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Abstract 
 

In this paper, the average surface roughness parameter (Ra) is predicted using artificial neural network (ANN) models and internal 

kernel information and external piezoelectric accelerometer data. Experiments were conducted to obtain data to develop ANN models to 

predict surface roughness. A total of 72 samples were used to develop two networks, one based on accelerometer inputs and the other on 

kernel inputs. The Matlab ANN Toolbox was used for the modeling. The two networks had similar characteristics. Feed-forward back-

propagation, ‘newff’, was the network structure selected, with a Levenberg-Marquardt backpropagation training function, ‘trainlm’, and a 

backpropagation weight and bias learning function, ‘learngdm’. Samples obtained at the experimental stage were randomly divided into 

three groups to train (70% of the samples), validate (15% of the samples) and test (15% of the samples) the neural networks with a 'divid-

erand' data division function. The input processing functions used were 'fixunknowns', 'removeconstantrows' and 'mapminmax'. The 

transfer function was 'tansig' for hidden layers and 'purelin' for the output layer. The output processing functions used were 'removecon-

stantrows' and 'mapminmax'. The inputs consisted of the process parameters of radial depth of cut (Ae), the axial depth of cut (Ap), the 

spindle speed (N), the feed rate (f), the feed per tooth (fz), the cutting speed (Vc), the tooth passing frequency (ft), the cutting section (Cs), 

the material removal rate (MRR) and the cutting tool characteristics of the cutter radius (R), the number of teeth (Z) and the tool shape. 

The main difference between the two neural networks consisted of data origin: one considered data obtained with accelerometers and the 

other data collected in the NC kernel. Results showing high correlation factors between outputs and targets confirm that data provided by 

both internal and external sources can be useful for Ra prediction. However, NC kernel data provide several advantages.  
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1. Introduction 

Surface topography is the result of a material removal proc-

ess due to relative motion between the tool and the part, but 

the surface roughness generation process is not fully under-

stood. The interactions and cause-effect relationships between 

the factors that influence surface roughness generation are 

complex. In 2003 Benardos and Vosniakos [1] published a 

review of the state of the art of surface roughness prediction in 

machining operations, and compiled the set of parameters that 

influence surface roughness generation in a fishbone diagram 

that considered machining parameters, cutting tool properties, 

workpiece characteristics and cutting phenomena, as shown in 

Fig. 1.  

Surface properties have an enormous influence on features 
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Fig. 1. Fishbone diagram with the parameters that affect surface 

roughness. Source: Ref. [1]. 
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such as dimensional accuracy, friction coefficient and wear, 

thermal and electric resistance, fatigue limit, corrosion, post-

processing requirements, appearance and cost. Surface rough-

ness is a widely used index of product quality and a technical 

requirement for mechanical products [2]. For this reason, a 

great deal of research has focused on understanding the com-

plex process of surface generation and providing the knowl-

edge necessary to ensure surface quality in manufacturing 

processes.  

In Ref. [1], Benardos and Vosniakos provided an extensive 

study of the main research lines and classified the different 

approaches into four groups: machining theory [3, 4], experi-

mental investigations [5, 6], designed experiments [7, 8] and 

approaches based on artificial intelligence [9-16]. 

Tsai et al. [9] focused on the last group and presented an in-

process system for surface recognition in end milling opera-

tions based on neural networks. They used an accelerometer to 

obtain vibration data from the machine tool and workpiece 

system, and a CNC vertical machining center to perform ex-

perimentation. The ANN model developed included the input 

parameters of the spindle speed, the feed rate, the depth of cut 

and the vibration. Ho et al. [10] proposed a method using an 

adaptive neuro-fuzzy inference system to predict surface 

roughness with the surface image features (obtained with a 

digital camera and a PC) and three cutting parameters: cutting 

speed, feed rate and depth of cut. Benardos and Vosniakos 

[11] used ANN modeling with experiments designed to pre-

dict surface roughness in face milling, which considered feed 

per tooth, axial and radial depths of cut, use of cutting fluid 

and the component of the cutting force along the feed direc-

tion. They showed that the use of ANNs can be extremely 

accurate. Brezocnik et al. [12, 13] proposed the use of a ge-

netic algorithm to predict surface roughness in end milling. 

