
1880 J. Opt. Soc. Am. B/Vol. 8, No. 9/September 1991 Fishman et al.

Surface selectivity in four-wave mixing: transient gratings
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A theoretical treatment of transient grating diffraction is derived for gratings that are spatially nonuniform in

the direction perpendicular to the sample surface. This treatment is readily generalized to any four-wave mix-

ing experiment. Both reflection and transmission geometries of diffraction are examined for the standard

transient grating case, in which both grating excitation beams are incident upon the same side of the sample.

For samples in which the grating amplitude perpendicular to the sample surface varies slowly relative to the

optical wavelength, the reflection geometry is shown to probe only the surface or the interface, while the trans-

mission geometry probes the bulk of the sample. An experimental example using four transient grating ge-

ometries (two reflection, two transmission) is shown to yield significantly different temporal responses,

illustrating the nature of the theoretical predictions. The sample is a thin molecular crystal upon a substrate.

Both electronic excitations (excitons) and wave-guided acoustic modes are generated and probed. Distinct

signals are obtained from the bulk, the crystal-substrate interface, and the free-crystal face. Model calcula-

tions are presented that illuminate the behavior of the experimental example.

1. INTRODUCTION

Four-wave mixing experiments, which have expanded in

areas of application and in sophistication over the past

decade, have been successfully applied to the investigation

of a wide variety of transient processes in liquids, solids,

and gases. For example, transient gratings' were used

to measure rotational diffusion rates in various liquids2 ,3

and liquid crystals.4 In addition, nonlinear [X(3)] line

shapes,' time-domain dynamics of optical phonons,6

and vibrational relaxation rates in proteins7 have been

determined. Studies of solid systems have deduced the

polariton diffusion constants in organic crystals' and

the elastic constants of mineral extracts. 9 Gas-phase

studies in flames have led to the measurement of radical

ion concentrations'
0 and collisional diffusion constants."

Other four-wave mixing techniques such as photon echos

have provided insight into the coherence time for crys-

tals,' 2 '3 glasses,' 4 "5 and semiconductor layer quantum

wells. 16,17

Previous research that utilizes nonlinear-optical tech-

niques to study surfaces has concentrated on x(2) effects

such as second-harmonic generation.' For a material

that has inversion symmetry, second-harmonic generation

is forbidden in the bulk of the material, but at the surface

there is a break in the symmetry that permits a signal to

be generated. Some other surface nonlinear-optical re-

search has been performed that uses X(3) phenomena. 8

All these techniques have utilized geometries-such as

surface plasmon waves and total internal reflection-that

confine both the input and the signal electromagnetic

waves to the surface region. These techniques are not

generally practical for many experimental situations.

The theory derived in this paper is fundamentally differ-

ent. Transient gratings (and other four-wave mixing

techniques) are essentially X(3) effects. In the ordinary

transmission geometry, there is in general a signal from

both the surface and the bulk, which, since they are de-

generate in both time and propagation direction, cannot

be distinguished from each other. When one considers

the reflection signal geometry, a significantly different

picture emerges. Owing to phase-matching consider-

ations, there is no backward or reflection signal gener-

ated in the bulk of the material. The surface, however,

produces a reflection signal that arises from the boundary

conditions for electromagnetic waves.
Previous theoretical treatments of transient gratings' 9

were developed by direct analogy with the diffraction for

transparent volume holograms,2 0 2 ' where the general

method of slowly varying amplitudes was utilized. The

grating was assumed to be constant in amplitude through-

out the sample, and the probe beam was assumed to be

weakly absorbed. This leads to a situation in which the

diffracted light field amplitude builds up linearly with the

length of the sample. Recent experimental investigations

on samples with high optical densities,2 2 23 e.g., metals and

absorbing dielectrics with spatially nonuniform gratings,

demonstrated that further theoretical development is re-

quired in which the effects of surfaces are included.
Since it includes a position-dependent grating dielectric

constant, the formalism presented here specifically con-

siders, for the first time to our knowledge, the spatial

origin of the transmission and reflection signals. This

paper provides such a formalism for describing both re-

flection and transmission geometries of diffraction in

which surface effects are specifically considered for

samples with or without a high optical density and an

arbitrary grating excitation profile.
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Both the transmission and the reflection geometries
utilized in this paper use the same grating orientation, in
which the grating wave vector is perpendicular to the
surface normal. This is the geometry that is used in a
majority of transient grating experiments. It should be
noted that the reflection geometry discussed in this paper
differs from that normally discussed in the holography lit-
erature.20 The formalism is developed in detail for both
the transmission and the reflection geometries.

