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Abstract: Micro-coordinate measuring machines (micro-CMMs) for measuring microcomponents
require a probe system with a probe tip diameter of several tens to several hundreds of micrometers.
Scale effects work for such a small probe tip, i.e., the probe tip tends to stick on the measurement
surface via surface adhesion forces. These surface adhesion forces significantly deteriorate probing
resolution or repeatability. Therefore, to realize micro-CMMs, many researchers have proposed
microprobe systems that use various surface-sensing principles compared with conventional CMM
probes. In this review, the surface-sensing principles of microprobe systems were the focus, and the
characteristics were reviewed. First, the proposed microprobe systems were summarized, and the
probe performance trends were identified. Then, the individual microprobe system with different
sensing principles was described to clarify the performance of each sensing principle. By compre-
hensively summarizing multiple types of probe systems and discussing their characteristics, this
study contributed to identifying the performance limitations of the proposed micro-probe system.
Accordingly, the future development of micro-CMMs probes is discussed.

Keywords: micro-CMM; microprobe system; coordinate metrology; surface detection; dimen-
sional metrology

1. Introduction

A coordinate measuring machine (CMM) is a measuring instrument that can measure
three-dimensional (3D) shapes of an object, including a probing system to detect an object’s
surface, a positioning stage system to move either the probing system or the object, length
scales to determine the coordinate of detected points by the probing system, as well as
software to control the entire measurement [1]. Although X-ray-computed tomography
has recently been developed [2,3], CMMs are still the most reliable measurement system
for evaluating object shapes, dimensions, postures, and positions. Therefore, CMMs are
generally used in industry as standard measurement systems [4]. However, manufacturing
technologies have significantly developed to produce miniature parts, including small-scale
shapes or components such as microgears, inkjet nozzles, and microholes [5–9]. Therefore,
CMMs with nanoscale accuracy have been in high demand for evaluating the dimensions
and shapes of these micro-scaled products. Takamasu et al. proposed the concept of a
nano-CMM in 1996 [10]. Furthermore, other researchers, institutes, and companies have
addressed the development of micro-/nano-CMMs [11–18]. Although there are different
concepts for highly accurate CMMs, the representative specifications shown in Table 1
are important for micro-CMMs. Many names for CMMs with nanoscale accuracy have
been proposed; however, in this study, the term “micro-CMM” is used. The required
specifications of micro-CMMs are approximately one-hundredth of the size of conventional
CMMs (Table 1), which is a significant challenge to achieve. Currently, micro-CMMs
are commercially available, as summarized in [19]. The positioning system and scale
must achieve high accuracy (Table 1). Most conventional CMMs do not meet the Abbe
principle; however, for micro-CMMs, Abbe error-free structures are required to meet
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high accuracy. To meet the Abbe principle, metrology frames with interferometers are
often used [20–24]. Figure 1a shows an Abbe error-free structure design example. The
three laser interferometers for the X-, Y- and Z-axes are aligned to the probe tip of the
probe system and measure the displacement of the metrology frame. In addition to the
Abbe error, thermal drift is an important factor for reducing measurement uncertainty
of the micro-CMMs. Therefore, in the micro-CMM structure, low thermal expansion
materials such as Zerodur® and InverTM were used (Figure 1b) [11,22,23]. Moreover, it is
important to separate heat sources. In the example of Figure 1, a stabilized He–Ne laser
was isolated. For micro-CMMs, not only were these proposed, but many other intelligent
designs to minimize the measurement uncertainty of the positioning stage have been
presented. Consequently, the positioning stage achieved remarkably low uncertainty of
as small as 50 nm or less [25,26]. The positioning stage shown in Figure 1 is the highly
precise positioning system developed by Jager and Manske [25], which is now commonly
used for micro-coordinate metrology. This intelligent system has a working range of
25 × 25 × 5 mm3 and sub-nanometer stability.

Table 1. The required specifications of micro-CMMs in [10].

