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The surface second-harmonic generation from interacting spherical plasmonic nanoparticles building different

clusters (symmetric and asymmetric dimers, trimers) is theoretically investigated. The plasmonic eigenmodes

of the nanoparticle clusters are first determined using an ab initio approach based on the Green’s functions

method. This method provides the properties, such as the resonant wavelengths, of the modes sustained by a

given cluster. The fundamental and second-harmonic responses of the corresponding clusters are then calculated

using a surface integral method. The symmetry of both the linear and nonlinear responses is investigated, as well

as their relationship. It is shown that the second-harmonic generation can be significantly enhanced when the

fundamental field is such that its second harmonic matches modes with suitable symmetry. The role played by the

nanogaps in second-harmonic generation is also underlined. The results presented in this article demonstrate that

the properties of the second-harmonic generation from coupled metallic nanoparticles cannot be fully predicted

from their linear response only, while, on the other hand, a detailed knowledge of the underlying modal structure

can be used to optimize the generation of the second harmonic.
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I. INTRODUCTION

Plasmonic nanostructures play an important role in the

current development of applications in nanophotonics [1].

These nanostructures have unique and interesting optical prop-

erties thanks to the surface plasmon resonances they support

[2]. These resonances are associated with strong scattering,

absorption, as well as localization of light far below the

diffraction limit [3]. Spherical metallic nanoparticles are ideal

systems for studying their properties, such as the resonance

wavelength or width [4]. Indeed, the interaction between a

plasmonic nanosphere and an electromagnetic excitation plane

wave can be handled analytically using a multipole expansion

deduced from Mie theory [4]. This theory predicts the influence

of the surrounding medium, of the nanoparticle diameter, and

of the chemical composition, on the surface plasmon resonance

properties. Unfortunately, the surface plasmon resonances

sustained by nanospheres are weakly tunable; i.e., they are

difficult to adjust for practical applications such as refractive

index sensing [5,6], surface-enhanced Raman spectroscopy

[7], and single molecule detection [8,9]. It is however possible

to overcome this limitation by using the coupling between

plasmonic modes supported by several particles [10]. Indeed,

the plasmonic modes supported by individual nanoparticles

hybridize when the nanoparticles are moved close to each

other [11]. A simple example of interacting plasmonic systems

is just two nanoparticles forming a nanodimer [12,13]. The

properties of the plasmon resonance of such a dimer, for

example, the resonance wavelength, not only depend on the

nanoparticles’ diameters or their chemical composition, but

also on the spacing between the nanoparticles [14,15]. This

dependence allows for the design of a nanoruler based on

the resonance shift induced by a modification of the gap

distance [15]. Furthermore, new optical features, such as

Fano resonances arising from the coupling between modes
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with different radiative properties [16–19], are observed

when nanoparticles interact. The number of modes, and then

the complexity of the optical response, increases with the

number of constituent nanoparticles. The optical properties

of nanotrimers [19,20], quadrumers [21,22], and heptamers

[23] have been intensively studied as examples of clusters

with particular symmetry, and the point group theory provides

a clear insight into the hybridized mode properties [18,24,25].

While the linear optical properties of nanoparticle cluster

are now well understood, this is not the case for their

nonlinear response. The role played by plasmon modes in

the enhancement of nonlinear optical processes such as

second-harmonic generation (SHG) [26–29], third-harmonic

generation [30,31], and four-waves mixing [32] is a key factor

in the development of promising applications such as nonlinear

optical sensing [33,34], nonlinear optical characterization

[35–37], and nonlinear imaging [38,39]. As a consequence,

the development of suitable theoretical tools to understand

how this enhancement occurs is important [40–47]. While

the nonlinear optical response of complex nanoclusters can

be numerically evaluated [48–51], the role played by each

individual plasmon mode is difficult to assess using such

numerical methods [52]. Hence, it is difficult to obtain a

description of the nonlinear response of a plasmonic cluster in

terms of its underlying modal structure, which is important for

optimizing its nonlinear response [53,54].