In the transmission geometry, when the sample is thick
relative to the probe wavelength the signal is generated
primarily as the probe passes through the bulk of the
sample. For high optical densities at the probe wave-
length, the probe is severely attenuated as it transits the
sample. Nonetheless, it is shown that, when the grating
amplitude is uniform inside the sample, the signal has
identical contributions throughout the entire depth of the
sample. For a grating that is nonuniform the signal field
amplitude has contributions that are proportional to the
grating amplitude at any point in the sample, regardless
of the probe attenuation. The signal therefore properly
represents the local diffraction efficiency, independent of
the fact that the probe is attenuated by passing through
the sample.

In the reflection geometry it is demonstrated that the
signal arises from the surface (or incident interface) of
the sample, provided that there is a grating modulation
of the dielectric constant at the surface, an abrupt discon-
tinuity of the dielectric constant at the surface, and slow
changes (relative to the optical wavelength) in the grat-
ing amplitude perpendicular to the sample surface. This
will always be the case for a weakly absorbing or nonab-
sorbing2 4 condensed-matter sample with a surface in air
or vacuum. The only limitation to the surface selectivity
in this case is the depth of the abrupt discontinuity in the
dielectric function. In general, this occurs on an atomic
or molecular distance scale (1-10 A).

When the absorption depths of the grating excitation
and probe beams are of the order of an optical wavelength
or less (high optical density), the slowly varying grating
amplitude approximation does not apply. The reflection
geometry is no longer surface selective, but rather it
probes a depth into the sample that is comparable with the
optical absorption (Beer's) length. This is in some sense
counterintuitive. The weakly absorbing sample gives
surface selectivity, while the strongly absorbing sample
gives a signal from a significant depth into the sample.
This allows for an interesting set of experiments. Sur-
face-selective experiments can be performed far down the
edge of an intense absorption band, where the optical den-
sity is low. As the light is tuned well into the absorption
band and Beer's length is decreased to the order of a wave-
length, the sampling depth is increased substantially.
Such experiments would provide for a smooth transition
from the observation of bulk phenomena to surface phe-
nomena, which in turn would give information on the spa-
tial extent of the surface properties of materials. Thus
the reflection geometry can provide information on the
properties of surface and interfacial regions, in contrast
to the transmission geometry, which measures the mean
bulk properties.

The surface selectivity is illustrated with experimental
results from a thin anthracene crystal upon a fused-silica

substrate that is excited and probed near the first polari-
ton stop band. Data taken in the reflection geometry
from the free (air-anthracene) interface and the bound
(anthracene-glass) interface differ dramatically from the
bulk measurements made in transmission. In addition,
data taken in the reflection geometry from the free and
the bound interfaces significantly differ from each other.
The transient grating method can therefore directly and
simultaneously provide information on the surface and
bulk properties of a material.

2. THEORY

Consider a slab of material with the dielectric constant
periodically modulated in the z direction, as shown in
Fig. 1. If absorption is significant, one can neglect the
effect of specular reflection from the back side of the
sample. It is a straightforward extension of the following
treatment to include the back-surface specular reflection
if necessary. Treating only one interface is equivalent to
considering a half-space of modulated material. The
dielectric function has the form

a

X=0

b

r

L* F

Fig. 1. a, The transient grating geometry for transmission and
reflection diffraction geometries. The wave vectors of the inci-
dent probe, the reflected probe, the refracted probe, the reflected
diffracted beam, and the transmitted diffracted beam are de-
noted k, k", k', kR, and kT, respectively. The fringe spacing and
the Bragg angle are denoted FS and 0, respectively. b, The wave-
vector matching diagram. The grating wave vector is denoted ,
and A = 27re/A.
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C(x, z) = eO[e + Ae(x)cos(/3z)], (1)

where e0 is the permittivity of free space. The
unperturbed-material dielectric constant is denoted e,

Ae(x) represents the spatially nonuniform grating ampli-

tude perpendicular to the sample surface, and 13 is the

grating wave vector, defined as 2v7/A, where the grating

fringe spacing is

A = Ae~/2 sin 0. (2)

The two grating excitation beams have a wavelength Aexc

and cross at an angle 20; both the angle and the wave-

length are measured outside the sample. It is convenient

to present Ae(x)/e as the product of a normalized function,

which represents the spatial nonuniform excitation of the

grating, and an amplitude po:

Ae(x)/e = POP(X). (3)

Starting with the wave equation for the E-field compo-

nent of the electromagnetic field,25

-V 2E + e(x2) t= 0, (4)
C2

at2

we obtain, after substitution of E = E exp(-iwot) and

incorporation of the dielectric function given by Eqs. (1)

and (3),

a
2
E a

2
E W 

2
E 0E

j + -- + 2 -'-[1 + pOP(x)cos(,3z)]E = 0. (5)