Conventional CMM micro-CMM

Measuring range (1 m)3 (10 mm)3

Resolution 1 µm 10 nm
Accuracy 5 µm 50 nm

Probe tip size 5 mm 50 µm
Measuring force 10−1 N 10−3 N
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Publishing: (a) conceptual sketch of the nano-positioning system; (b) photograph of the positioning
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In terms of micro-CMMs, probe systems [9,26,27] are difficult to establish. The probe
system with conventional CMMs performed excellently, with a repeatability of several tens
of nanometers. However, as a microprobe system, its probe system structure is difficult
to use. The probe system for micro-CMMs must be miniaturized (Table 1). Conventional
touch-trigger probe mechanisms are no longer adequate for probe systems of micro-CMMs
(microprobe system) because of the scale effect. Generally, the probe tip makes contact
with the surface of the objects to detect their surface. At the microscale, this conventional
mechanism may not function properly. This is because the dominant force acting on the
probe tip transitions from volume forces such as gravity to surface forces such as adhesion
forces. Therefore, probe tips tend to stick to the surface, thus degrading the detection
repeatability. The measuring force is another reason. Even when the measuring force
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is reduced, the contact pressure remains relatively high, which causes surface damage.
Because of these effects, it is difficult to use conventional mechanisms of the touch-trigger
probe. Therefore, to date, different types of probe systems have been proposed. The pro-
posed microprobe systems were well summarized in several review studies [28–30]. The
overall probe systems for coordinate metrology, including conventional and microprobe
systems, were summarized in [28]. Ref. [29] describes early-stage microprobe systems de-
veloped in the early 2000s. Certain microprobe systems described in this review have been
realized for commercialization. Many microprobe systems have been developed to date;
they are classified in two types: contact probes, which have a mechanism that can detect
contact with high sensitivity; and probes that use the interaction between the probe tip and
measurement surface to detect the measurement surface. Ref. [30] specifically focuses on
summarizing the former type of the microprobe system. For the latter microprobe system,
various types of probe systems using near-field physical phenomena acting on the probe tip
and measurement surface have been proposed. Multiple unconventional surface-sensing
principles that use physical interaction phenomena with the measurement surface rather
than physical contact have been proposed, and their potentials have been explored.

In this study, the interactions between the probe tip and measurement surface were
the focus, i.e., what type of physical interaction was used to detect the measurement
surface. From this viewpoint, the microprobe systems for coordinate measuring systems
were reviewed. By comprehensively summarizing various types of probe systems and
discussing their characteristics, the performance limitations of the currently proposed
micro-probe system were unveiled. Furthermore, the future development of micro-CMM
probes was discussed.

2. Overview of Microprobe System for Coordinate Metrology
2.1. Issues for Microprobe System

This section discusses factors that must be considered when developing a microprobe
system for micro-CMMs. First, the most different specification is the size of the probe
tip. The size of the probe tip in CMM measurements directly affects the measurement’s
accessibility; therefore, a small probe tip is required for micro-CMMs. Conventional
probe systems have probe tips as large as millimeter-scale in diameter; typically, several
millimeters. However, the microprobe systems require a few hundred to several dozens
of micrometers in diameter (Table 1), i.e., the size of the probe tip must be reduced to one-
fiftieth to the hundredth of the conventional probe tip. Due to the scale effect, the physical
phenomena which contribute to the microprobe tip differ from conventional probes at
the microscale. As a result of this disparity in a dominant physical phenomenon, various
effects of these different physical phenomena should be considered.