In this article, SHG from interacting spherical plasmonic

nanoparticles is theoretically investigated, and an ab initio

approach based on the Green’s functions method is used

to determine the eigenmodes of plasmonic clusters. The

fundamental and second-harmonic (SH) responses of the

corresponding clusters are then calculated using a surface

integral equation (SIE) method. Combining both methods

reveals the role played by the different eigenmodes in the SHG

at both the excitation and the reemission steps, as well as their

relation with the cluster symmetry. Several cluster geometries

are considered, namely, symmetric/asymmetric dimers and

linear trimers.
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II. THEORETICAL METHODS

A. Eigenmode evaluation of plasmonic systems

The eigenmodes of the plasmonic system are calculated

using a method based on the Green’s tensor [55]. We consider

a system composed of n spherical particles and assign to each

particle a dipole. This approximation is valid when the size of

the particle is much smaller than the effective wavelength in the

material; for plasmonic nanostructures at optical frequencies,

this holds for particles smaller than about 50 nm [4]. For

larger nanostructures, the same approach can be used, but

the different nanostructures must be split into a collection of

dipoles [56]. The electric field due to a discretized system

composed of n dipoles can be computed as

�Ei = �E0
i +

n∑

j=1,j �=i

↔
G ij · k2

0�εjVj
�Ej +

↔
M i · �εi

�Ei −
↔
L · �Ei,

(1)

where �Ei represents the total, self-consistent, electric field, �E0
i

is the incident field,
↔
G ij is the homogeneous Green’s tensor,

↔
M i is the self-term,

↔
L is the depolarization, �ε = (εi − εB)

is the dielectric function contrast with the background, and Vj

is the volume of the particle [55]. Equation (1) can be written

into a matrix form,

(
↔
1 −

↔
S ) · �E = �E0, (2)

where the right-hand side contains information about the inci-

dent condition, and the left-hand side contains the information

on the structure, i.e., the matrix
↔
S ;

↔
1 is the unit matrix. In

order to evaluate the eigenmodes, we determine the possible

field distributions when the incident field is zero, i.e., when

the right-hand side of the equation is a null column vector. In

this case, Eq. (2) reduces to

(
↔
1 −

↔
S ) · �E = �0, (3)

which must be solved to obtain the possible modes in the

structure. Let ξq(ω), q = 1,2, . . . , 3n, where n is the number

of dipoles, be the eigenvalues of the matrix
↔
S (we recall

that we are dealing with a vectorial problem, where the three

components of the electric field are associated with each

dipole). Note that nonzero values of �E are only found when

ξq(ωq) = 1 for some q = 1,2, . . . ,3n. The corresponding

frequencies ωq are the eigenfrequencies of the system related

to the eigenvectors of matrix
↔
S , which give the field

distributions for the respective eigenmodes. In practice, the

eigenfrequencies are determined numerically by computing

the eigenvalues of the matrix
↔
S , ξq , in the parameter space of

real and imaginary ω and identifying the points at which ξq is

equal to 1. It should be noted that the matrix
↔
S depends both

on the structure and the frequency ω. The dielectric function

of gold is modeled using a modified Drude model taking into

account the interband transitions [57]. The dielectric function

is then given by

ε(ω) = ε∞ −
ω2

p

ω2 − iγ ω
+ I (ω), (4)

where the term I (ω) is the contribution of interband transitions

to the dielectric function. The eigenvalue matrix equation does

not have a solution if ω is purely real, and one needs to consider

a complex value ω = ωr + iωi for finding the eigenvalue

[58]. Physically, the imaginary part of the eigenfrequency

corresponds to the width of the plasmon resonance [58].

B. Surface integral equation method

The SHG computations have been performed using the SIE

method reported in Ref. [49]. Note that this method has been

recently extended to periodic nanostructures [59]. The SIE

method for SHG is only briefly described here, and the reader

is referred to previous publications for the numerical imple-

mentation details [49,59]. The linear surface currents, which

are expanded on Rao-Wilton-Glisson (RWG) basis functions

[60,61], are used for the evaluation of the fundamental electric

fields just below the gold surfaces and then used for the

calculation of the surface SH polarization. Only the component

χS,⊥⊥⊥ of the surface tensor, where ⊥ denotes the component

normal to the surface, is considered, since recent experiments

indicate that this term dominates the surface response of

metallic nanoparticles [62]. Note that other contributions to the

SH signal, namely, the component χS,////⊥ of the surface tensor

(where // denotes the component tangential to the surface),

as well as bulk contribution, are theoretically allowed, but

these contributions weakly contribute to the total SH response

[62,63]. Furthermore, the present work is focused on the role

played by the plasmon eigenmodes in the SHG enhancement

from nanoparticle assemblies, and the following discussion is

valid whatever the nonlinear sources. In the present case, only

the normal component of the nonlinear polarization does not

vanish, which can be written as

P⊥(�r,2ω) = χS,⊥⊥⊥E⊥(�r,ω)E⊥(�r,ω). (5)

The SH surface currents are obtained by solving the SIE

formulation, taking into account the nonlinear polarization

and enforcing the boundary conditions at the nanostructure

surfaces [64]. Like the linear surface currents, the SH surface

currents are expanded on RWG basis functions. The expanding

coefficients are found by applying the method of moments with

Galerkin’s testing [61]. A Poggio-Miller-Chang-Harrington-

Wu formulation is used to ensure accurate solutions even

at resonant conditions [61,65]. The SH electric field is then

deduced from the SH surface currents using a singularity

subtraction method for the evaluation of the Green’s functions

[61]. The surface of the plasmonic nanostructures is discretized

with a triangular mesh with typical side of 2 nm (Fig. 1). Note

that the discretization of the nanostructures is not required for

the ab initio eigenmode analysis described above.