For po << 1, which corresponds to the weak-diffraction

limit, only the first order of diffraction needs to be consid-

ered. This is a reasonable assumption, since a typical

transient grating experiment would have po s 0.01. The

solution to Eq. (5) is represented as an expansion in pow-

ers of p0:

E = uo(x)exp(ikz'z) + (1/2)pou,(x)

x {exp[i(k.' + /3)z] + exp[i(k,' - ,3)z]} + .... (6)

Substitution of Eq. (6) into Eq. (5) leads, to first order in

po, to the following equations for the fundamental field uo

and the first-order diffracted field ul:

d2 + (c2 - kz2)U 0
= 0, (7a)

d2U + [c2 -(kZ + )2]U1 =-2P(X)UO. (7b)

Equation (7a) governs reflection and refraction of the fun-

damental probe wave according to the Fresnel relations.

Equation (7b) describes the amplitude of the diffracted

wave in vacuum [x < 0, e = 1, and P(x) _ 0] and in the

media (x > 0). The right-hand side of Eq. (7b) is the

source term that transfers the fundamental wave ampli-

tude into the first diffracted order. Since the diffraction

is weak, coupling of the diffracted beam back into the fun-

damental has been ignored, which led to the right-hand

side of Eq. (7a) being set equal to zero.

One can recognize that Eqs. (7a) and (7b) are almost

identical to the system of equations used by Bloembergen26

for the description of parametric interaction of optical

waves on the boundary of nonlinear media. The only dif-

ference is in the x-coordinate dependence of the excitation

or coupling term P(x). The solution of Eq. (7a) is

uo = exp(ikx) + AR exp(-ik.,"x) (x < 0), (8a)

uo = AT exp(ikx'x) (x > 0), (8b)

where AR and AT are the amplitudes of the reflected and

transmitted waves, respectively, as determined by the

Fresnel relations. The incident E field has been set to

unity. The x components of the wave vectors k and k" of

the fundamental incident and reflected waves and k' of

the fundamental transmitted wave are given by

(9a)kX2 = kX"
2 = co2/C2 _ k 2

kX12 = ecO 2/c
2 - kz

2,

where 1k21 = (/c)sin 0. For a graphic representation of

the wave-vector relationships see Fig. 1.
Limiting ourselves to the case of TE polarization (elec-

tric vector perpendicular to the plane of incidence) and

using the Maxwell boundary conditions for electric fields,

which reduce to the continuity of uo and duo/dx at x = 0,

we obtain the Fresnel relations

AR=xk + kx'
2x"

A= ki1 
x 

Introducing Eqs. (8) and (10) into Eq. (7b), one obtains the

equation for the first-order diffracted field:

d + kx*'
2u = O(x)exp(ikx'x), (11)

where kx* is the x component of the wave vector of either

the transmitted or the reflected diffracted field. The

wave vector of the transmitted diffracted field is given by

(k T)
2

= [
2

e/C
2

- (kZ + /3)2] (X > 0).

The wave vector for the reflected diffracted wave is

(k.R)2 = [
2
/C

2
- (k_ + /3)2] (X < 0),

and the coupling parameter is denoted as

O(x) = P(x)ATs
2 e/c2 .

The solution of Eq. (11) may be written in the form

(12a)

(12b)

(12c)

ul(x) = aR exp(ikxRx) (x < 0), (13a)

ul(x) = aT exp(ikxrx) + 2ikT

x | exp(ikxTlx - x'j)40(x')exp(ik'x')dx'

(x > 0), (13b)

where (1/2ikxT)exp(ikxTlx - x'I) is the Green function of

Eq. (11). We determine the amplitudes of the transmitted

and reflected diffracted waves, denoted aT and aR, respec-

tively, by matching the boundary conditions for the tan-

gential components of the electric and magnetic fields,

which reduce again to the continuity of ul and du,/dx at

x = 0. Keeping in mind that Ix - x'I _ x' - x for the

case of interest, one obtains the following equations from
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the boundary conditions of Eq. (13):

aR = aT + M, (14a)

-kXRaR = kxT(ar - M), (14b)

where

M= 2 iT f exp[i(kxT + k')x]4(x')dx'.