Ho et al. [8] proposed an adaptive network-based fuzzy infer-

ence system for surface roughness prediction in the end mill-

ing process, using a hybrid Taguchi-genetic learning algo-

rithm. Zain et al. [14, 15] developed an application based on 

genetic algorithms to optimize cutting conditions and mini-

mize surface roughness in end milling. They observed the 

effect of the radial rake angle of the tool, combined with the 

speed and the feed rate, on the surface roughness result. Later, 

in Ref. [16], the authors focused on surface roughness predic-

tion with ANNs. Shie [17] focused on finding an optimal 

combination of cutting parameters using neural networks for 

the optimization of dry machining parameters for high-purity 

graphite in end milling processes. Suresh et al. [18] developed 

an approach using RSM. This model was then taken as an 

objective function and optimized with GA to obtain the ma-

chining conditions for a desired surface finish with minimum 

and maximum values. Correa et al. [2, 19] produced two mod-

els for roughness prediction in high-speed milling processes 

developed through a Bayesian networks (BN) approach. 

Quintana et al. [4] proposed an application for surface rough-

ness monitoring based on an artificial neural network ap-

proach for vertical high-speed ball-end milling operations, 

using data captured from two unidirectional piezoelectric ac-

celerometers that considered the vibrations occurring during 

the metal removal process. Brecher et al. [20] suggested using 

NC kernel data for surface roughness monitoring in milling 

operations and developed a human-machine interface imple-

mented by means of global user data, to analyze data online 

with ANNs. Samanta et al. [21, 22] used soft computing and 

computational intelligence techniques to model surface 

roughness in end milling processes using multiple regression 

analyses, ANNs and adaptive neuro-fuzzy systems. 

As surface roughness is usually measured post-process, it 

would be interesting to develop in-process solutions to control 

the surface generation process and avoid the need to scrap an 

unacceptable part once it is finished and time and energy have 

been spent on it. A monitoring approach detects quality short-

falls as soon as they occur and modifies the process parame-

ters or stops the manufacturing process. However, a monitor-

ing approach has to be developed based on indirect measures 

and evaluations.  

In recent years, advances in computers and sensors have 

made it possible to monitor, measure and control the machin-

ing process, and to develop an intelligent machining approach. 

Several types of sensors and signal processing techniques 

have been used for direct or indirect diagnosis of factors such 

as chatter, tool wear or breakage and surface roughness. The 

principal advantage of surface roughness monitoring is that 

quality control can be carried out in-process instead of post-

process, when the part is already finished and time and money 

have already been spent. However, the majority of existing 

applications require the use of external sensors that entail a 

longer set-up time and make the final solution more expensive. 

In this paper, the use of internal kernel information is com-

pared with external piezoelectric accelerometer data, in terms 

of surface roughness average parameter (Ra) prediction with 

ANN models in vertical milling operations. The use of piezo-

electric accelerometer in-process data, for surface roughness 

prediction in machining operations has been widely used. 

However, the use of internal kernel information presents sev-

eral advantages in comparison with accelerometers and has 

not been very studied as, in most of the cases, it can be quite 

complicated to extract information from internal kernels. Ex-

periments were conducted to obtain data to develop the mod-

els, and in-process information was obtained from external 

and internal sensors. The approaches presented are based on 

ANNs as neural networks are especially suitable for modeling 

complex relationships between inputs and outputs. This paper 

shows that, as piezoelectric accelerometers data, internal ker-

nel data for surface roughness prediction through artificial 

neural networks can be clearly reliable and provide good ap-

proaches. 