Surface forces vary significantly depending on the material, surface properties, and
environment. Figure 2 shows the surface forces working on the microprobe tip. The surface
forces become increasingly more prominent than gravity when the size of the microprobe
tip is less than a few millimeters. Surface forces are several orders of magnitude greater
than gravity at scales of several tens to several hundred micrometers in diameter [31–34].
Therefore, surface forces attract the probe tip to the surface when the probe tip is close
to the measurement surface [35]. Although surface forces can be reduced via chemical
treatment, surface texture, and environmental control [32,33], it is difficult to ignore the
effect of these surface forces in micro-CMM probes. Surface forces significantly degrade
measurement repeatability and reproducibility. Moreover, these surface forces cause probe
tips to stick to the measurement surface and vibrate. The smaller the probe diameter,
the more remarkable these effects become. In certain cases, increasing the probe stiffness
solves the problem; moreover, another approach to avoid the sticking problem is to use
non-contact or semi-contact detection. Furthermore, when the probe tip comes into contact
with the measurement surface, the strong adhesion forces can induce contamination on
the probe tip and measurement surface [36]. Moreover, there is a technique of scanning
measurement using this probe tip sticking. The probe tip and measurement surface are in
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contact using a flexible probe system with low stiffness, such as optical fiber, and the probe
tip is scanned over the measurement surface [37].
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Figure 2. Surface forces working on the microprobe tip with dependence on the tip diameter. The
calculation equations for each force are based on [32]. The probe tip and measurement surface
material were assumed to be tungsten carbide and silicon, respectively. The distance between the
probe tip and measurement surface was assumed to be 10 nm. Other parameters were as follows:
the surface tension was 72.5 mN/m, the contact angle was 75◦, the permeability in a vacuum was
8.85 × 10−12 F/m, the relative permittivity was 12, the charge density was 10 µC/m3, the contact
potential was 1 V, and the ratio of Young’s yield and Poisson’ ratio was 1.86 × 10−12 m2/kg.

Furthermore, there is an effect of measuring force on the microscale measurement. A
large measuring force can damage the measurement surface [38]; therefore, the probing
force is one of the important specifications. A large measuring force induces other influences
such as probe tip wear during scanning measurement [39,40]. The measuring force must be
considered in terms of stress, e.g., if the probe tip diameter is reduced to 1/10, the contact
area will be reduced to 1/100, thus resulting in 100 times more stress on the measurement
surface. Therefore, for micro-CMM measurements, a significant small measuring force
(Table 1) is required [41]. Theoretically, Hertzian’s equation is commonly used to consider
the effect of the spherical probe contacting the measurement surface.

For microprobe systems, it is difficult to process microprobes and assemble microprobe
systems [42,43]. Probes require dimensions which are less than a few hundred nanometers;
therefore, it is difficult to process measurements with high precision because the probe
tip requires high sphericity. Moreover, the aspect ratio of the probe system must be
sufficient. When the probe size is several tens of micrometers, a thinner probe shaft is
required, and high stiffness is difficult to design. The processing methods for manufacturing
the microprobe tip have been examined. The proposed methods are classified into two
categories [44,45]: the first is to attach a spherical probe tip to a shaft (Figure 3a), whereas the
second is to melt the probe shaft end or fabricate the probe tip (Figure 3b). High-sphericity
microspheres are commercially available; thus, they can be processed by gluing them to the
probe tip [45–48]. Although this is possible at a laboratory scale, it is difficult to maintain
high yield and low processing costs when considering commercial applications. In terms
of the method of melting or fabricating the tip [37,45,46,49–51], the diameter, sphericity,
and surface texture depend on processing conditions, thus requiring a stable processing
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technology. Here, the probe tip’s dimensions, shape, and surface texture must be measured.
Although multiple measurement techniques have been proposed [52], a method that can
be used precisely on machines has yet to be established, and future research is expected.
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To ensure the measurement uncertainty of micro-CMMs, the evaluation of microprobe
system technology is required. Probe tip diameter, probe tip shape, axial misalignment
between probe shaft and probe tip, and other parameters are required for the evaluation.
If the measurement accuracy of micro-CMMs is supposed to be 50 nm, the diameter and
shape should be measured as accurately as ~10 nm or less. Many techniques for measuring
probe diameter and shape have been proposed [52–62]; however, few are accurate to 10 nm;
Meli et al. achieved a repeatability of 4 nm using two spheres and the probe tip [59,60]. This
method has excellent repeatability and potential; however, the calibration process includes
the traceability route, and therefore, a more straightforward on-machine measurement
method is preferred.