Solving and substituting Eqs. (14) into Eqs. (13) provide
the final result for the fields:

iiR(x) = -i exp(ikxRx)
Uj()=kxT + k'R

x f exp[i(kxT + k.')x']k(x')dx' (x < 0) (15a)

for the reflection geometry and

l T(x) = kT k R exp(ikxrx)M

+ TkT | exp(ikxT lx - x'l)exp(ikx'x')O(x')dx'

(x > 0) (15b)

for the transmission geometry.
The general solution for the reflected diffracted wave

can be simplified by substitution of

kXT = k',, (16)

which is valid for Bragg's condition (see Fig. lb). For the
case of a slowly varying dielectric modulation [(x)] in the
x direction relative to the optical wavelength, the second
derivative d20(x)/dx2 can be neglected. After double par-
tial integration of Eq. (15a) one obtains

ulR(x < 0) exp(-ikx x) [(k T + kR) (kxT + k)

+ i(d0/dx)x=o + (17)
+(kT + kR) (kT + k)2 ~.J (7

for the amplitude of the reflected diffracted wave. Rela-
tion (17) shows that if the modulation function is approxi-
mately constant and changes only gradually ( constant
and d/dx << k), then the diffracted wave amplitude
comes entirely from the first term on the right-hand side
of relation (17), which coincides with Bloembergen's result2 6

for parametric amplification.
For the amplitude of a transmitted wave, given by

Eq. (15b), the limiting case described above for reflection
produces the result

ul T
(x > 0) = exp(ikxTx) [aR + 2ik T (x')dx' , (18)

where aR is the amplitude of the reflected diffracted wave
as defined by Eqs. (14). The position in the sample at
which the diffraction is measured is denoted T. Alterna-
tively, if the sample is a slab and the transmitted diffrac-
tion is measured outside the sample, the thickness of the
slab is T. As one would expect, the transmitted dif-

fracted wave amplitude is proportional to the sample
thickness [if +(x) = constant] plus the surface contribu-
tion aR. It should be noted that the theory derived above
is not rigorously valid for a slab that has two interfaces.
However, for a sample that has a high optical density one
can neglect the effects of the second interface, since the
fields are weak there. Otherwise, an analogous treat-
ment can be used for the second interface.

Using Eq. (15a), one can obtain a general expression for
the reflected diffraction efficiency at the Bragg angle of
the probe light intensity,

R CO Cos2 

C2 (cos 0+ \/ 1 in 0)

x J exp[2i(cw/c)/e - sin2 0x']AE(x')dx' , (19)

which is reduced with the use of relation (17), for slowly
varying AE(x), i.e., de/dx << e"2 /A, inside the sample, to

R - (Cos 0) (AE)=O 2

2VE-Si0n2 (os + Ve~-sin)2

(cos 0) (dAe/dx).,o 2

4(+/c) (e-sin 2 0) (cos 0 + Ve - sin2
0)2

(20)

where (e),=o and (dAe/dx),=o are the magnitudes at the
interface (x = 0) of the modulated component of the
dielectric function and its x derivative, respectively.

The general expression for the diffraction efficiency of
the transmitted wave for a slab of thickness T at the Bragg
angle, which is derived from Eq. (15b), yields

I T =j2C cos2 0 exp(-flT)
sin2 (coS 0 + V--sin 2 )12

cos 0 - Ve -sin
2

0

cos 0 + Ve-sin 2 0
AT

x 0 exp[2i(/c sx'] e(x')dx'

I T2+ | Ae(x')dx'
and is reduced in the limit of slowly varying Ae(x) to

T = Cos2 0 exp(-fIT)
41\V/-sin 2 o(cos 0 + Ve -sin 2 0)12

Ocos 0 - in20 (e).=o
cos 0 + Ve-sin 2

o 2i\/e -in 2

W T 2+ -JAE(x')dx')

(21)

(22)

where flT = D(ln 10)/cos 0, which accounts for Beer's law
attenuation of the probe beam, and D is the optical den-
sity. The first term in the modulus on the right-hand
sides of these equations is the surface contribution for the
incident interface (x = 0). The second term is the bulk
contribution, which will dominate for samples thicker
than _AC 1/2. Equations (19)-(22) are strictly valid only
when the reflections from the second interface (x' = T)
can be neglected. Experimentally, this can be realized in

Fishman et al.
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several ways; e.g., in an optically dense sample the light

fields are significantly attenuated at the second interface

of the slab (x' = T), and in a thick sample the grating exci-

tation beams do not cross at the second interface.
All the preceding expressions are correct for the case of

a complex dielectric constant in an absorbing medium.