 

2. Experimental set up  

The machine tool used was a three-axis vertical 

EMCOMILL E900 with SIEMENS 840Dsl numeric control. 
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The tool’s axes have a range of 900 mm in the X direction, 

500 mm in the Y direction and 300 mm in the Z direction, and 

it is equipped with a 16kW motor spindle with a maximum 

rotational speed of 15000 rpm. The material used was steel 

C45 (AISI 1043), 50-55HRC. 

The cutting tool used was a Sandvik Coromant R390-17 04 

08M-PM 1030 with two inserts (z = 2) and the following pa-

rameters recommended by the tool manufacturer: feed per 

tooth (fz = 0.15 mm/z), spindle speed (n = 2018 rpm), cutting 

speed (vc =265 m/min) and axial depth of cut (Ap = 1 mm). 

The tool holder used was a Sandvik R216-16T08. First, the 

recommended parameters were programmed and radial depths 

of cut of 100%, 95%, 80% and 65% were tested. These meas-

urements were then repeated with variations of up to +/-20% 

of the recommended values for each parameter. For each 

combination of process and technology parameter a raster path 

of 100 mm was machined.  

Vibrations during the experiments were collected using two 

unidirectional piezoelectric accelerometers placed in line with 

the machine tool X and Y axis directions, one on the spindle 

and the other on the machine tool table. The sampling fre-

quency was 10 kHz. A data acquisition platform was devel-

oped using Labview
TM

 to obtain the vibrations that occurred. 

After the experiments, the vibration signals captured were 

analyzed and cut in order to distinguish between the rapid 

traverses along the Y axis, where acceleration is maximum, 

and the traverses during the effective cut, when the tool is 

definitely removing material and generating roughness.  

Modern machine tool controls include software that records 

digital drive data. The main purpose of such trace tools is to 

control parameter optimization. However, this function can 

also be used to identify machine tool behavior regarding fric-

tion and acceleration [23], and to carry out tasks such as colli-

sion monitoring [24] and tool condition diagnosis [25]. The 

numeric control available is a Sinumerik 840Dsl that provides 

a server software application – the so-called Trace Server (TS). 

This server offers access to the control data and drive signals 

to several numeric controller kernels at the same time. It has 

been applied to the data acquisition of position signals, torque 

producing current signals of the feed drives, and the rotational 

speed and mechanical power of the main spindle. Moreover, 

the first and second deviations of these drive signals have been 

calculated.  

The control configuration that was applied worked with a 

sample time of 2 ms (500 Hz), and the location of the signal 

sources was fixed as well. Either the linear position encoder or 

the rotational encoder can be used. The current signal is meas-

ured directly at the drives. For control purposes, the transfor-

mation into the torque producing component and the field 

controlling current component is already carried out by the 

power converter. In addition, the control applies several filter 

and preprocessing algorithms to the drive signals, so that they 

can directly monitor or diagnosis applications.  

Finally, the rugometer used to measure the surface rough-

ness Ra parameter, once the experiments had been performed, 

was a Hommel Tester T1000 with a 2 μm nominal stylus tip. 

The evaluation length was 4.8 mm, composed of six basic 

lengths of 0.8 mm, and the speed was 0.50 m/s with a 0.75 mN 

static stylus force. Fig. 2 shows the schematically the experi-

mental setup. 

The average roughness (Ra) parameter was measured three 

times along the tool path and the mean value was taken. The 

results obtained are shown in Table 1. 

 

3. Average surface roughness approaches 

ANNs are mathematical models made up of an intercon-

nected group of artificial neurons that simulate the structure of 

biological neurons. Neural networks are composed of neurons 

arranged in different layers and linked through variable 

weights. These weights are calculated by an iterative method 

during the training process when the network is fed with train-

ing data, input and output pairs that represent the pattern to be 

modeled [26]. Once the weights have been set, the model is 

able to produce answers for input values which were not in-

cluded in the training data. Any real-world system which has 

measurable inputs and outputs may be modeled by training a 

neural network to predict the outputs, given the inputs. In or-

der to build an adequate neural network model it is necessary 

to consider factors such as the network algorithm, the transfer 

function, the training function, the learning function, the net-

work structure, the number of training data, the number of 

testing data and the normalization of data input. 