Pre-travel is known to be an important parameter for microprobe systems. Generally,
the faster the probe approaches the measurement surface, the better it is for reducing the
total measurement time. However, if the rapid approach speed causes the probe tip to
considerably over-travel after contact with the measurement surface, the measurement
object or the microprobe system can be damaged. Therefore, microprobe systems must
have a long pre-travel. If the pre-travel time is reduced, the probe system approach must
be stopped as soon as possible after detection. Therefore, to reduce inertia, the dynamic
mass of microprobe systems or positioning stages must be as small as possible.

2.2. Contact Probing System with Hinge Structure

Microprobe system development began in the early years at NMIs and universities
in Europe and the United States, as well as Japan [11,47,59,63–69], where many types of
probe systems were developed. In particular, there have been developments of microprobe
systems with relatively large probe tip sizes and high sensitivity, in which a hinge structure
is used to detect the contact between the probe tip and measurement surface [59,63,64,67].
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Figure 4 shows certain examples of hinge-typed microprobe systems. The primary point of
this probe type is to measure the deformation of the hinge with high sensitivity; therefore,
multiple methods, such as optical measurement [60], capacitive sensors [22,60], and silicon
membrane sensors [64] have been proposed. This hinge-type probe system has been pro-
posed and developed [70–86], and certain commercially available microprobe systems of
this type are available [87–92]. By designing structures and materials, hinge-type probe
systems can control the stiffness of the probing system. Therefore, the high detection
sensitivity could be designed, and multiple probes have achieved resolutions of several
nanometers [59,93–95]. Furthermore, hinge-type microprobe systems can be designed to be
compact to reduce the dynamic mass [96]. The disadvantage is that the microprobe system
is increasingly challenging to assemble compared with other types of probes introduced
below; moreover, the pre-travel is typically limited, thus increasing concerns about damage
to the microprobe system. Therefore, probes that are easy to replace are expected [96].
Probes that incorporate piezoelectric actuators in the hinge to make the probe tip actively
vibrate by stretching and contracting is an interesting example of a hinge-type probe [97,98].
There is a probe that can change the stiffness of the hinge structure [99]. The low measure-
ment force and 3D isotropy of sensing could be achieved by designing an intelligent hinge
structure [59,96]. Furthermore, using MEMS, a probe system that can be oscillated in three
axes and incorporates a three-axis electrostatic actuator has been proposed [100]. Thus, the
hinge-typed microprobe system can perform various functions by combining MEMS and
semiconductor technologies and developing a hinge mechanism.
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melting the optical fiber tip. Multiple optical fiber-based microprobe systems have been 
proposed. For using an optical fiber, the contact of the probe tip to the measured surface 
is detected by measuring the deflection of the optical fiber stem using the optical method; 
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Figure 4. Example of hinge-typed microprobe systems: (a) PTB [64]; (b) Eindhoven University,
reprinted with permission from ref. [63]. Copyright 2001 Elsevier, License Number: 5158820240105;
(c) Metas, reprinted with permission from ref. [59]. Copyright 2007 IOP Publishing.