The dielectric constant e is explicitly replaced by

e = e' + i", (23)

and all the wave vectors are replaced by the appropriate

complex wave vectors. Starting with a complex index of

refraction, ho, that is weakly modulated with the grating

periodicity gives

h(x, z) = ho + Aih(x, z) = (no' + ino")

+ cos(13z) [An'(x) + iAn"(x)]. (24)

Ignoring terms that are second order in A leads to the

grating dielectric amplitude

Ae(x) = 2ho[An'(x) + iAn"(x)]. (25)

The substitution of Eq. (25) into Eq. (22) after the surface

term is dropped leads to the bulk contribution of the

transmitted diffraction efficiency for a slab of thickness T:

c~o jolCS
2

0

= exp(-flT) c21Ne- sin2 (cos 0 + Ve-sin 2 0)12

T ~~~~~~~~2
x J [An'(x') + iAn"(x')]dx' . (26)

Treating An' and An" as constants and setting IhoI = 1

lead to the well-known result for transmitted diffraction
in the weak-diffraction limitl9-21 :

7T =exp(- fT) ( )(An
2 + An "

2
) (27)

3. DISCUSSION

The most important aspect of Section 2 is the surface-

sensitive nature of the reflected diffraction signal given

by Eq. (20). As in surface second-harmonic generation,

only the surface region is probed with the reflected dif-

fraction experiment if the modulation function has an

abrupt change at the interface and changes gradually

inside the material [Ae >> (dAe/dx)k''1]. For many ex-

perimental situations the (Ae)x=o (offset) term dominates.

If dAe/dx is large, i.e., the index modulation is rapidly

varying relative to the probe wavelength, then higher-

order terms need to be considered, and the signal may

have some bulk contribution created by the rapid index

changes inside the material.
The transmitted diffraction experiment is significantly

different. The signal has a surface contribution that is

identical to that of the reflection case, but there is also a

contribution from the bulk of the material. If the mate-

rial is thick relative to the wavelength of the probe inside

the sample (Ae-1/2), then the surface term has negligible

amplitude, assuming that the index modulation is of equal

amplitude throughout the sample. On the other hand, if

the sample is thin relative to the probe wavelength inside

the sample, the reflection terms will dominate, and the

bulk contribution to the signal will be small. The attenu-

ations of the probe and diffracted beams as they propa-

gate through the sample are equal, since the path length is

a constant when the probe is incident at the Bragg angle.

This leads to an equal spatial weighting of the contribu-

tions to the diffracted signal.
In the case of a thick sample with a slowly varying index

modulation, the transmission case uniformly probes the

bulk, while the reflection case probes only the surface.

This leads to a new approach for observing both surface
and bulk phenomena with the same transient grating

experimental method. A similar formalism could be

derived for different types of four-wave mixing experi-

ments such as photon echoes. In this case modulation of

the dielectric function is expressed with the use of the

appropriate time-dependent polarization induced by the

optical pulses.

4. EXPERIMENTAL EXAMPLE

In this section an experimental example is presented.

The system, anthracene single crystals excited and probed

near the first polariton stop band, is complex. Our pur-

pose here is to illustrate the difference between transmis-

sion and reflection geometries without treating in detail
the underlying complexities of the system. Furthermore,
the model calculations will be significantly simplified to

illustrate the diffraction phenomena rather than to repro-
duce the exact time dependence of the data.

A. Experimental Procedures

The output of a Q-switched, mode-locked Nd:YAG laser is

frequency doubled to a wavelength of 532 nm and used to

pump a red dye laser. A cavity-dumped pulse from the dye

laser is frequency summed with a single infrared pulse

from the Nd:YAG laser to produce a tunable near-UV

source of 3-,uJ, 30-ps pulses at a 600-Hz repetition rate.

The UV pulse is then split into three pulses. Two pulses

are crossed at an angle 20 to produce a sinusoidal inter-

ference pattern in the sample. The wavelength of the

laser is tuned so that the anthracene strongly absorbs

the light, but there is still significant transmission owing

to the thinness of the sample. Absorption of the light pro-

duces both electronic excitations and acoustic standing

waves.2 7 The third pulse is the probe and is incident from

either the front or the back of the sample. The probe is

temporally delayed and diffracted from the transient holo-

graphic grating in both transmission and reflection ge-

ometries. Four experimental probe geometries are
sequentially observed under identical grating excitation
conditions. These geometries consist of two transmis-
sion and two reflection configurations, as shown in Fig. 2.