III. RESULTS AND DISCUSSION

In this section, the SHG from coupled metallic nanoparti-

cles is investigated using the two methods described above:

the ab initio method for the determination of the eigenmode

245449-2



SURFACE SECOND-HARMONIC GENERATION FROM . . . PHYSICAL REVIEW B 89, 245449 (2014)

FIG. 1. (Color online) (a) The symmetric gold nanodimers studied in this work. The nanoparticle diameter is 20 nm, and the spacing is

4 nm. The blue plane corresponds to the plane discussed in the main text (x = 0). This plane is alternatively a symmetry or antisymmetry plane

for the electromagnetic field (see the discussion in the main text). The excitation conditions and the mesh used for the SIE computations are

also shown. The scattering angle θ is defined relatively to the z axis. (b) Diagram describing the resonant wavelength of the eigenmodes arising

from the coupling between the dipolar modes of two 20 nm gold nanoparticles with a nanogap of 4 nm. The arrows indicate the orientation of

the dipolar moments for the corresponding eigenmodes. (c)–(f) Normalized real part of the x-component of the electric field evaluated for the

eigenmode with a resonant wavelength of (c) λ = 711 nm, (d) λ = 678 nm, (e) λ = 645 nm, and (f) λ = 622 nm.

and the SIE method for complete electromagnetic compu-

tations. Our approach is the following. The eigenmodes are

first characterized; i.e., their resonant wavelengths and their

symmetry properties are determined. In order to understand the

role played by the different modes in the nonlinear response

of the nanoparticle clusters, the exact computations of the

SHG are then analyzed, keeping in mind the information

provided by the eigenmode analysis. Dispersive gold dielectric

constants used for the SIE computation are obtained from

experimental data of Johnson and Christy [66]. All the SIE

and eigenmode computations are performed for nanoparticle

clusters embedded in a high-refractive-index background

(εm = 6.145 corresponding to TiO2) in order to shift the

surface plasmon resonances away from the interband transition

of gold (λ � 500 nm). Symmetric and asymmetric dimers are

discussed first (Sec. III A and III B); the case of linear trimers

is then investigated in Sec. III C.

A. Symmetric dimer

Let us first consider a dimer of two identical gold

nanoparticles with 20 nm diameters. The spacing between the

nanoparticles is 4 nm [Fig. 1(a)]. The plasmon resonance for

each individual nanoparticle occurs at λ = 660 nm. Figure 1(b)

shows the resonant wavelengths for the different eigenmodes

arising from the hybridization between the dipolar modes

sustained by the individual nanoparticles. The arrows indicate

the orientation of the dipolar moment in each nanoparticle.

The total number of eigenmodes is 6, corresponding to 4

resonant wavelengths, since some modes are degenerate (λ

= 678 nm and 645 nm). The degenerate modes have identical

dipole moments, but the dipoles are aligned along either the

y axis or the z axis. The eigenmode with the longest resonant

wavelength (λ = 711 nm) corresponds to the coupling between

two aligned dipole moments pointing in the same direction.

On the contrary, the eigenmode with the shortest resonant

wavelength (λ = 622 nm) corresponds to the coupling between

two aligned dipole moments pointing in opposite directions.

The two other modes correspond to the symmetric and anti-

symmetric coupling between the dipoles but with the dipoles

oriented perpendicular to the axis joining both nanoparticles

and parallel to the symmetry plane shown in Fig. 1(a). In

other words, the different eigenmodes result from the coupling

between the individual dipole modes with different relative

orientations. As a consequence, the symmetry properties are

different for each mode. The SIE method permits computation

of the SH electromagnetic fields, and the comparison with the

eigenmode calculations is straightforward when calculating

the distribution of the electric field associated with each mode.