Once the experiments were over, the data from accelerome-

ters and the NC kernel had been captured and analyzed and 

surface roughness measured, all the data required to build and 

train an ANN were ready to be modeled. Two networks were 

built with a total of 72 samples obtained with the experiments. 

Both networks took into consideration in the input layer, ele-

ments composed of the following process parameters: radial 

depth of cut (Ae); axial depth of cut (Ap); spindle speed (N); 

feed rate (f); feed per tooth (fz); cutting speed (Vc); tooth 

passing frequency (ft); cutting section (Cs); material removal  

 

Fig. 2. Experimental set-up. 
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Table 1. Experimental parameters and results obtained. 
 

Ae (mm) f (mm/min) S (rpm) fz (mm/z) Vc (m/min) Ra (µm)

40 632 2108 0.150 265 0.694 

38 632 2108 0.150 265 0.702 

32 632 2108 0.150 265 0.595 

26 632 2108 0.150 265 0.560 

40 632 2108 0.150 265 0.695 

38 632 2108 0.150 265 0.645 

32 632 2108 0.150 265 0.719 

26 632 2108 0.150 265 0.514 

40 632 2108 0.150 265 0.688 

38 632 2108 0.150 265 0.718 

32 632 2108 0.150 265 0.765 

26 632 2108 0.150 265 0.640 

40 1054 2108 0.250 265 0.927 

38 1054 2108 0.250 265 0.970 

32 1054 2108 0.250 265 0.772 

26 1054 2108 0.250 265 0.734 

40 422 2108 0.100 265 0.588 

38 422 2108 0.100 265 0.564 

32 422 2108 0.100 265 0.325 

26 422 2108 0.100 265 0.575 

40 632 2108 0.150 265 0.785 

38 632 2108 0.150 265 0.732 

32 632 2108 0.150 265 0.685 

26 632 2108 0.150 265 0.774 

40 632 2108 0.150 265 0.836 

38 632 2108 0.150 265 0.836 

32 632 2108 0.150 265 0.865 

26 632 2108 0.150 265 0.836 

40 758 2108 0.180 265 0.868 

38 758 2108 0.180 265 0.786 

32 758 2108 0.180 265 0.939 

26 758 2108 0.180 265 0.702 

40 506 2108 0.120 265 0.717 

38 506 2108 0.120 265 0.676 

32 506 2108 0.120 265 0.676 

26 506 2108 0.120 265 0.623 

40 569 2108 0.135 265 0.751 

38 569 2108 0.135 265 0.798 

32 569 2108 0.135 265 0.819 

26 569 2108 0.135 265 0.698 

40 632 2029 0.156 255 1.085 

38 632 2029 0.156 255 1.286 

32 632 2029 0.156 255 1.051 

26 632 2029 0.156 255 0.898 

40 695 2029 0.171 255 1.147 

38 695 2130 0.163 268 1.214 

32 695 2130 0.163 268 0.926 

26 695 2130 0.163 268 1.052 

40 569 2108 0.135 265 0.813 

38 569 2108 0.135 265 0.753 

32 569 2108 0.135 265 0.820 

26 569 2108 0.135 265 0.521 

40 569 1897 0.150 238 0.714 

38 569 1897 0.150 238 0.887 

32 569 1897 0.150 238 0.863 

26 569 1897 0.150 238 0.814 

40 696 2319 0.150 291 1.313 

38 696 2319 0.150 291 1.310 

32 696 2319 0.150 291 1.312 

26 696 2319 0.150 291 1.082 

40 506 1686 0.150 212 1.160 

38 506 1686 0.150 212 1.050 

32 506 1686 0.150 212 1.320 

26 506 1686 0.150 212 0.894 

40 759 2530 0.150 318 1.350 

38 759 2530 0.150 318 1.358 

32 759 2530 0.150 318 1.279 

26 759 2530 0.150 318 1.117 

40 569 2149 0.132 270 0.847 

38 569 2149 0.132 270 0.723 

32 569 2149 0.132 270 0.969 

26 569 2149 0.132 270 0.974 

 

