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Surface scattering in three dimensions:
an accelerated high-order solver
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We present a new algorithm for the numerical solution of problems of acoustic scatter-
ing by surfaces in three-dimensional space. This algorithm evaluates scattered fields
through fast, high-order, accurate solution of the corresponding boundary integral
equation. The high-order accuracy of our solver is achieved through use of partitions
of unity together with analytical resolution of kernel singularities. The acceleration,
in turn, results from use of high-order equivalent source approximations, which allow
for fast evaluation of non-adjacent interactions by means of the three-dimensional fast
Fourier transform (FFT). Our acceleration scheme has dramatically lower memory
requirements and yields much higher accuracy than existing FFT-accelerated tech-
niques. The present algorithm computes one matrix-vector multiply in O(N®%/5log N)
to O(N*/31log N) operations (depending on the geometric characteristics of the scat-
tering surface), it exhibits super-algebraic convergence, and it does not suffer from
accuracy breakdowns of any kind. We demonstrate the efficiency of our method
through a variety of examples. In particular, we show that the present algorithm can
evaluate accurately, on a personal computer, scattering from bodies of acoustical
sizes (ka) of several hundreds.

Keywords: wave scattering; integral equation; fast algorithm;
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1. Introduction

The calculation of wave scattering from surfaces of acoustically or electrically large
objects remains one of the most important and challenging problems in computa-
tional science. Roughly, these problems present difficulties as they require accurate
descriptions and manipulation of highly oscillatory functions. Scattering problems
involving one-dimensional integrals have been efficiently treated by means of high-
order integrators (including the exponentially accurate trapezoidal rule and other
high-order schemes (Colton & Kress 1992; Rokhlin 1990)), which reduce dramati-
cally the complexity necessary to meet a given accuracy requirement. Problems of
scattering by surfaces in three-dimensional space are much more complex, however.

A number of fast algorithms for three-dimensional scattering have been intro-
duced in the last two decades (Bleszynski et al. 1996; Bojarski 1982; Catedra et
al. 1989; Coifman et al. 1993; Phillips & White 1997; Rokhlin 1993; Song et al.
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1988, 1997). These methods are considerably faster than classical non-accelerated
algorithms—they run in O(N log N) to O(N?3/2log N) operations (where N is the
number of discretization points) in contrast with the O(N?2) operations required
by non-accelerated schemes—and thus they allow for computations involving rather
large scattering surfaces. None of the existing fast implementations exhibits high-
order convergence, however. As a result, the error of such fast computations turns
out to be of the order of a fraction of a decibel (or several per cent) even for the sim-
plest test scatterers (Canino et al. 1998; Song et al. 1988). In this paper we present
an O(N%/%log N) to O(N*/3log N) algorithm which, through a novel combination
of numerical techniques, allows for fast and high-order accurate solution of problems
of acoustic scattering. (The latter estimate applies to smooth surfaces, for which our
high-order algorithm provides accurate solutions with small values of N; the for-
mer, more favourable count is valid for highly complex surfaces requiring significant
amounts of subwavelength sampling.) This algorithm exhibits super-algebraic con-
vergence, it requires limited amounts of RAM, and it does not suffer from accuracy
breakdowns of any kind. We demonstrate the efficiency of our methods through a
variety of numerical examples—including very accurate evaluation on small personal
computers of scattering from bodies of acoustical sizes (ka) of several hundreds.

The algorithm we present consists of two main elements: a basic high-order local
integrator and a high-order acceleration scheme. Our basic high-order integrator
involves use of partitions of unity—to deal with topological characteristics of closed
surfaces—and analytical resolution of kernel singularities—to avoid costly refinement
strategies. Use of this algorithm without acceleration would lead to the customary
O(N?) operation count. The constant of proportionality in this complexity estimate
is rather small, however, so that, even without acceleration, the high-order integrator
is an efficient solver for small to medium-sized problems. For large problems, however,
use of acceleration is imperative.