For this reason, we sort the modes by considering the symmetry

of their electric field. The real part of the x-component of the

electric field evaluated with the ab initio method for the four

eigenmodes is shown in Figs. 1(c)–1(f). The x-component

corresponds to the vector component normal to the plane

shown in Fig. 1(a). The eigenmodes fall into two categories,

depending on the symmetry of the electric field with respect to

the symmetry plane shown in Fig. 1(a). The two modes with

the longest resonant wavelength are defined as antisymmetric

modes, since the plane shown in Fig. 1 is an antisymmetry

plane (similar to a perfect electric conductor [67]) for these

modes [Figs. 1(c) and 1(d)]. The two modes with the shortest

resonant wavelength are defined as symmetric modes [Figs.

1(e) and 1(f)]. Indeed, the normal component of the electric

field associated with these modes vanishes in the plane x =
0, indicating that this plane is a symmetry plane (similar to a

perfect magnetic conductor [67]) for these mode.

To investigate the link between the eigenmodes supported

by a plasmonic nanostructure and its SH response, let us first

consider the excitation of the symmetric nanodimer by an

incoming plane wave. SIE computations have been performed

with an incident plane wave polarized along the x axis

and propagating along the z axis [Fig. 1(a)]. The incident

wavelength is λ = 1244 nm. The near-field distributions of

the intensity and the real part of the x-component of the

electric field are shown in Figs. 2(a) and 2(c), respectively.

It is obvious that these distributions correspond to that of

the mode with a resonant wavelength equal to λ = 711 nm,

demonstrating that this mode is excited in this case [compare
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FIG. 2. (Color online) Near-field distribution of (a) the funda-

mental and (b) the SH intensities close to a nanodimer composed

of two 20 nm gold nanoparticles. The spacing between the two

nanoparticles is 4 nm. The incident wavelength is λ = 1244 nm.

Real part of the x-component for (c) the fundamental and (d) the

SH electric fields, as well as the real part of the z-component for

(e) the fundamental and (f) the SH electric fields. (g) Scattered SH

intensity as a function of the scattering direction θ (Fig. 1) computed

for different incident wavelengths increasing from λ = 1150 nm to

1422 nm.

Fig. 2(c) with Fig. 1(c)]. Obviously, the incident wavelength

used in the SIE calculation (λ = 1244 nm) does not match

the resonance wavelength of the λ = 711 mode; still, only

this mode fulfills the symmetry selection rules imposed by

both the cluster geometry and the incident beam properties.

Hence, this excitation scheme corresponds to off-resonant

excitation, which is of course weaker than in the resonant case

(let us recall that the excitation of a Lorentzian mode does not

require an exact match between the excitation wavelength and

the resonance wavelength, although the excitation is strongest

in that, on-resonant, case) [68]. The near-field distribution in

Fig. 2(a) is mainly characterized by a significant enhancement

of the electric field in the nanogap, where it reaches 30 times

the illumination intensity. The intensity enhancement evolves

from 25 for an incident wavelength λ = 1422 nm to 36 for

an incident wavelength λ = 1150 nm. This hotspot is induced

by charges with opposite signs standing on each side of the

nanogap and is characteristic of the linear response of metallic

nanoantennas [69].

Now we turn our attention to the SHG from this nanodimer.

Figure 2 shows the SH near-field intensity [panel (b)] as well

as the real part of the x- [panel (d)] and z-components [panel

(f)] of the SH electric field computed with the SIE. It is obvious

that these distributions differ from the ones obtained for the

fundamental wave. For instance, the SH field is not enhanced

in the nanogap, as is the case for the fundamental field [70].

Contrary to the fundamental electric field, which is driven

by an incident plane wave, the SH electric field is driven by

the nonlinear polarization sources located at the nanoparticle

surfaces. The nonlinear polarization can be expressed as [40]:

P⊥(�r,2ω) = χS,⊥⊥⊥r̂(r̂ · �E(�r,ω))2, ∀�r ∈ S, (6)

where �E(�r) is the fundamental electric field evaluated in

the metallic nanoparticle, just below the surface S, and r̂

is the outward vector normal to the surface. The following

relations are deduced from the properties of the near-field at

the fundamental wavelength [see Figs. 2(c) and 2(e)], and the

expression of the nonlinear polarization, Eq. (6):

Px(�r1,2ω) = −Px(�r2,2ω), (7)

Py,z(�r1,2ω) = Py,z(�r2,2ω), (8)

where �r1 = (x,y,z) and �r2 = (−x,y,z) are linked by a mirror

symmetry relation. Note that these relations can be directly

deduced from the cluster geometry and the incident wave

properties. Since the nonlinear polarization is the physical

origin of the SH electric field, the SH electric field must follow

the selection rules that apply to the nonlinear polarization,

i.e., the rules induced by Eqs. (7) and (8), in order to fulfill

the Curie dissymmetry principle. That clearly means that the

SH electric field distribution must be described using only

symmetric modes, corresponding to the modes for which

Ex(�r,2ω) = 0, ∀�r = (0,y,z). (9)