rate (MRR); the cutting tool characteristics of cutter radius 

(R); number of teeth (Z); and tool shape, flat or ball-end mill, 

as presented in Ref. [6]. The selection of the inputs was car-

ried out with the aim of introducing a realistic point view of 

the cutting process into the ANN input layer considering proc-

ess parameters, deterministic process parameters and cutting 

tool characteristics as in Ref. [4]. So that, the ANN had the 

same input elements than an operator in order to predict sur-

face roughness. Of course, some of these elements are interre-

lated and not independent, for example f and fz but, introduc-

ing them into the input layer permits to enlighten this relation. 

In other way, the ANN would not have evidence of the influ-

ence of these parameters on surface roughness. The main dif-

ference between the two neural networks lies in the in-process 

data origin. One network considers data obtained with the 

accelerometers and the other the data collected in the NC ker-

nel.  

Vibration signals captured with the piezoelectric acceler-

ometers were analyzed to separate the data between the rapid 

traverses where acceleration is maximum, and during the ef-

fective cut when the tool removes material. Only those vibra-

tions occurred when the tool was immersed in the workpiece 

were taken into account for the datasets. Different vibration 

variables were taken into consideration: low, medium and 

high frequency vibration amplitudes, temporal domain vibra-

tion amplitude and tooth passing frequency amplitude all of 

them both in X and Y axes. Low frequencies were considered 

those lower than 500 Hz that capture, if they occur, vibrations 

due to machine-tool structure modes, habitually around 200 

Hz. Medium frequencies were considered those between 500 

Hz and 2500 Hz as the spindle, the tool-holder and the cutting 

tool modes are typically around 2000 Hz. High frequencies 

were considered those between 2500 Hz and 5000 Hz. 

Data collected from the NC kernel included: X, Y and Z 

axes current; spindle current; X, Y, Z axes velocity (obtained 

with the first derivative of the position with respect to time); 

spindle rotational speed; X, Y, Z axes acceleration, calculated 

as the second derivative of the position with respect to time; 

spindle rotational acceleration; X, Y, Z axes and spindle cur-

rent variation velocity, calculated as the first derivative of the 

current with respect to time); X, Y, Z axes and spindle current 

variation acceleration calculated with the second derivative of 

the current with respect to time. NCK signals were also trig-
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gered in order to extract the effective cutting data and elimi-

nate the information captured when the tool was in the air or 

in the process of entering or leaving the workpiece. 

The main structure of the two networks was kept very simi-

lar to facilitate comparison of the data source usefulness. The 

Matlab ANN Toolbox was used for the modeling. Feedfor-

ward backpropagation, ‘newff’, is the network structure with a 

Levenberg-Marquardt backpropagation training function, 

‘trainlm’, and a backpropagation weight and bias learning 

function, ‘learngdm’. A two-layer feed-forward network was 

used as it can approximate any function with a finite number 

of discontinuities given sufficient neurons in the hidden layer. 

Samples obtained at the experimental stage were randomly 

divided into three groups to train (70% of the samples), vali-

date (15% of the samples) and test (15% of the samples) the 

neural networks with a 'dividerand' data division function. 

Training samples were introduced during the training and the 

network was adjusted according to the error. Validation sam-

ples were used to measure network generalization and stop the 

training when the generalization stopped improving. Testing 

samples have no effect on training and so provide an inde-

pendent measure of a network’s performance. The Levenberg-

Marquardt backpropagation algorithm automatically stops 

training when generalization ceases to improve, as an increase 

in the mean square error of the validation samples indicates. 

Input processing functions used were 'fixunknowns', 'remove-

constantrows' and 'mapminmax'. tansig/purelin was the trans-

fer function of the i
th
 layer: 'tansig' for the hidden layer and 

'purelin' for the output layer. The output processing functions 

used were 'removeconstantrows' and 'mapminmax'. An exam-

ple of this neural network architecture is shown in Fig. 3. 