The two front probe geometries, in which the excitation
and probe beams are incident upon the same interface, are

shown in Fig. 2a. The two back probe geometries, in

which the probe is incident upon the opposite interface,

are depicted in Fig. 2b. The diffracted signal is detected

with a photomultiplier tube and a lock-in amplifier. A

computer is used to signal average many scans of the delay

line to provide an improved signal-to-noise ratio. Experi-

ments were performed on anthracene single crystals
grown by sublimation. The samples were placed upon a

glass optical flat oriented with the anthracene a-b plane
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transmission
signal

back
probe

reflection
signal

x=O x-T
Fig. 2. Four transient grating experimental geometries used for
Fig. 3; a and b are for a front (anthracene-substrate interface)
and a back (anthracene-air interface) incident probe, respectively.

perpendicular to the surface normal of the substrate.
The grating wave vector and the laser polarization were
parallel to the a axis, and the grating excitation beams
were incident upon the anthracene-glass interface. The
sample, which is 350 nm thick, has an optical density of
0.38 at the laser wavelength of 398.6 nm, the red edge of
the first absorption band. A detailed description of the
sample preparation is provided elsewhere.2 8

B. Results and Discussion

Figure 3 shows the experimental results for the transient
grating experiments on the four grating geometries in
Fig. 2. The first two are transmission geometries with the
probe beam incident upon either the anthracene-substrate
interface (front; Fig. 3a) or the free (back; Fig. 3b) sur-
face. The third and the fourth are reflection geometries
with excitation incident upon the front (Fig. 3c) or the
back (Fig. 3d) side of the sample. The complicated beat-
ing pattern seen in all the data sets arises from the acous-
tic waveguide nature of the thin samples.2 53 0 Many
different acoustic modes are excited inside the sample,
which leads to a superposition of many different frequency
components.

The transmission geometries give virtually identical
signals, particularly in contrast with the two reflection
cases. The excitation beams are substantially attenuated
in passing through the sample. Therefore more excita-

tions are produced near the front surface. The probe is
also attenuated in passing through the sample. Nonethe-
less, the signal is the same whether the probe first en-
counters the regions of higher or lower excited-state
density. The theory, which shows that diffraction for
a transmission geometry has equal spatial weighting
throughout the bulk of the sample, implies that the probe
beam direction is irrelevant, in agreement with experi-
mental observations. Minor differences between the
two transmission data sets can arise from slight differ-
ences in alignment of the probe beam that occur in
switching geometries and from the low-amplitude contri-
butions from the surface component of the signal, which
are not necessarily the same at the free surface and the
anthracene-substrate interface.

The two reflection signals are fundamentally different
from the transmission signals. The transmission signals
(Figs. 3a and 3b) show a large, slowly decaying offset from
the zero baseline. This is due to the generation of excited
states (polaritons or possibly polaritons that have decayed
into excitons) in the bulk. The offset decays only par-
tially during the -20 ns of data. Figure 3c shows reflec-
tion data taken from the crystal-substrate (incident
grating excitation) interface. The offset decays rapidly,

1~~~~

N

O.

E

0
C

-O u

no

._u

~0 4 8 12 16 20
time (ns)

Fig. 3. Transient grating signals on 350-nm-thick anthracene
crystals with an optical density of 0.38 at the experimental wave-
length of 398.6 nm. a, b, The transmission geometry of diffrac-
tion with the probe beam incident upon the front (a) and the
back (b) of the sample. c, d, The reflection geometry of diffrac-
tion and the probe incident upon the front and the back of the
sample, respectively.

excitation "

front
probe

reflection
signal

excitation 

I excitation \

transmission
signal

excitation "
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and the acoustic waves, which are modified by the pres-

ence of the interface, show a simple pattern. Figure 3d

shows reflection data from the free crystal surface. The

offset in signal caused by excited states is small, even
at time t = 0. The beating pattern is again complex.

Fourier transforms of the data show that Figs. 3a, 3b, and

3d have the same frequencies, consisting of five modes,

while the crystal-substrate interface incident reflection
signal displays only one of the frequencies.

For the reflection geometry, in which the probe is inci-

dent upon the crystal-substrate interface (Fig. 3c), the

signal arises entirely from the interface of the sample,
which contains a large population of the excited electronic

states. The signal consequently shows a ratio of excited-
state to acoustic contribution of approximately 2:1. For

the case of a reflection geometry, in which a back incident

probe is used (Fig. 3d), the ratio of the excited states to

the acoustic contribution is approximately 1: 2. This can

be understood qualitatively, since the acoustic disturbance
is more or less constant throughout the sample in the

x dimension, while the excited states are exponentially
weighted near the front (incident excitation side) of the

sample owing to Beer's law absorption of the excitation

beams. Since a reflected diffracted signal samples only

the probe inci-dent interface, the signal that is derived
from the back (opposite the incident excitation side) inter-

face has a much larger acoustic, rather than excited-state,
signal amplitude.