In other words, only the modes for which the normal

component of the electric field vanishes in the plane x = 0 have

to considered to expand the SH wave. From the eigenmode

analysis, it is clear that the two modes with the shortest

resonant wavelengths are involved in the SH wave due to their

symmetry properties. In order to confirm this hypothesis, the

SH intensity scattered in the (O, x, z) plane was calculated

as a function of the scattering direction θ [Fig. 2(g)]. Several

incident wavelengths, corresponding to the resonant excitation

of the eigenmodes at the SH wavelength, were considered

in order to determine which modes are active at the SH

emission step. Note that the SH intensity vanishes in the

forward direction, as expected for a metallic nanostructure

with a centrosymmetric shape [40]. The scattered SH intensity

is maximal when the symmetric modes are resonantly excited

at the SH wavelength, especially the mode corresponding to

two parallel dipole moments pointing in the same direction. As

discussed by Dadap et al. [40] in the case of isolated spherical

nanoparticles, this mode is excited by the phase variation of

the incident wave across the considered nanostructure. This

mode is resonant at λ = 645 nm and is resonant at the SH

wavelength for an incident wavelength λ = 1290 nm (yellow

curve). Indeed, it was shown that localized surface plasmon

resonances can increase SHG either at the fundamental or

SH wavelength [40]. In this case, the far-field SH intensity

is seven times higher than in the off-resonant case (λ =
1150 nm), even though the fundamental intensity is slightly
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FIG. 3. (Color online) The symmetric gold nanodimers studied

in this work. The nanoparticle diameter is 20 nm, and the spacing is

4 nm. The blue plane corresponds to the plane discussed in the main

text (z = 0). Contrary to Fig. 2, an incident plane wave propagating

along the x axis and polarized along the z axis is considered. The

scattering angle θ is defined relative to the z axis.

FIG. 4. (Color online) Near-field distribution of (a) the funda-

mental and (b) the SH intensities close to a nanodimer composed

of two 20 nm gold nanoparticles. The spacing between the two

nanoparticles is 4 nm. An incident plane wave propagating along

the x axis and polarized along the z axis is considered. The incident

wavelength is λ = 1244 nm. Real part of the x-component for (c) the

fundamental and (d) the SH electric fields, as well as the real part of

the z-component for (e) the fundamental and (f) the SH electric fields.

(g) Scattered SH intensity as a function of the scattering direction θ

(Fig. 3) computed for different incident wavelengths increasing from

λ = 1244 nm to 1492 nm.

lower. This observation indicates that the symmetric modes

are the ones involved in the scattered SH wave, as predicted

by the eigenmode analysis. These results indicate that modes

with the required symmetry properties effectively contribute

to the SHG from coupled plasmonic nanostructures, although

these modes cannot be directly excited by an incoming plane

wave in the linear regime.

B. Influence of the excitation condition

In order to investigate the influence of the excitation

condition on the derived selection rules, an incident plane

wave propagating along the x axis and polarized along the

z axis is considered (see Fig. 3). The first consequence of

this excitation configuration is that the plane x = 0 is no

longer a symmetry/antisymmetry plane. In the present case,

the selection rules must be derived relative to the plane z = 0

(Fig. 3) and can be written as:

Pz(�r1,2ω) = −Pz(�r2,2ω), (10)

Px,y(�r1,2ω) = Px,y(�r2,2ω), (11)

where �r1 = (x,y,z) and �r2 = (x,y, − z) are linked by a mirror

symmetry relation, and

Ez(�r,2ω) = 0, ∀�r = (x,y,0). (12)

The plane z = 0 is clearly an antisymmetry plane for the

fundamental electric field but a symmetry one for the SH

electric field (see the near-field distributions in Fig. 4), as

observed for the plane x = 0 when an incident plane wave

polarized along the x axis and propagating along the z axis is

considered (see the discussion in Sec. III A). The mode excited

FIG. 5. (Color online) (a) The two asymmetric nanodimers con-

sidered in this work. Diagrams describe the resonant wavelength of

the eigenmodes arising from the coupling between the dipolar modes

of an asymmetric dimer composed of a 20 nm gold nanoparticle with

(b) a 30 nm or (c) a 40 nm gold nanoparticle. The spacing between

the two nanoparticles is 4 nm.
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at the fundamental wavelength is the one for which two parallel

dipole moments point in the same direction [see Fig. 1(e)].