 

3.1 External sensor data approach 

A total of 5000 ANNs were built, trained and tested with 

the samples containing data from the accelerometers. Fifty 

network iterations were evaluated from 1 to 100 neurons. The 

best network was composed of three neurons in the hidden 

layer and had a correlation value of R = 0.94353.  

Correlation factors of the ANN developed are shown in Fig. 

4, while Fig. 5 shows network performance for the training 

validation and testing samples. The plot shows the mean 

squared error of the network decreasing while it is learning. 

Training continues as long as it reduces the network’s error in 

respect of the validation samples, but ceases when the valida-

tion error increases for six iterations. 

Fig. 6 shows the results from the ANN selected. Outputs 

given by the network are plotted against the targets collected 

 

Fig. 3. Two-layer tansig/purelin network developed with MATLAB. 

 

 

Fig. 4. Correlation factors (R) of the 5000 neural networks tested using 

external sensor data. 

 

 

 
 

Fig. 5. Best validation performance using external sensor. 

 

 

 
 

Fig. 6. Regression plot and correlation value (R) for training, valida-

tion, testing and all samples. 
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during the experiments. The points on the chart are composed 

of target-and-output pairs and represented by empty circles. 

Regression (R) values measure the correlation between out-

puts and targets. The figure shows the correlation value for the 

training samples (R = 0.98909), validating samples (R = 

0.92055), testing samples (R = 0.84232) and the fitting corre-

lation of the entire surface roughness prediction model (R = 

0.94353). Table 2 shows in more detail results obtained for 

validation and testing samples, the targets and the outputs 

provided by the ANN.  

 

3.2 NC kernel data approach 

In the case of the neural networks developed using NC ker-

nel data, the same method was used as in the previous subsec-

tion. A total of 5000 ANNs (50 iterations of networks from 1 

to 100 neurons) were built, trained and tested in around 10 

hours of computation. The best network was composed of 

three neurons in the hidden layer and had a correlation value 

of R = 0.95947, a value slightly better than the correlation 

factor obtained for the network that considered accelerometer 

data. Fig. 7 shows the correlation factors, colored in accor-

dance with the colorbar values on the right-hand side of the 

figure, of the 5000 neural networks generated. 

A plot of the training, validation and testing errors is shown 

in Fig. 8. The mean squared error of the network decreases 

while the neural network is learning. Training continues as 

long as network error is reduced in the validation samples, and 

automatically stops when the validation error increases for six 

iterations. 

Fig. 9 shows the correlation value for the training samples 

(R = 0.98132), validation samples (R = 0.89837), testing sam-

ples (R = 0.94369) and the fitting correlation of the developed 

surface roughness prediction model (R = 0.95947). 

Table 3 shows in more detail results obtained for validation 

and testing samples, the targets and the outputs provided by 

the ANN. 

Table 4 summarizes the steps followed in the process of  

Table 2. Validate and testing samples targets and outputs. 
 

Validate targets 

(µm) 

Validate outputs 

(µm) 

Test targets 

(µm) 

Test outputs 

(µm) 

0.702 

0.514 

0.718 

0.588 

0.836 

0.836 

0.717 

0.819 

0.898 

1.147 

0.753 

0.814 

1.312 

1.279 

0.693 

0.714 

0.652 

0.573 

0.735 

0.754 

0.791 

0.717 

0.996 

1.065 

0.825 

0.734 

1.222 

1.190 

0.927 

0.970 

0.772 

0.325 

0.685 

0.774 

0.676 

0.751 

1.085 

1.051 

0.820 

0.863 

1.160 

1.320 

1.112 

1.100 

0.742 

0.581 

0.664 

0.755 

0.735 

0.887 

1.293 

0.951 

0.679 

0.862 

1.185 

1.131 

 

 

 

Fig. 7. Correlation factors (R) of the 5000 neural networks tested using 

NC kernel data. 

 

 

Fig. 8. Best validation performance using kernel data. 