As is pointed out above, the excited-state decay charac-

teristics also differ dramatically in the reflection-versus-
transmission data. This can be understood from a
consideration of the surface selectivity of the reflected
diffraction signal. The reflection signal will probe sur-

face excitations (surface polaritons). It is known that

excitation transport in anthracene crystals at room tem-
perature is slow on the experimental distance (-1 Am)

and time (-10 ns) scales and that transport in the c crys-

tallographic axis direction (approximately the surface-
normal direction) is extremely slow. Therefore the
surface states and the bulk states can decay at indepen-

dent rates, and the surface states will not be significantly
repopulated by diffusion of excitations from the bulk.

Clearly, the physical phenomena occuring in the an-

thracene crystal are complex. The object of the discus-

sion given above is not to illustrate the details of the

dynamical processes in anthracene but rather to illustrate
that dramatic differences can be observed in a comparison

of reflection and transmission geometries of diffraction.
This is in accord with the theoretical development, which
demonstrates that reflection and transmission signals
probe distinct spatial regions of the sample.

C. Calculation Example

A calculation applying the theory developed in Section 2

that uses a simple physical model of the anthracene sys-

tem can illustrate the same trends as those seen in the
data. To demonstrate the theory, we retain only the es-

sential physical features in the model. A single acoustic

wave will be used rather than the multiple modes ob-

served, and acoustic damping will not be included. Decay

of the surface excited states and bulk excited states will

be taken to be independent, with each characterized by a

single exponential lifetime. For mixed excited-state and

acoustic transient gratings studied to date, for small val-
ues of n" (n" << 1) the primary contributions to An' and
An" can be written as'9

An" (x, t) = -[AN,(x, t)/No]n'(w), (28a)

Anex(x, t) = -[AN,(x, t)/No]n'`()2(w - wo)/Aw, (28b)

A n tr(X, t) = -AS(x,t)(n - 1)/2n o, (28c)

where Anex and AnX are the grating peak-to-null varia-
tions in the components of the complex index of refraction
due to the presence of electronic excited states and Anstr

is the variation due to the presence of strain. The num-
ber density ratio of excited states to ground states in the
grating peak to the null is AN, (z, t)/No. The peak-to-null
difference in strain due to an acoustic disturbance is writ-
ten as AS(z, t). The transition line width and the reso-
nance frequency are written as Awj and wo. The real and
imaginary parts of the probe's unperturbed index of
refraction are again written as n' and n". The above con-
tributions to An' and An", which are utilized as examples
in this paper, are discussed in detail elsewhere.'9

There are two possible mechanisms that could produce
acoustic strain.2 7 They are Brillouin scattering and heat-
ing due to radiationless relaxation of the excited states.
The experimental data used in this paper do not provide
enough information to permit us to distinguish between
the two mechanisms. The Brillouin scattering mecha-
nism will be assumed, since it leads to a brief theoretical
description. The simplest expression for the lowest-order
acoustic mode of an isotropic slab on a half-space (Ray-
leigh mode) is found in the limit of infinite fringe spac-
ing30 (,G = 0) that will be used here. The strain in the
sample due to the single lowest mode can now be written as

AS(x, t) = ASonex( sin(coat), (29)

where n' and Wac are the imaginary portion of the index
of refraction for the excitation beams and the acoustic fre-
quency for the acoustic mode, respectively. Assuming a
single exponential excited-state lifetime T

b in the bulk of
the slab and a surface lifetime T., the excited-state distri-

bution can be written as

AN,(x, = AN0n`,(w)exp(-flx)
N X ex

axexp( . b(x)exp(-I
[\/1\ Tb)T

where Beer's law is used to describe the spatial distribu-
tion of excited states generated by the grating excitation
beams incident upon the x = 0 side of the sample. The
bulk component amplitude a(x) is equal to unity in
the interval 0 < x < T and is equal to zero elsewhere.
The surface component amplitude b(x) is equal to unity at
the interfaces (x = 0, x = T) and is zero elsewhere.

These initial grating conditions can be probed with four
transient grating probe configurations discussed in Sub-
sections 4.A and 4.B. The first two are transmission dif-
fraction geometries from a probe incident upon either the

front or the back side of the sample. The third and the
fourth are reflected diffraction geometries with the probe
incident upon the back or the front interface. Since

the Beer length of the material is approximately two

(30)
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Fig. 4. Calculated transient grating signals for a mixed excited-
state acoustic grating of a thin film. a, b, Front and back inci-
dent probes, respectively, in a transmission diffraction geometry.
c, d, Front and back incident probes, respectively, with a reflec-
tion geometry of diffraction.