The use of the optical fiber has been proposed as a different approach [101–113].
Figure 5 shows some of the examples. The diameter of the single-mode optical bare fiber
was 125 µm, which is appropriate for the probe shaft; moreover, the probe tip can be made
by melting the optical fiber tip. Multiple optical fiber-based microprobe systems have been
proposed. For using an optical fiber, the contact of the probe tip to the measured surface
is detected by measuring the deflection of the optical fiber stem using the optical method;
furthermore, high resolutions are expected for this detection. The probe deflection can
be measured with high resolution; however, the reproducibility of detection is difficult to
improve. Furthermore, detection in the 2D direction perpendicular to the optical fiber has a
relatively high resolution [44,92], whereas detection in the axial direction is difficult [11,97].
This optical fiber-type probe can be used for scanning measurement [37]. Furthermore,
there are examples of significantly small optical fiber probe tips that are smaller than
several dozens of micrometers [45,94] because of the ease to make a smaller sphere by
sharpening the fiber. Chemical treatment can be used to make a surface hydrophobic;
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however, there are certain disadvantages. The size of the microprobe system is larger than
the abovementioned hinge-type probe because of the optical system [109,110]. Fiber Bragg
gratings in an optical fiber can be used to detect the deflection of the fiber as an optical
spectrum signal [78,101,102]; furthermore, the use of multiple fibers to simultaneously
measure the position and detection direction [104,112] are two interesting examples.
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Probe systems using physical interactions between the probe tip and measurement
surface have been proposed as an alternative approach to the abovementioned hinge-type
and fiber-based probe systems. As previously reported, it is necessary to avoid adhesion
forces to reduce the probe tip size. Therefore, contact of the probe tip with the surface is
avoided as much as possible, i.e., the surface is detected by measuring the physical quantity
working on the probe tip and the measurement surface before contact. This probe detection
principle is similar to that of scanning probe microscopy (SPM) probes and has excellent
potential. Chapter 3 discusses the details of these types of probes.

Finally, commercially available microprobe systems are summarized in Table 2 and
Figure 6. Note that different types of probe principles have been commercialized. The
probe tip size ranges from tens to hundreds of microns. The fiber probe has a particularly
high aspect ratio and low contact force. Vibration probes have the same low probing force
as fiber probes and a relatively high aspect ratio.

Table 2. Summary of the commercialized microprobe systems.

Sensing Principle Probe Tip Diameter Shaft Length Probing Force Probe Tip Material

Panasonic, UA3P-AFP Contact, Hinge-type probe 30, 80 µm 300, 500 µm 0.3 mN Ruby, Tungsten carbide

Xpress PE, GANNEN XP Contact, Hinge-type
Vibration probe 50–120 µm 6.8 mm 0.4 mN Ruby

IBS P.E. Trislelion Contact, Hinge-type probe 80–250 µm 6–8.5 mm 0.3 mN Ruby
3D Werth Fiber Probe Contact, Fiber probe 40–250 µm 20 mm 1–100 µN Glass

Werth Fiber Probe, WFP/S Contact, Fiber probe down to 25 µm 150 mm 1–100 µN Glass
Mitutoyo, UMAP Vibration probe 15–300 µm 0.2–16 mm 1–25 µN Glass
Zeiss, F25 probe Contact, Hinge-type probe 100–700 µm up to 4 mm 0.5 mN Ruby

2.3. Review the Specification of the Proposed Microprobe System

Many probes have been proposed to date. This section provides an overview of
microprobe systems based on their specifications. As previously reported, there is a
close relationship between probe tip size and performance. Therefore, the discussion was
developed based on the probe tip size. Figure 7 shows the relationship between the probe
tip size and resolution or repeatability of researchers’ proposed microprobe systems. The
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black squares and red circular plots show the resolution and repeatability of the microprobe
system, respectively. The plots are denoted name and year. Those with black and red font
show the contact-type and physical interaction probes. The evaluation criteria differ among
studies; thus, the purpose of Figure 7 is not to rank the performance of microprobe systems,
but to overlook the trend based on the probe tip size and probing principle.
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Figure 6. Commercialized microprobe systems: (a) Panasonic, UA3P AFP [114]; (b) Xpress PE,
GANNEN XP [87]; (c) IBS P.E. Trislelion [89]; (d) Werth Fiber Probe, WFP/S, reprinted with permis-
sion from ref. [110]. Copyright 2012 Elsevier, License Number: 5158821452309; (e) 3D Werth Fiber
Probe [107]; (f) Mitutoyo, UMAP; and (g) Zeiss, F25 probe, reprinted with permission from ref. [90].
Copyright 2012 Elsevier, License Number: 5158830075542.
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Figure 7. Resolution and repeatability of the proposed microprobe system.