 

 

 

Fig. 9. Regression plot and correlation value (R) for training, valida-

tion, testing and all the samples. 
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obtaining, processing and analyzing the data to develop an 

optimal ANN based on external sensor information and NC 

kernel information. 

Finally, Table 5 provides a comparison between the per-

formance of the NCkernel data approach and the standard 

alternative technique that consists on using a rugometer for 

measuring surface roughness. Principal advantages and draw-

backs of both techniques are contrasted. The possibility of 

being able to evaluate surface roughness while the part is be-

ing machined is the most relevant advantage of the use of the 

Table 3. Validate and testing samples targets and outputs. 
 

Validate targets (µm) Validate outputs (µm) Test targets (µm) Test outputs (µm) 

0.970 

0.564 

0.836 

0.623 

0.798 

1.286 

0.753 

1.313 

1.050 

0.894 

0.847 

0.723 

0.969 

0.974 

0.892 

0.813 

0.697 

0.607 

0.864 

1.280 

0.783 

1.358 

1.064 

0.924 

0.869 

0.640 

0.828 

0.938 

0.702 

0.595 

0.645 

0.719 

0.640 

0.325 

0.785 

0.732 

0.836 

0.676 

1.051 

0.898 

0.926 

1.358 

0.691 

0.611 

0.576 

0.718 

0.612 

0.410 

0.751 

0.599 

0.928 

0.818 

0.935 

0.965 

1.013 

1.373 

 

 
Table 4. Method applied to external sensor and kernel data acquisition. 
 

 External sensor Kernel data 

Data acquisition Vibrations in xy-axis 
torque generating current (xyz-axis, main spindle ) 
actual position x,y,z 
rotational speed (main spindle) 

Signal preprocessing 
High-pass filter (>2500Hz) 
Low-pass filter (<500Hz) 
Band-pass (500Hz÷2500Hz)  

1st, 2nd deviation of measured signals 
 

Training of ANN 

Network structure: ‘newff’: Feedforward backpropagation 
network 
Training function: 
   'trainlm': Levenberg-Marquardt backpropagation algo-
rithm 
Learning function: 
'learngdm': Backpropagation weight/bias 
Input processing functions: 
  'fixunknowns' 
  'removeconstantrows' 
  'mapminmax' 
Data divison function: 
   'dividerand': 
    Training samples (70%) 
    Validation samples (15%) 
    Testing samples (15%) 
Transfer function of ith layer:  
   'tansig' for hidden layers  
   'purelin' for output layer. 
Output processing functions.      
   'removeconstantrows', 
   'mapminmax' 
Number of iterations: 5000  

Network structure: ‘newff’: Feedforward backpropagation 
network 
Training function: 
   'trainlm': Levenberg-Marquardt backpropagation algo-
rithm 
Learning function: 
'learngdm': Backpropagation weight/bias 
Input processing functions: 
  'fixunknowns' 
  'removeconstantrows' 
  'mapminmax' 
Data divison function: 
   'dividerand': 
    Training samples (70%) 
    Validation samples (15%) 
    Testing samples (15%) 
Transfer function of ith layer:  
   'tansig' for hidden layers  
   'purelin' for output layer. 
Output processing functions.      
   'removeconstantrows', 
   'mapminmax' 
Number of iterations: 5000 

Results  Ra Ra 

Training samples 0.98909 0. 98132 

Validation samples 0.92055 0. 89837 

Testing samples 0.84232 0. 94369 
 

ANN model 0.94353 0. 95947 
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NC kernel data for surface roughness prediction and makes 

this methodology very interesting. 