The mode excited at the SH wavelength corresponds to the

mode for which two aligned dipole moments point in the same

direction [see Fig. 1(c)]. This observation is confirmed by the

far-field analysis. Indeed, the far-field SH intensity is maximal

when this mode is resonantly excited at the SH wavelength

[Fig. 4(g)], demonstrating that the contribution of this mode to

the scattered SH wave is important. It is interesting to note that

here the excitation scheme is the reverse of the previous one:

The mode excited at the fundamental (SH) wavelength in the

previous case is now the mode excited at the SH (fundamental)

wavelength. Nevertheless, the far-field SH intensity vanishes

along the backward and forward directions in each case. In the

following part, asymmetric dimers are considered, reducing

the symmetry of the problem under study in order to test

the generality of the derived selection rules and to address

the influence of symmetry breaking on the SH response of

nanoparticle clusters.

C. Asymmetric dimers

Dimers composed of gold nanoparticles with different di-

ameters are investigated. Similar systems were experimentally

studied [71]. The diameter of one nanoparticle is kept constant

(20 nm) while two different diameters are considered for

the second, larger, nanoparticle: 30 nm and 40 nm. These

FIG. 6. (Color online) Near-field distribution for (a) the funda-

mental and (b) the SH intensities close to a nanodimer composed

of a 20 nm and a 30 nm gold nanoparticle. The spacing between

the two nanoparticles is 4 nm. The incident wavelength is 1456 nm.

Real part of the x-component for (c) the fundamental and (d) the SH

electric fields. (e) Scattered SH intensity as a function of the scattering

direction computed for fundamental wavelengths increasing from

λ = 1150 nm to λ = 1456 nm.

nanodimers are no longer centrosymmetric [Fig. 5(a)]. The

nanogap is 4 nm for all cases. The plasmon resonance

wavelength for the 30 nm nanoparticle is λ = 678 nm and

that of the 40 nm nanoparticle is λ = 700 nm. Figure 5 shows

the wavelengths of the eigenmodes arising from the coupling

between the dipolar modes of a 20 nm gold nanoparticle

with the dipolar modes of a 30 nm [Fig. 5(b)] or a 40 nm

[Fig. 5(c)] gold nanoparticle. The resonance wavelengths

of the hybridized modes, as compared to the symmetric

dimer, are different, since the resonance wavelengths of the

individual dipole modes supported by the nanoparticles vary

with the nanoparticle diameter. Nevertheless, the orientations

of the dipolar moment for the different hybridized modes

are identical to those of the symmetric dimer discussed

in Sec. III A. For instance, for all the nanodimers studied,

the hybridized mode with the longest resonant wavelength

corresponds to the coupling between two dipolar moments

aligned in the same direction. The near-field distributions of the

fundamental and SH intensities, as well as the corresponding

distribution of the real part of the x-component of the electric

field, were computed using SIE for an incident plane wave

FIG. 7. (Color online) Near-field distribution for (a) the funda-

mental and (b) the SH intensities close to a nanodimer composed of

a 20 nm and a 40 nm gold nanoparticle. The spacing between the

two nanoparticles is 4 nm. The incident wavelength is λ = 1492 nm.

Real part of the x-component for (c) the fundamental and (d) the SH

electric fields. (e) Scattered SH intensity as a function of the scattering

direction computed for fundamental wavelengths increasing from

λ = 1150 nm to λ = 1492 nm.
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FIG. 8. (Color online) The gold nanotrimers studied in this work.

The nanoparticle diameter is 20 nm, and the spacing is 4 nm. The blue

plane corresponds to the plane discussed in the main text (x = 0).

This plane is alternatively a symmetry or antisymmetry plane for

the electromagnetic field (see the discussion in the main text). The

scattering angle θ is defined relative to the z axis.

polarized along the x axis and propagating along the z axis

(see Figs. 6 and 7). At the first sight, the general behavior

of the near-field distributions is identical to that observed for

the symmetric nanodimer. For example, an enhancement of

the fundamental electric field is observed in the nanogap,

but no particular enhancement of the SH electric field in

this region is visible [Figs. 6(b) and 7(b)]. This observation

indicates that the selection rules derived in the previous

section are qualitatively followed in the case of asymmetric

dimers, even though these nanostructures do not possess any

symmetry/antisymmetry planes. Note that the nanoparticles

considered in the present work are perfectly spherical, but

the selection rules are broken in the case of realistic metal-

lic nanoparticles with small sizes, as was experimentally

demonstrated [72]. In order to investigate the influence of

the asymmetry on the SHG in the far-field, the SH intensity

scattered in the (O, x, z) plane was calculated as a function of

the scattering direction for the two asymmetric nanodimers

considering several incident wavelengths corresponding to

resonant excitation of the eigenmodes at the SH wavelength

(see Fig. 5). As in the case of the symmetric nanodimer, the

scattered SH intensity is maximal when the symmetric modes

(using the same terminology even though the field amplitudes

are different in the asymmetric cases; Figs. 6 and 7) are

resonantly excited at the SH wavelength. The asymmetry of

the nanodimer is clearly revealed by the SH far-field, since

the SH intensity scattered along the −x direction differs from

that scattered along the x direction [Figs. 6(e) and 7(e)] [36].