First, the figure shows that the common probe tip size of microprobe systems for
micro-CMMs is several hundred micrometers, although certain microprobe systems have
been proposed to be a few tens of micrometers, or even smaller. The tendency in Figure 7
shows that the larger the probe tip size, the more likely a higher resolution can be achieved.
This is because of the influence of adhesion forces and other previously mentioned factors.
For probes with a tip diameter of >100 µm, the dominant force is close to the volume force;
therefore, the effect of adhesion force is small, resulting in a high resolution or repeatability
of <10 nm. However, Figure 7 shows that when the probe tip size is less than several tens
of micrometers, obtaining a resolution greater than 10 nm becomes difficult. The contact-
type microprobes are designed for high-resolution and a relatively large probe diameters
of several hundred micrometers. The tip diameters of physical interaction probes seem
smaller. The physical interaction probes use various physical phenomena to detect surfaces.
However, it is difficult to achieve a resolution of 10 nm or repeatability. Furthermore,
Ito et al. [115] and Huang et al. [116] proposed the principle of share force detection, which
has demonstrated a high potential to achieve single-nano resolution.

3. Surface Detection Principle of Microprobe System
3.1. Overview of Physical Interaction-Based Microprobe System

Certain microprobe systems detect the measurement surface through physical inter-
actions between the measurement surface and probe tip rather than using a conventional
contact probe. Various probe principles have been proposed for scanning probe microscopy
(SPM) to measure micro-surfaces and other surface information. Multiple surface-sensing
principles, similar to those proposed for SPM probes, have been proposed for micro-CMM
probes. The micro-CMM probes differ from conventional contact probes using simple
contact in various measurement aspects because of different sensing principles. First, for
conventional contact probes, contact is detected after the probe tip comes into contact with
the measurement surface. In several physical interaction probes, the probe tip is detected
before it makes contact with the measurement surface. Therefore, rather than using con-
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ventional touch-trigger type probes, the measurement surface is detected by identifying
a continuous change in the signal from the probe close to the measurement surface and
setting a threshold on that change. The steeper the continuous signal change, the more sen-
sitive the probe. Therefore, it is important to understand and model physical phenomena
of the interaction between the probe and measurement surface with high accuracy.

3.2. Vibration Probe
3.2.1. UA3P by Mitutoyo

The principle used in most physical interaction probes proposed to date is vibration-
based vibration probes; similar to the tapping mode commonly used in atomic force
microscopy (AFM), vibration can be used to detect various interaction forces with the
measurement surface with high sensitivity.

Figure 8 shows the UMAP developed by Mitutoyo [69]. A pioneering vibration probe,
Mitutoyo’s probe has a small diameter. A glass sphere with a diameter of 30 µm was
attached to the tip of a shaft with a diameter of 20 µm. The aspect ratio with a 3 mm shaft
is 100. A piezoelectric actuator causes oscillation on the probe shaft in the axial direction
(Z-direction); furthermore, the probe oscillation is measured by the piezoelectric element.
The resonant frequency is 349 kHz, and the measurement is based on the amplitude decay
when vibrating at the resonant frequency. The vibration attenuation caused by interactions
with the measurement surface is determined (Figure 8c), and the measurement surface is
detected by setting a threshold on the attenuation amount. The measurement force was
evaluated to be significantly low, i.e., 0.15 µN. UMAP has been commercialized, as shown
in Figure 6f. According to Mitutoyo’s website, it is available in diameters ranging from
15 to 300 µm with a high aspect ratio.
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3.2.2. Assembled Cantilever Probe by Physikalisch-Technische Bundesanstalt (PTB)