Table 1. Parameters Used in Fig. 4 to Model a
Transient Grating Diffraction Efficiency

Sample thickness (T) 350 nm
Wavelength (A) 398.6 nm
Acoustic angular frequency(^o-) 3.49 X 10

9
rad/s

Detuning [(co - wo)/Aw] 0.0
Optical density 0.38
Index of refraction (n' + in") 2.2 + i.079
Bragg angle () 00
AS

0
/AN' 0.56

Effective bulk lifetime 30 ns
Surface lifetime 4 ns

times larger than the wavelength, the limiting case
equations (20) and (22) for slowly varying Ae are used in
this example. Substitution of the grating excitation ini-
tial conditions into Eqs. (20) and (22) and integration
yield four different time-dependent diffraction efficien-
cies. Figure 4 gives the calculated diffraction signals
after normalization of the diffraction efficiency to the
largest signal for each of the possible probe geometries.
The constants used in the calculation are representative
of the material constants of the anthracene sample used
for the data shown in Fig. 3 and are given in Table 1. The
only adjustable parameter is the ratio of excited states to
strain amplitudes, AN'/AS'. This parameter, adjusted to
correct the relative size of the acoustic oscillations and the

excited-state signal for the transmission case data
(Fig. 3a), is held constant for the two reflection cases.

The two transmission cases shown in Figs. 4a and 4b
are virtually identical, since the surface contributions,
which are not identical, are more than 1 order of magni-
tude smaller than the bulk contribution to the signal. As
we discussed in Section 3, the bulk contribution is identi-
cal for either probe direction, since the bulk contribution
is an equal spatial weighting of the bulk dielectric modula-
tion.

The reflection geometry gives significantly different
results. While the signals in Figs. 4a and 4b decay slowly
with the bulk excited-state lifetime, those in Figs. 4c and
4d decay rapidly with the surface lifetime. As is also
seen in the experimental data, the reflection signal with a
front incident probe (Fig. 4c) has far less of an acoustic
component relative to the case of the back incident probe
(Fig. 4d). Both reflection geometries are surface selec-
tive, but the excitation beams that are incident upon the
front side create more surface states on the front side.
Thus the relative magnitudes of the excited-state to acous-
tic contribution for front and back incident reflected
diffracted beams are qualitatively correct, and the calcu-
lation reproduces the essential features of the data.

5. CONCLUDING REMARKS

The transmitted diffraction signal has a bulk contribu-
tion that prevails if the sample is thick (greather than a
wavelength). This is the case that has commonly been
explored in the laboratory. For thick samples the reflec-
tion and transmission signals look at fundamentally dis-
tinct regions of the sample. This was illustrated in the
experiments presented above. Reflection and transmis-
sion gratings gave dramatically different time-dependent
signals both in theory and in practice. By analyzing vari-
ous probe configurations of a transient grating experi-
ment, one can extract additional information on the
spatial distributions of the index perturbations that is not
available from a single experimental geometry.

Probing the surface with transient grating experiments
has some similarity to surface-selective second-harmonic
generation. Both depend on an abrupt change in the
dielectric function to produce surface selectivity. The
transient grating experiment is readily applicable to
the study of dynamics on surfaces on fast and slow time
scales. Although it was not explicitly discussed in this
paper, surface reflection gratings can also be used in sur-
face nonlinear spectroscopy. For example, by fixing the
probe delay time and the excitation wavelength and tun-
ing the wavelength of the probe beam, one should be able
to obtain a surface excited state-excited state spectrum.
The development in this paper of the appropriate theoreti-
cal description of reflection and transmission transient
grating experiments, demonstrating the ability to mea-
sure the surface dynamic and spectroscopic properties of
materials, can have many important applications.

The theoretical treatment presented in this paper
shows that reflection geometry of diffraction exclusively
probes the surface in situations in which the modulation
of the dielectric constant varies slowly relative to a wave-
length of light in the direction normal to the grating wave
vector. This is a type of sample that is commonly en-
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countered. Equation (20) describes the case. If, how-

ever, the dielectric constant changes quickly relative to

the wavelength, then the more general Eq. (19) must be
utilized. For some materials of interest, such as multi-
quantum-well structures, there can be boundaries or
interfaces inside the sample that cause jumps in the
dielectric function. In such a case diffraction can occur
from each interface. This could be theoretically treated
by a generalized solution of Eq. (18) for multiple inter-

faces. The important point is that in a simple sample the
reflection signal will come from the surface or the inter-
face. This leads to a powerful new method of analysis for

transient grating diffraction in which bulk and surface
effects can be measured separately. Similar considera-
tions apply to many types of four-wave mixing experi-
ments, such as photon echoes and coherent anti-Stokes
Raman scattering. The theory presented above can read-
ily be extended to those experiments.
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