Even though the centrosymmetry is broken, the SH intensity

scattered in the forward direction is not dramatically increased

but remains only a small part of the total SH intensity.

This observation is consistent with previous experimental

results, which report lower SHG from asymmetric dimers

than from symmetric ones [71]. This point confirms that the

selection rules are not completely broken when the diameter

of one of the nanoparticles is twice the diameter of the other

one.

D. Linear trimer

Metallic nanostructures with several nanogaps are also

promising for applications in nonlinear plasmonics. For

FIG. 9. (Color online) (a) Diagram describing the resonant wavelength of the eigenmodes arising from the coupling between the dipolar

modes of three 20 nm gold nanoparticles with nanogaps of 4 nm. The three nanoparticles are lined up along the x axis. The arrows indicate the

orientation of the dipolar moments for the corresponding eigenmodes. (b)–(g) Real part of the x-component of the electric field evaluated for

the eigenmode with a resonant wavelength of (b) 742.5 nm, (c) 685 nm, (d) 662 nm, (e) 653 nm, (f) 638 nm, and (g) 611 nm.
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FIG. 10. (Color online) Near-field distribution of (a) the fundamental and (b) the SH intensities close to a linear nanotrimer composed of

three 20 nm gold nanoparticles. The spacing between the nanoparticles is 4 nm. The incident wavelength is λ = 1306 nm. Real part of the

x-component for (c) the fundamental and (d) the SH electric fields. (e) The scattered SH intensity as a function of the scattering direction

computed for incident wavelength increasing from λ = 1222 nm to λ = 1484 nm.

example, it was recently demonstrated that the SHG from

three-arm multiresonant plasmonic nanoantennas is higher

than SHG from antennas resonant only at the fundamental

wavelength [73]. A linear nanotrimer composed of three

identical 20 nm nanoparticles lined up with 4 nm separations

is considered (Fig. 8). The eigenmode analysis for this cluster

is presented in Fig. 9. The total number of eigenmodes

is nine, corresponding to six resonant wavelengths, since

modes with resonant wavelengths λ = 685 nm, 662 nm,

and 638 nm are degenerated. As observed in the case of the

symmetric nanodimer studied in Sec. III A, both symmetric

and antisymmetric modes resulting from the coupling between

original dipolar modes are revealed by the eigenmode analysis.

SIE computations were performed considering an incident

plane wave polarized along the x axis and propagating along

the z axis. Due to the specific nanoparticles’ organization and

fundamental near-field distribution symmetry (Fig. 10), the

selection rules [Eqs. (7) and (8)] derived for the SHG from

symmetric nanodimer also apply to the case of SHG from

this linear nanotrimer. Note that the x-component of the SH

electric field does not necessary vanish in the gap center,

since the nanogaps do not stand in the x = 0 plane (the

symmetry plane shown in Fig. 8). Indeed, the fundamental

electric field amplitudes computed on each side of a given

nanogap are not perfectly identical, and the amplitudes of the

nonlinear currents are then different, which does not result in

total destructive interferences. In order to determine which

modes dominate the nonlinear response, the SH intensity

scattered in the (O, x, z) plane was calculated as a function

of the scattering direction and shown in Fig. 10(e). Several

incident wavelengths, corresponding to resonant excitation

of the available eigenmodes at the SH wavelength, were

considered. As observed in the case of the nanodimers, the SH

far-field intensity is maximal when the SH wavelength matches

the resonant wavelength of the mode for which all the dipolar

moments are parallel and pointing in the same direction. This

confirms that the derived selection rules are general and can

be applied to different kinds of nanoparticle clusters.