Two well-known approaches to acceleration have been available for a number of
years: the fast multipole method (FMM) (Coifman et al. 1993; Rokhlin 1990, 1993;
Song et al. 1988, 1997) on the one hand, and a broad class of fast Fourier transform
(FFT) accelerated techniques and k-space methods (Bleszynski et al. 1996; Bojarski
1982; Catedra et al. 1989; Phillips & White 1997) on the other. FMM-based algo-
rithms provide considerable acceleration: they run in as little as O(N log N) oper-
ations per iteration. However, to the best of our knowledge, high-order accuracy
has not been demonstrated in FMM computations of wave scattering. A possible
explanation for this fact is that the FMM approach (Coifman et al. 1993; Rokhlin
1993) depends critically on certain mappings which contain multiplication by Hankel
functions of high order. These operations are associated with a substantial amount
of ill conditioning, which leads to accuracy limitations known as the ‘subwavelength
breakdown problem’ (see Dembart & Yip 1998, p. 51; Labreuche 1998, p. 576; Green-
gard et al. 1998). These limitations may prevail and mask the asymptotic high-order
convergence of any underlying high-order integrator, however accurate. In contrast,
the FFT acceleration techniques are stable.

The accelerator we introduce is closely related to two of the most advanced FFT
methods developed recently (Bleszynski et al. 1996; Phillips & White 1997). An
important common element between these two methods and our technique is the con-
cept of equivalent (or auxiliary) sources, located on a subset of a three-dimensional
Cartesian grid. In all three cases, the intensities of these sources are chosen to approx-
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imate the field radiated by the scatterer, which allows for a fast computation of
numerous non-adjacent interactions through the use of the three-dimensional FFT.
In Bleszynski et al. (1996) and Phillips & White (1997), both volumetric and surface
scattering problems are treated; our present discussion, in contrast, only applies to
surface scattering problems. Surface problems are treated in Bleszynski et al. (1996)
and Phillips & White (1997) by means of equivalent sources located in a volumet-
ric grid—in such a way that equivalent sources with non-zero intensities occupy all
Cartesian nodes adjacent to the surface. Since the spacing of this Cartesian grid can-
not be coarsened beyond some threshold, and, further, since the three-dimensional
convolution should be performed throughout the whole volume occupied by the body,
such a scheme requires a O(N3/2) FFT. Therefore, the traditional FFT surface scat-
tering solvers require O(N3/2) units of RAM and run in O(N?3/21log N) operations.

Our algorithm, in contrast, subdivides the volume occupied by the scatterer into a
number of (relatively large) cubic cells, and it places equivalent sources on the faces
of those cells. Such a design reduces significantly the sizes of the required FFTs, to
O(NS/5)-O(N*/3) points, with proportional improvement in storage requirements
and operation count. Further, it results in super-algebraic convergence of the equiv-
alent source approximations as the size of the scatterer is increased. In view of its
high-order character and its improved acceleration technique, the present algorithm
can evaluate solutions to large scattering problems in short computing times, very
accurately and with very small memory requirements; see §6.

2. Mathematical formulation

We consider a problem of acoustic scattering by a sound-soft obstacle. This problem,
which is governed by the Helmholtz equation, can be treated using the acoustic
single- and double-layer potentials (Colton & Kress 1992):

oP(r',r
R ﬁﬂr’) ds(r’).
(2.1)
Here &(r/,7) = e¥I"' =71 /47|’ — 7| is the Green function for the Helmholtz equation,
and v(r) is the external normal to the surface 9D at point r. Explicitly, given the
values of the incoming wave ¥*(r) on 9D, the scattered field can be found easily

once the integral equation for the unknown density ¢(7),

se(r) + (Ko)(r) —in(S)(r) = ¢'(r), €D, (2.2)

has been solved. (Here « is an arbitrary positive constant; appropriate choices of this
parameter can be very advantageous in practice—see §5c¢.) Naturally, the possibil-
ity of producing fast and accurate solutions for our problems hinges on our ability
to evaluate the integrals (2.1) accurately and efficiently. In attempting to develop
such accurate and efficient integrators one faces two main problems, namely, accu-
rate evaluation of the singular adjacent interactions—without undue compromise of
speed—and fast evaluation of the voluminous number of non-adjacent interactions—
without compromise in accuracy.

Our approach to a solution of these problems is described in what follows. Section 3
introduces the partitions of unity we use to deal with the topological characteristics of
closed surfaces. The basic high-order integrator is presented in §4. In § 5 we describe

(Se)(r) = /a B el ds(r) and - (Kp)(r) = /a
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(@) (b)

Figure 1. (a) POU covering and region of singular integration. (b) Integration in a polar
system; empty circles indicate discretization points for the integration with respect to p.

our acceleration scheme. Finally, a variety of numerical examples and comparison
with other work are provided in § 6. Proofs and numerical illustrations of convergence
and stability of our methods are presented in Kunyansky & Bruno (2001).