A significant sensitive probe with a stylus attached to the cantilever of atomic force
microscopy (AFM) was developed (Figure 9). This microprobe system was named the
assembled cantilever probe (ACP) [35,43,117]. The ball tip stylus is glued to an AFM
dynamic mode cantilever (Figure 9b). The shaft length can range from 0.2 to 2 mm, and the
probe tip diameter can range from 40 to 120 µm. The aspect ratio is approximately 8–17. The
cantilever is vibrated using a piezo-actuator and its vibration response is measured using an
optical lever. The probe tip horizontally vibrates in one direction. The ACP probe’s resonant
frequency is approximately 260 kHz, and the spring constant is approximately 1.5 N/m.
When the probe is brought close to the measurement surface, the amplitude decays from
200 to 300 nm before contact; subsequently, the amplitude decays by approximately 20% of
that in free space and then stabilizes (Figure 9c). The decay in the vibration amplitude is
used to determine the position of the measurement surface. The contact force is <1 µN; it is
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an extension of the AFM probe, and various geometry can be evaluated on the same AFM
platform using various probes [43].
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3.2.3. Vibrating Tactile Probe by the National Physical Laboratory (NPL)

A vibration probe with an active hinge structure was proposed. To avoid anisotropic
sensitivities during measurement, the probe tip is vibrated perpendicular to the measure-
ment surface [31,97]. A piezomaterial is deposited in the hinge structure and used as
an actuator and a sensor for the expansion and contraction of the hinge using MEMS
(Figure 10a,b). A tungsten carbide spherical tip stylus shaft with a diameter of 50 µm is
bonded to the center of the hinge structure. Wire electro-discharge grinding (WEDG) was
used to develop the thin shaft. The probe tip is spherically shaped by pulsed discharge to
form a probe tip with a diameter of 70 µm [97]. The shaft length is 1 mm with an aspect
ratio of 14. The spring constant in the finite element method (FEM) model is 15 N/m, and
the resonant frequency is 1.6 kHz. The experimental excitation is approximately 1.5 kHz.
The amplitude decays and phase changes as the measurement surface moves closer to
the direction of the vibration (Figure 10c). The amplitude ratio is shown in the figure;
the amplitude ratio is 0 before contact and 1 after contact when the vibration stops. The
vibration begins to decay at approximately 100 nm before contact; moreover, after contact,
the vibration amplitude decays at approximately 20% and then stabilizes. This damping
behavior of probe oscillation is similar to that of the previously described ACP. In [97], the
capillary force damped the probe tip oscillation; moreover, other forces such as acoustic
force possibly changed the probe tip oscillation.

3.2.4. Resonant Microprobe by TU Ilmenau

Figure 11 shows the development of a microprobe that vibrates the probe tip using a
MEMS electrostatic actuator [118]. It was possible to vibrate the probe tip in three direc-
tions [100], because it was composed of compact actuators, thus allowing the microprobe
system to be smaller than a few centimeters [100]. A ruby ball with a diameter of 200 µm
was used as the probe stylus and glued to the end of a shaft. The length of the shaft is
approximately 4 mm; therefore, the aspect ratio is approximately 20. The probe tip is larger
than that of other vibration probes. The resonant frequency toward the vibration axis
is 730 Hz, and the stiffness is of the order of 10 N/m. The probe was vibrated with an
amplitude of 4.7 µm at the resonant frequency; moreover, its probe response was measured.
The amplitude decayed and phase changed as the probe moved closer to the measurement
surface. The driving force to the probe tip was higher than that of the damping forces; thus,
there was no signal change before the contact, indicating that the probe signal change is
attributed to physical contact and frictions. An additional study demonstrated that the vi-
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bration damping behavior can be attributed to the viscoelasticity close to the measurement
surface material [119].
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3.2.5. Share-Force-Based Microprobe by Toyama Prefectural U

Generally, there is a thin liquid layer on the surface of an object [120]; the fluidic
viscosity in this liquid layer differs from that in free space. Share force microscopy uses
the amplitude damping of the oscillated sharp-edged sensing probe caused by the vis-
cosity change to detect the surface [121]. This principle was used in the micro-CMM
probe [48,115,122–124] (Figure 12). A probe stylus was developed by gluing a glass mi-
crosphere to the tip of a sharpened glass pipette. The probe tip size is 10–50 µm, and the
shaft length is approximately 2.5 mm, thus resulting in an aspect ratio of >50. The stylus is
bonded to the tuning folk to provide a unidirectional signal in a horizontal direction. The
stylus is brought closer to the measurement surface; therefore, the share force dampens the
probe’s vibration (Figure 12c). Due to the share force and van der Waals (VDW) force, the
resonance frequency will be shifted (Figure 12d) [123]. Positioning stage control is impor-
tant because the gap between the probe tip and surface is only a few tens of nanometers
when the probe signal changes. This principle using the share force detection can achieve a
remarkably high resolution.
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sketch, reprinted with permission from ref. [48]. Copyright 2019 Springer Nature, License Number:
5158831370459; (b) image of probe stylus [122]; (c) probing signal in amplitude, reprinted with
permission from ref. [115]. Copyright 2014 IOP Publishing; and (d) probing signal in frequency [48].