IV. CONCLUSIONS

In summary, SHG from interacting spherical plasmonic

nanoparticles was theoretically investigated comparing an

ab initio approach based on the Green’s functions method

with the SIE method. Several cluster geometries, including

symmetric/asymmetric dimers, and linear trimers, were con-

sidered in this work. The fundamental and SH responses of

the corresponding clusters were computed, and an eigenmode

analysis was performed. The role played by the different

eigenmodes in the SHG, at both the excitation and reemission

steps, was emphasized in relation to the cluster symmetry. It

was in particular observed that the SHG can be significantly

enhanced when the fundamental field is such that its SH

matches modes with suitable symmetry. The results presented

in this article are not specific to SHG. Our method can be

applied to complex assemblies with an arbitrary number of

nanoparticles, as well as other nonlinear optical processes,

such as third-harmonic generation. However, the method

used in this work for the determination of the eigenmodes

only involves the dipolar modes supported by the individual

nanoparticles, while in specific cases, higher multipolar

modes should be included to obtain a complete description

of wave-mixing processes from nanoparticle assemblies, as

underlined in the case of SHG [40,74]. In order to handle

such higher multipolar modes as well as the influence of

a dielectric substrate on the eigenmode properties, an elec-

trostatic eigenmode method was developed and represents

a useful approach to complement the exact electromagnetic

computations presented here for fully understanding and tai-

loring the nonlinear response of coupled metallic nanoparticles

[75–79].
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P. Mulvaney, and T. J. Davis, Nano Lett. 10, 2080 (2010).

[79] C. Forestiere, L. Dal Negro, and G. Miano, Phys. Rev. B 88,

155411 (2013).

245449-10

http://dx.doi.org/10.1103/PhysRevB.82.235403
http://dx.doi.org/10.1103/PhysRevB.82.235403
http://dx.doi.org/10.1103/PhysRevB.82.235403
http://dx.doi.org/10.1103/PhysRevB.82.235403
http://dx.doi.org/10.1103/PhysRevB.80.233402
http://dx.doi.org/10.1103/PhysRevB.80.233402
http://dx.doi.org/10.1103/PhysRevB.80.233402
http://dx.doi.org/10.1103/PhysRevB.80.233402
http://dx.doi.org/10.1029/RS012i005p00709
http://dx.doi.org/10.1029/RS012i005p00709
http://dx.doi.org/10.1029/RS012i005p00709
http://dx.doi.org/10.1029/RS012i005p00709
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1126/science.1111886
http://dx.doi.org/10.1126/science.1111886
http://dx.doi.org/10.1126/science.1111886
http://dx.doi.org/10.1126/science.1111886
http://dx.doi.org/10.1364/OE.20.010498
http://dx.doi.org/10.1364/OE.20.010498
http://dx.doi.org/10.1364/OE.20.010498
http://dx.doi.org/10.1364/OE.20.010498
http://dx.doi.org/10.1364/OE.20.000220
http://dx.doi.org/10.1364/OE.20.000220
http://dx.doi.org/10.1364/OE.20.000220
http://dx.doi.org/10.1364/OE.20.000220
http://dx.doi.org/10.1103/PhysRevB.71.165407
http://dx.doi.org/10.1103/PhysRevB.71.165407
http://dx.doi.org/10.1103/PhysRevB.71.165407
http://dx.doi.org/10.1103/PhysRevB.71.165407
http://dx.doi.org/10.1364/OE.20.012860
http://dx.doi.org/10.1364/OE.20.012860
http://dx.doi.org/10.1364/OE.20.012860
http://dx.doi.org/10.1364/OE.20.012860
http://dx.doi.org/10.1103/PhysRevLett.83.4045
http://dx.doi.org/10.1103/PhysRevLett.83.4045
http://dx.doi.org/10.1103/PhysRevLett.83.4045
http://dx.doi.org/10.1103/PhysRevLett.83.4045
http://dx.doi.org/10.1103/PhysRevB.72.155412
http://dx.doi.org/10.1103/PhysRevB.72.155412
http://dx.doi.org/10.1103/PhysRevB.72.155412
http://dx.doi.org/10.1103/PhysRevB.72.155412
http://dx.doi.org/10.1103/PhysRevB.79.155423
http://dx.doi.org/10.1103/PhysRevB.79.155423
http://dx.doi.org/10.1103/PhysRevB.79.155423
http://dx.doi.org/10.1103/PhysRevB.79.155423
http://dx.doi.org/10.1103/PhysRevB.81.075414
http://dx.doi.org/10.1103/PhysRevB.81.075414
http://dx.doi.org/10.1103/PhysRevB.81.075414
http://dx.doi.org/10.1103/PhysRevB.81.075414
http://dx.doi.org/10.1021/nl100423z
http://dx.doi.org/10.1021/nl100423z
http://dx.doi.org/10.1021/nl100423z
http://dx.doi.org/10.1021/nl100423z
http://dx.doi.org/10.1103/PhysRevB.88.155411
http://dx.doi.org/10.1103/PhysRevB.88.155411
http://dx.doi.org/10.1103/PhysRevB.88.155411
http://dx.doi.org/10.1103/PhysRevB.88.155411