3. Partitions of unity, discretizations

In order to deal with topological characteristics of closed surfaces and the singular
character of integrands, we use a patching strategy based on use of both fixzed and
floating partitions of unity (POU), which we define in what follows.

Fixed POU are used to deal with surfaces which, possibly, can only be parametrized
locally. In detail, we begin by considering a covering of the surface 0D by a number
K of overlapping two-dimensional patches P’, j = 1,..., K, each one of which is
smoothly mapped to coordinate sets H’ in two-dimensional space, where actual
integrations are performed. Further, we use a POU subordinated to this covering
of D, i.e. a set of non-negative smooth functions {w’,j = 1,..., K}, such that (i)
w’ is defined, smooth and non-negative in 9D, and it vanishes outside P7, and (ii)
Z]K:l w’ = 1 throughout dD. This POU, which we refer to as the fixed POU, allows
us to reduce the problem of integration of the density ¢(r’) over the surface to a
calculation of integrals involving products of kernels with certain smooth densities
o’ over square domains Q7—via a trivial extension of the ¢7 by zero.

The (Nystrom) discretization of our problem is introduced through the patch-
parametrizations mentioned above. In detail, the unknown density we seek is char-
acterized by its values on the nodes of Cartesian grids on the integration domains
Q’. As shown in the rest of this section and §4, use of the fixed POU together with
these regular Cartesian meshes and certain changes of variables allow us to reduce
our singular integration problem to evaluation of integrals of smooth periodic func-
tions—which can be computed with spectral accuracy by means of the trapezoidal
rule; see also Bruno & Kunyansky (2001a).

In addition to the fixed POU we introduce floating POU, which help us accelerate
the integration method. To motivate the introduction of the floating POU we begin
by considering the integration problem (2.1) for one of the densities @7 at a surface
point 7 outside P7. Clearly the integrand is smooth for such a target point 7, so the
trapezoidal rule in Q7 yields the integral with spectral accuracy. The singular integral
with » € @7, in turn, can be reduced to smooth integrations by the changes to polar
coordinates introduced in §4. For purposes of acceleration, however, it is necessary
to reduce the regions where such coordinate transformations are operative. We thus
introduce the floating POU : for every point 7 € Q7 the density ¢’ is smoothly split in
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the form ¢’/ = 0, ()7 + (1 — 0, (r"))¢’; see figure 1a. Here 7, is a smooth function
which equals unity in a neighbourhood of r and is compactly supported inside the
cube S; for which r € ¢;; see § 5 for the definitions of S; and ¢;. Note that, as before,
the trapezoidal rule can be used to evaluate the integral containing (1 — 7, (r'))¢7,
whereas the methods based on polar changes of coordinates of §4, in turn, apply
effectively to the integral containing the term 1, (r')p7.

It is not difficult to obtain numerical POU in the present setting: their basic com-
ponents W;(u,v) can be constructed in the parameter spaces H’, j = 1,..., K. The
functions W; (u, v) should be smooth and non-negative, and the support of W;(u, v)
should be contained in the open set H’, so that, in particular, all derivatives of
W;(u,v) vanish on the boundary of H7. We note that the functions W;(u(r), v(r))
can be extended (as zero) to functions defined globally on 0D. Thus, selecting W;s so
that Zﬁil We(u(r),v(r)) does not vanish anywhere on D we may define a partition
of unity by

__ Wu(r)
wi(r) = —————

> We(u(r))

It is easy to construct functions W; satisfying the conditions above. In our codes we
have used products of functions of the type E(u)E(v) and E(v/u? + v2), where, for
real t, E(t) is defined as follows:

17 fort<t0,
2e” 1/ t—t
E(t) = { exp - , forty <t<ty, wherez= id 07
z—1 ty =t
l07 fOft}tl.

4. Adjacent integration

Substantial difficulties in the high-order evaluation of adjacent interactions are caus-
ed by the singular nature of the integral kernels @(r',r) and 9P(r',r)/Ov(r’) at
r’ = r. While, certainly, the well-known strategy of ‘singularity subtraction’ gives
rise to bounded integrands, integration of such bounded functions by means of clas-
sical high-order methods does not exhibit high-order accuracy—since the subsequent
derivatives of the integrand are themselves unbounded. Thus, specialized quadrature
rules must be developed and used to achieve high-order integration.