 

4. Conclusions 

The use of the data obtained directly from the NC kernel is 

very interesting as it allows external sensors, which require 

extra investment and therefore increase the final cost of the 

solution, to be eliminated. Moreover, there is a higher correla-

tion factor in the case of data obtained from the NC kernel, R 

= 0.95947, than in the case of the neural network using accel-

erometer data, where there is a correlation factor of R = 

0.94353. A further factor is that accelerometers must be in-

stalled in a fixed place that cannot be changed on the machine 

tool, and the information provided can be affected by several 

levels of noise or dissipation due to the varying distance be-

tween the point of origin of the vibration (i.e. the contact zone 

between tool and material) and the point where vibration is 

captured (i.e. the accelerometer), or by the influence of vibra-

tions coming from other machines. Accelerometers also in-

crease the final cost of the solution. 

A similar characteristic has to be taken into account with 

regard to NC kernel data. The transfer behavior between the 

signal source and the process is defined by the mechanical 

components of the machine tool that can be modeled as a low-

pass characteristic. However, the numeric control and the 

power transformer already preprocess the signals by means of 

several filters and transformations, thereby markedly reducing 

the influence of noise and dissipation. The evaluation can be 

provided with further information by a defined correlation to 

the actual process situation, i.e. NC data, the path left until the 

next tool change. Similarly, information about the applied tool 

is available from the tool data base. Hence, this data base can 

be expanded by the specifically trained ANN and applied 

when a tool change takes place.  

One of the drawbacks of this method is that experiments 

have to be carried out. This drawback is not to do with the 

source of the data, (NC kernel or accelerometers) as experi-

ments are necessary in both cases. Experiments are expensive 

and are required for each combination of machine tool, cutting 

tool, tool holder and work piece material. The use of NC ker-

nel data provides an excellent initial situation for automation. 

Aside from the roughness measurement, all essential informa-

tion is available from the numeric control: the applied tool 

data, i.e. diameter and number of cutting edges, the position 

and current signals as well as their deviations. Furthermore, 

the signal sources are always located at the same point, which 

increases the portability of trained algorithms between ma-

chine tools of the same type. However, it has to be mentioned 

that the usefulness of digital drive signals is limited. For tools 

with small diameters and therefore smaller process forces, the 

effects might be absorbed by the machine’s components.  

Results show that data provided by accelerometers and data 

provided by an NC kernel can be useful to predict average 

surface roughness. This is confirmed by high correlation fac-

tors between outputs and targets provided by the ANNs de-

veloped. The principal advantage of the methodology pro-

posed is that quality control, in terms of surface roughness 

requirements assurance, can be carried out in-process, when 

the part is being machined and the surface roughness is being 

generated. In comparison with the traditional or conventional 

method where surface roughness is measured at the end of the 

machining process with a rugometer this becomes an impor-

tant advantage as permits to reduce times and lack of quality 

costs through indirect evaluations of surface roughness aver-

age parameter, Ra, a very common parameter for surface qual-

ity measurement. 

This research has used the ANN technique for developing a 

model to predict the surface roughness average parameter (Ra) 

in vertical milling operations. However, ANNs have several 

drawbacks. For instance, experiments are indispensable for 

creating and training a realistic network. These can be costly 

and time consuming, and the repeatability of training for a 

new model is not assured. In further research it would be in-

teresting to study the possibilities of other artificial intelli-

gence approaches such as genetic algorithm (GA), simulated 

annealing (SA), ant colony algorithm (ACO) and particle 

swarm optimization (PSO). Clarity of all figures is extremely 

important. If the final version is not prepared in two column 

format or does not include author(s)’ biographies, the publica-

tion process will be delayed. The DOI number will be as-

signed by the journal office. The manuscript received, revised 

and accepted dates will be checked and corrected by the jour-

nal office. 

Table 5. Rugometer measurement method vs. Kernel data acquisition. 
 

 Rugometer measurement Kernel data 

Data acquisition 

Direct measurement 

Out-of-process 

External device 

Extra investment 

Quality measurement 

Indirect evaluation 

In-process 

Fully integrated 

No extra investment 

Quality assurance 

Signal preprocessing 
Automatically performed by the rugometer  

No experimentation required 

Programmed 

Experimentation required 

Results  
Rugometer’s accuracy and repeatability  

Calibration and maintenance 

High correlation factor but 

certain uncertainty 
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