x-axis. The cumulative
histogram is a histogram in which the vertical axis displays
not only the number for a single bin but also the number
for that bin and all bins with lower response variable values.

Figure 7 depicts the synthesized image at level 1 and its
corresponding histogram equivalent. Image synthesis is the
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Figure 8: Decomposition using discrete wavelet transform.
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Figure 9: (a) Average flank wear vs. machining time. (b) Average surface roughness (Ra) vs. machining time.
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technique to create novel images from the image specifica-
tions. The histogram graph is fetched by taking the surface
roughness values on the y-axis and the feed rate on the x-axis.

Figure 8 shows the decomposition of the original
machined surface image and the equivalent generated image
using discrete wavelet transform (DWT). Image decomposi-
tion segregates an input image as structural and textual
components.

The average flank wear enhances with cutting time, as
depicted in Figure 9(a), and the surface roughness is depicted
in Figure 9(b). It demonstrates that, under the similar machin-
ing conditions, increasing cutting speed increases flank wear
progressively. Higher cutting speeds cause the material to pass
away in a short period of time, allowing the machining inter-
face to become an adiabatic system. The cutting tool softens
even as temperature increases, resulting in increased tool wear.
The influence of feed rate on flank wear was measured using a
498m/min cutting speed and a 0.1mm cut depth.

Prediction Error = Predicted value −Measured value
Measured value ∗ 100:

ð10Þ

The predicted value is obtained by utilizing discrete wave-
let transform (DWT) and the measured value from experi-
mental investigation.

As seen in Figure 10 and Table 7 from the above analysis,
it is clear that the average prediction error obtained using
discrete wavelet transform is 3.16% which is very less when
compared to conventional algorithms and techniques.

5. Conclusion

In this research, noncontact surface roughness estimation
method has been proposed and investigated. This
unconventional method involves steps of noise removal
(median filtering), sharpening using the Laplacian filter, image
segmentation, Canny edge detection, 2D wavelet transform,
and histogram equalization. An improved DWT-combined
histogram equalization is used to evaluate the surface rough-
ness with minimum complexity and high accuracy. The fol-

lowing are the significant findings of this experimental study
and analysis:

(i) Histogram equalization has been shown to be a reli-
able method for determining surface roughness

(ii) The proposed method is noncontact, with no addi-
tional surface damage to the work item and less
complexity than standard surface roughness assess-
ment methods

(iii) Surface texture estimation on machined surfaces is
used to verify the effectiveness of the suggested
new method

(iv) The results show that this approach predicts surface
roughness with a 3.16 percent average prediction
error

Abbreviations

SEM: Scanning electron microscopy
CCD: Charge coupled device
EDM: Electrical discharge machining
DIP: Digital image processing
RSM: Response surface methodology
ANOVA: Analysis of variance
GCLM: Gray-level cooccurrence matrix
PPS: Pixel pair spacing
DWT: Discrete wavelet transform
GRMS: Root mean square acceleration
ANN: Artificial neural network
CNN: Convolutional neural network
VCPSO: Vibration and communication particle swarm
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ANFIS: Adaptive neuro fuzzy inference system
ROI: Region of interest.
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values.

Table 7: Prediction error based on experimental values and DWT
histogram equalization.

S. no
Surface roughness (Ra) (μm)

Prediction error
Predicted value Measured value

1 1.25 1.01 3.3057

2 1.75 1.69 3.55

3 2.10 2.05 2.43

4 1.50 1.43 4.89

5 1.10 1.06 3.77

6 1.50 1.46 2.73

7 1.075 1.066 0.844

8 0.90 0.88 2.27

9 0.85 0.82 3.65

10 0.5 0.48 4.16
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