Our approach to high-order integration is based on analytical resolution of the
kernel singularities. The resolution is achieved by integration in polar coordinates
centred around each target point = in our Cartesian grid, as indicated in figure 1b.
The Jacobian of the corresponding change of variables cancels the singularity—and,
in fact, it produces integrands which are smooth in any radial direction. Together
with the partitions of unity mentioned above, this change of variables reduces the
radial integration problem to evaluation of integrals of smooth periodic functions:
radial periodicity results from the partitions of unity, which make the integrands
and all of their derivatives vanish on the boundary of the integration domain. Since
the radial integrals are themselves smooth periodic functions of the angular variable,
all involved integrals can be evaluated accurately by means of the trapezoidal rule,
thus, providing a high-order solution to the complete adjacent integration problem.

The integrands are represented by their values at the nodes of a Cartesian grid,
and, thus, an interpolation technique is needed to obtain the necessary function
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values on appropriate radial grids. Efficiency is of utmost importance here, since
our scheme uses one such polar coordinate transformation at each target point. For-
tunately, such fast interpolations can be performed with high accuracy by taking
advantage of the high-order convergence of trigonometric approximations of periodic
functions in conjunction with FFTs. The details of our fast interpolation algorithm
are as follows.

1. Using the one-dimensional FFT, construct a set of Fourier series interpolating
the values of the densities along coordinate lines of the Cartesian grid. (Inter-
polations in vertical direction are to be used for integrations corresponding to
0 € [—m/4,m/4] while horizontal interpolations should be applied in the com-
plementary set of directions; see figure 1b.) Since the densities are smooth and
vanish on the patch boundaries, such polynomials yield a high-order approxi-
mation to the densities.

2. Refine the grid along coordinate lines. Use one-dimensional FFTs to evaluate
the resulting Fourier series (and possibly their derivatives) on the refined grid.

3. Use the function values on the refined grids to construct one or more inter-
polating polynomials (e.g. Chebyshev, splines, etc.) per original grid interval.

As a result of this procedure one obtains polynomial interpolants that closely approx-
imate the interpolating Fourier series. The use of the FFT makes the interpolation
times negligible when compared with those required by the other stages of the algo-
rithm; evaluation of the polynomials at the required points (shown in figure 1b), on
the other hand, requires few multiplications and additions per point and is therefore
also very fast.

(In our numerical examples we used a 16-fold one-dimensional refinements of the
original coordinate grids. Further, we used polynomials of degree three such that their
values and the values of their first derivatives coincide with those of the correspond-
ing trigonometric polynomial at the endpoints of each subgrid interval. Clearly the
convergence of this interpolating algorithm is of fourth order in the subgrid spacing.
One could certainly use increasingly larger subgrids and Chebyshev interpolation to
produce a interpolation technique of super-algebraic convergence. This is a matter
of limited interest in practice, however. Indeed, in the cases we have considered, the
cubic interpolation method with a 16-fold refinement described above matches the
accuracy of the underlying trigonometric approximation to O(10~?) in computing
times of the order of 1% of the time required by the overall computation; see, for
example, table 1. These accuracies are higher than those of interest in all of the prob-
lems we have treated, so that the use of more sophisticated interpolating techniques
does not seem necessary.)

The high-order integrator described in this section exhibits super-algebraic conver-
gence for infinitely smooth scattering surfaces. (Extensions to high-order integrators
for non-smooth surfaces are given in Bruno & Kunyansky (2001b); see also §6.) Use
of this algorithm without acceleration would lead to the customary O(N?) operation
count. However, since this method resolves singularities analytically, low discretiza-
tion densities suffice to yield accurate results, and, thus, even without acceleration,
our high-order integrator gives rise to an efficient solver for small to medium-sized
problems. For large problems acceleration becomes imperative; our acceleration tech-
nique is described in the following section.
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We conclude this section with a remark on related work: the regularizing effect of
changes of variables on singular kernels is known (Duffy 1982). We believe, however,
that integration in the polar coordinates in combination with a Nystrom discretiza-
tion scheme have not been used before. Note that, indeed, use of a straightforward
high-order Cartesian-to-polar interpolator would lead to inordinate computational
times, since such polar change of variables must be performed around each target
point.

5. Non-adjacent integration and acceleration

We begin by considering a cube C' containing the obstacle. (For elongated obstacles
a three-dimensional slab is preferable; for simplicity of presentation, however, we will
limit our discussion to covering by a cube.) Denoting the acoustical size of the cube
by A, we partition the cube C into a number A? of smaller equal non-overlapping
cubic cells ¢; of side H = A'/3, so that there are A?/3 cells along each edge of the
cube. We note that each one of our surface discretization points is contained in one
of the cells ¢;; many of the cells contain no sources in their interior. As we shall see,
it is necessary for our method to use cells ¢; which do not admit inner resonances
(eigenfunctions of the Dirichlet Laplacian) for the given wavenumber k. This can be
insured easily by adjusting slightly the cell size H.

(a) Equivalent sources

We seek to substitute the surface sources contained in a cubic cell ¢; by certain
‘equivalent sources’ on the faces of ¢;, in such a way that the field produced by the
true and equivalent sources coincide on non-adjacent portions of the scattering sur-
face, to within a prescribed numerical accuracy. (More precisely, the approximation
corresponding to a cell ¢; will be valid outside the concentric cube S; of side 3H,
with exponentially small errors (see Bruno & Kunyansky 2001a; Kunyansky & Bruno
2001). Points outside S; will be referred to as non-adjacent to ¢;.) As we will see, for
computational efficiency it is favourable to use a sequence of three independent sets
of equivalent sources, located on three corresponding sets of points IT¢, ¢ = 1,2, 3.
Here I1¢ is a Cartesian grid of points contained in the union of all cell faces parallel
to the coordinate plane x, = 0.

For each ¢, equivalent sources (monopoles {'®(ry,r) and dipoles £10®(ry,r)/
Oy (r') of intensity £ and £J, respectively) are to be placed in appropriately chosen
subsets I} of IT¢. In detail, the set II{ consists of all the points in IT° which lie
within the union of two circular domains concentric with (and containing) the faces
of ¢; in IT*, as shown in figure 2. The radius of these domains is chosen to be equal
to (or slightly larger than) the length of the diagonals of the faces (experimentally it
was found that increase of the radius up to 40% leads to somewhat higher accuracy
and relatively small increases in computing times). The intensities £} and 5? of the
equivalent sources are then chosen in such a way that the radiated field evaluated at
the n°!! collocation points on 9S;, is equal, within a prescribed tolerance, to the field
generated by the true sources located within ¢;. As shown in Kunyansky & Bruno
(2001) it is indeed necessary to use both monopoles and dipoles to obtain convergent
approximations from two-face representations of these types.

The spacing of the Cartesian grid containing equivalent sources is taken to equal
1/k, so that there are k2 H? nodes on each face of a cubic cell. Then, the total number
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Figure 2. Locations of the equivalent sources (black circles);
grey squares indicate faces of a cell ¢;

nsouree of monopoles and dipoles inside the circular domains is greater than or equal
to 4k?H?, which makes the acceleration scheme exponentially accurate (Kunyansky
& Bruno 2001). For best performance, the number n°! of collocation points is chosen
to be no smaller than 2n°"; see table 2 in Kunyansky & Bruno (2001).

The intensities & = (£]*,£4) can be obtained as a solution of the linear system,

AE=b, (5.1)

where b = (b1, by, ...b,eon) is a vector containing values of the field generated on 9S;
by the true surface sources, and A is a (! x n%°We) matrix. Since the number
of equations n®!! exceeds the number n%°® of unknowns this linear system cannot
be solved exactly; instead we use the QR decomposition (Golub & Van Loan 1989)
to find a least-squares solution &. Equations (5.1) for the equivalent sources must
be solved in each one of the non-empty cells ¢;. Since the geometry and meshes in
all of the cells are identical, the matrix A is the same for all the ¢;. Thus the QR
factorization of A needs only to be computed once for each scattering problem.

We note that by placing collocation points on square Cartesian grids on the sur-
face of cube S; in an appropriately symmetric fashion one induces certain symmetries
in the system (5.1) which can be exploited to transform (5.1) into a block diagonal
system containing eight blocks. This transformation gives rise to a (significant) eight-
fold reduction in the computational expense required to obtain the intensities &; see
Bruno & Kunyansky (2001a).

(b) Evaluation of ;Y (r) for r in the three-dimensional grid

The methods introduced in the previous section allow us to identify the field
produced by the portion of the scattering surface contained within a cell ¢; with the
corresponding field produced by the equivalent sources on IT f at all points outside S;.
In other words, recalling the definition of adjacency of § 5 a, denoting by 1, %(r) the
field induced at point r by all the equivalent sources non-adjacent to r and calling
w?’true(r) the field induced at point r by all adjacent true surface sources, the field
1) induced by all surface sources at any point r in space is given by

D(r) =t r) + () + e (5-2)

where |gy| < €, and ¢ is the prescribed numerical tolerance. In this section we present
an efficient algorithm for the evaluation of ¢;*“!(r) at all points r in the three-

dimensional grid.
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The acceleration algorithm uses a quantity related to those occurring in equa-
tion (5.2), namely, the field 1} (r) produced at a grid point = by all of the equivalent
sources except the one at point r, where the Green’s function is infinite. Using the
notation,

1k|7‘ Tl
f
“(r —7y) 47r|r—7'g| or T #7e,
for r = 7y,
1k|7‘ Tl
f
TS (r— ) { dzy(r') dm|r — ry|’ orr #7e,
L0, for r = 7y,
we have
dp(r) = Y &P (r =) + & T (r =), (5.3)

grid sources

We note that ¢ is not an approximation to any of the physical quantities under
consideration since, at any given r € dD, the quantity ;(r) contains only poor
approximations of contributions from sites adjacent to r. Subtraction of these poor
approximations would then complete the evaluation of 1, **%(r).

The importance of the quantity ¢} lies, of course, in the fact that, being an exact
convolution in a Cartesian grid, it can be evaluated accurately and efficiently by
means of the FFT. The required quantity 1,*? can be obtained from 1; by sub-
tracting contributions from adjacent cells. Smce the equivalent sources are located
in the nodes of three-dimensional rectangular grid, the contributions from adjacent
cells are given by three-dimensional convolutions, which can be obtained efficiently
by means of (small) three-dimensional FFTs. Havmg obtained ¢, (r) on II*, we
now define ¢"°4 on IT = U,II* = {faces of all ¢;} to equal 1, aeq( ) for » € IT*, and
we proceed to the final portion of our algorithm.

(¢) Ewvaluation of the surface values of 1,

The field "*°4(r), which has thus far been obtained for r € II, is a high-order
approximation of the corresponding field induced at any point in r € IT by the set
of all true sources which are not adjacent to r. Thus, by solving a Dirichlet problem
with boundary values ¥"®°(r) in each cell ¢;, the full non-adjacent field can be
obtained at every surface discretization point. This Dirichlet problem can be solved
uniquely and in a stable manner since the size of the cells has been chosen so that
internal resonances do not occur; see Bruno & Kunyansky (2001a) and Kunyansky
& Bruno (2001) for a detailed error analysis in these regards.

In order to approximate the non-adjacent field inside a given cell, we use the
discretized plane wave expansion (Felsen & Marcuvit 1973)

wave
n

o~ Z ¢; exp(ik;r), (5.4)
j=1

where k; are unit vectors defining directions of wave propagation, and ¢ = (¢y, (2, - - -,
Cpwave) is a vector of expansion coefficients. The procedure is quite similar to that
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of §5a: the coefficients ¢ are found as a solution of an overdetermined system of
equations which is obtained by matching the field values on dS; with the plane wave
expansion (5.4). Asin § 5 a, by properly choosing the discretization directions we take
advantage of the symmetries of the system and obtain eightfold complexity reduc-
tions. Finally, the plane wave expansions are evaluated at the surface discretization
points, and the accelerated algorithm for evaluation of non-adjacent interactions is
complete.

(d) Solution of the discretized integral equation

Sections 4 and 5 contain the main prescriptions for our fast and high-order integra-
tion scheme. Use of the iterative solver GMRES (Saad & Schultz 1986) (un-restarted)
then gives rise to our fast high-order scattering solver. The number of iterations
required to achieve convergence to a given accuracy is significantly affected by the
value chosen for the parameter v of equation (2.2). In our computations we use the
value v = max{3, A/}, where A is the diameter of the scatterer. Indeed, our exper-
iments have shown that this value of + leads to a substantially reduced numbers of
GMRES iterations—of the order of 10 to 20 iterations, even for acoustically large
problems.

(e) Owerall complezity

A detailed operation count for our algorithm is given in Bruno & Kunyansky
(2001a); there it is shown that the overall complexity of our method is of order
O(NS/5log N) to O(N*/31og N) operations—depending on the geometric character-
istics of the scattering surface. In this section we describe the basic rationale behind
our reduced complexity counts, which contrast with the O(N?3/21log N) complexity
of the classical FFT approaches (Bleszynski et al. 1996; Bojarski 1982; Catedra et
al. 1989; Phillips & White 1997). Also, in table 1 we demonstrate numerically the
O(N*/3log N) scaling of our algorithm for smooth surfaces.

As mentioned in the introduction and discussed in § 5 a, our algorithm subdivides
the volume occupied by the scatterer into a number of (relatively large) cubic cells,
and it places equivalent sources on the faces of those cells; see figure 2. This procedure
is actually repeated three times, to obtain field values on all cell faces without resort-
ing to a full volume FFT. Thus, in each one of the three field computations, the planes
containing equivalent sources are separated by a distance H, which may be chosen to
depend on N rather arbitrarily: H = H(N). By using H(N) > O(N~'/2) one can
obtain FFTs of size < (N1/2)3 = N3/2, Much increased values of H(N), on the other
hand, give rise to correspondingly increased costs for the evaluation of the adjacent
interactions and calculation of equivalent source intensities. The optimization calcu-
lations given in Bruno & Kunyansky (2001a) show that the optimal choice of H(N)
leads to the operation counts quoted above for our algorithm. The O(N*/31og N)
estimate applies to smooth surfaces, for which our high-order algorithm provides
accurate solutions with small values of N; the more favourable O(N%/5log N) count
is valid for highly complex surfaces requiring significant amounts of subwavelength
sampling.

(This difference in operation counts arises as highly complex surfaces require dis-
cretizations which can be significantly finer than those required to resolve the acoustic
wavelength alone. Thus, the exponent 3 determining the size O(N?) of the required
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Table 1. Complezity scaling study for the various portions of the algorithm

small ellipsoid  large ellipsoid ratio

size (in wavelengths \) 28.6 x72Xx7.2 80x20x20 ~+8
number of unknowns 86 878 691 206 ~8
maximum error 2.6 x 107" 1.4 x 107" 0.54

time required for ...

... construction of interpolating splines (§4) 28 s 260 s 9.3
...evaluation of adjacent interactions (§4) 1242 s 16241 s 13.1
... decomposition of matrices of §§5a, c 1s 2s 2

...evaluation of equivalent source intensities 93s 1061 s 114

...computation of convolutions in (5.3) 46 s 145 s 3.2

...subtraction of adjacent FFTs (§50b) 243 s 1642 s 6.8

... evaluation of surface values (§5 c) 15s 119 s 7.9

total time per iteration 1640 s 19469 s 11.9

FFTs, which for a given interplane spacing and a given prescribed accuracy depends
on the wavelength only, can be substantially smaller for complex surfaces (3 = 6/5)
than for smooth surfaces (3 = 4/3); see Bruno & Kunyansky (2001a) for details.)

Table 1 displays computing times used by the various portions of our algorithm in
problems of scattering by two ellipsoids with equal aspect ratios: (4:1:1). The ratio of
acoustical sizes for these ellipsoids is v/8. Correspondingly, the number of unknowns
used for the larger ellipsoid was chosen to equal v/82 = 8 times that used for the
smaller ellipsoid. We see that the accuracy does not deteriorate with the increased
problem size. Further, the overall increase in computing time is in fact smaller than
our estimated factor of 8%/3 = 16; we expect the asymptotic full O(N*/3log N)
behaviour would be observed for considerably larger problems.

6. Numerical results

We first compare results provided by our non-accelerated high-order scattering solver
with corresponding results given by the high-order methods of Canino et al. (1998).
(Here and in what follows we used the value n = max{3,d/A} for the coupling
constant 1 of equation (2.2), where d is the diameter of the scatterer. Indeed, we
have found that this value of 7 leads to a reduced number of GMRES iterations.) In
table 2 we thus present computations of scattering by a sphere of radius 2.7A. In the
computing time portion of table 2, we only show the set-up time reported in Canino
et al. (1998), since in that work a slow LU decomposition was used to solve the
resulting linear system. In the entries corresponding to our algorithm we show the
full time required for the solution of the boundary integral equation. The notation
NA in our tables indicates results obtained by means of the non-accelerated version
of our algorithm.

In examining the time portions of table 2, it should be borne in mind that different
computers were used (a Sparc 10 in Canino et al. (1998) and a 400 MHz PC in our
work) and different problems were solved (a Maxwell system in Canino et al. (1998)
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Table 2. Performance of three high-order methods: the high-order Nystrom and Galerkin
techniques of Canino et al. (1998) and the present algorithm

algorithm radius time unknowns RMS error
Nystrom (Canino et al. 1998) 2.7\ 1953 s (set-up) 5400 2.3%
Galerkin (Canino et al. 1998) 2.7\ 38803 s (set-up) 5400 0.48%
present (NA) 2.7\ 294 s 2526 0.068%
present (NA) 2.7\ 1430's 5430 0.0025%

Table 3. Scattering by spheres of radii 12\ and 24\ as computed by
FISC and the present algorithm

algorithm radius time RAM  unknowns RMS error computer

FISC 12X 12h  1.8Gb 602112 72% SGI Power

Challenge R8000
present (NA) 12\ 6.5h 24 Mb 26214 0.22% Pentium 1T

400 MHz
present 12X 16 h 120 Mb 87318 0.00096% Pentium II

400 MHz
FISC 24\ 8x5h 5Gb 2408 448 7.9% SGI Origin 2000

(8 processors)
present 24\ 33h 807 Mb 349 830 0.024% Pentium II

400 MHz

Table 4. Scattering from large ellipsoids; point source inside the body

type (ka,kb,kc)  #it time/it RAM unknowns max. error RMS error

accelerated (150,37.5,37.5) 18 112 min 490 Mb 298806 3.7 X 107" 8.8 x107°
accelerated  (200,50,50) 18 112 min 490 Mb 298806 1.3 x10™% 2.2 x107°

and the Helmholtz equation in our work). It should also be emphasized that, as
mentioned above, only the set-up time of the high-order integrator of Canino et
al. (1998) is shown. We see that our method produces substantially more accurate
results than those of Canino et al. (1998), in computing times which are comparable
or smaller than the set-up portions reported in that work.

Table 3 compares the performance of our accelerated algorithms with that of
FISC (Song et al. 1988) in the computations of scattering from large spheres. We
see that the present algorithm achieves considerably higher accuracy than Song et
al. (1988) with lesser or comparable computational resources. The efficiency of our
algorithm results, in part, from the fact that a lower discretization density suffices
for our integrator to yield highly accurate results.

Table 4 shows accuracies and computation times for scattering from large ellip-
soids with radii (a,b,c). The results presented in tables 3 and 4 can be compared
with the large-scale computations of Bleszynski et al. (1996). In the latter work
the adaptive integral method running on 40 IBM SP2 nodes was used to compute
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Figure 3. Ogive.

Table 5. Scattering by a one-wavelength long ogive. Non-accelerated computations

grid unknowns iterations time /it maximum error
49 x 32 1568 20 69 s 2.5 x107°
99 x 64 6336 17 12 min 45 s 3.8x107°
199 x 128 25472 17 3 h 27 min 9.8 x 107"

(electromagnetic) scattering from the bodies up to the size 70\ x 40X x 15X (or
(ka, kb, kc) = (220,126,47)); no error estimates were provided in that work.

Finally, we present preliminary results obtained for the scattering from surfaces
with singularities. Table 5 shows the accuracy obtained from our methods in the
solution of a scattering problem for a one-wavelength-long ogive depicted in figure 3.
This test body was described in Woo et al. (1993).

Here, to facilitate error evaluation, we used boundary conditions as given by a
unit source located inside the ogive—for which the exact solution is the field of the
source itself. Our ‘analytic’ method to resolve a geometric singularity is akin to the
one we use for resolution of the Green function singularity: namely, a change to an
appropriately chosen polar coordinate system provides a preliminary regularization.
Use of polynomial changes of variables around each singular point, be it a point
or line singularity, then provides the needed additional regularization; see Bruno &
Kunyansky (2001b).
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