3.2.6. Resonant Triggering Microprobe by the Hefei University of Tech

This microprobe, similar to the previous one, works on the same principle as a shared
force detection probe [116] (Figure 13). The aspect ratio is 12.5 because the shaft length is
1 mm and the probe tip size is 80 µm. The resonance frequency is 32 kHz, and the probe
tip oscillates at that frequency. When the probe tip is brought close to the measurement
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surface, the amplitude begins to slightly decrease at a distance of approximately 1 µm
from the surface and becomes steeply damped in the vicinity of the surface (Figure 13c).
Therefore, the surface position can be detected at sub-nanometer scales. This initial small
difference was distinct from the previous probe. Although the obtained resolution was
sub-nanometer, the repeatability was approximately 40 nm [116]. The measurement force
calculated from the probe stiffness of 143 N/m was in the order of micronewtons.
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3.2.7. Laser-Trapping-Based Microprobe by Osaka U

A probe stylus is commonly composed of a probe shaft and tip. Laser-trapping-based
probes use a technique of optical tweezers to capture the probe tip [68,125–127] (Figure 14).
The probe tip is trapped in air using optical tweezers (Figure 14b). A glass sphere with
a diameter of 5–8 µm is used as a probe tip. Thus, the probe tip size can be considerably
smaller compared with other microprobe systems. An objective lens with a large focusing
angle (high numerical aperture) must capture the glass sphere. Therefore, the glass sphere
escapes from the focused laser beam or is unstable when the laser beam is partially blocked
by the measurement object. Thus, laser-trapping-based probes are not suitable for deep
hole measurements. The virtual shaft length is approximately 30 µm, and the aspect ratio is
<4 [126]. The force to trap a probe tip is in the order of nanonewtons; therefore, the stiffness
is as low as 0.15 mN/m, which is significantly small. The trapped probe tip oscillates at
the resonance frequency of 2.7 kHz with an amplitude of a few 100 nm: the probe tip’s
response amplitude decay or phase change is used to sense the surface. By measuring the
change in the rotational orbit (Figure 14c), the position and direction of the measurement
surface can be simultaneously detected. The probe tip can easily stick to the surface when it
comes into contact with the measurement surface; therefore, the surface position is detected
by setting a threshold value for the vibration damping before making contact with the
measurement surface. The response probe amplitude begins to decay at approximately
10 µm before the surface. The probe tip is oscillated using beam deflection and can vibrate
the probe tip in 3D by Brownian motion [128]. The probe stiffness is significantly low;
therefore, the probe tip can sense the electric field distribution in the field. Therefore, the
scanning measurement can be realized by measuring the standing wave field close to the
surface [129]. Furthermore, to observe the micro-texture of the surface, the laser-trapped
glass sphere can be used as a lens [130]. Thus, the laser-trapping-based probe can perform
different measurement modes in one microprobe system.
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3.2.8. Summary of Vibration Probes

Various types of vibration probes have been proposed. Table 3 presents a summary
of the vibration probe systems. We can reduce the effect of surface adhesion forces by
vibrating in the order of kilohertz, and most of the probes exhibit good performance even
when the probe tip diameter is <100 µm.

Table 3. Summary of the vibration-based microprobe.

Probe Tip
Diameter Shaft Length Aspect Ratio Probing Force Resonant

Frequency Stiffness Respond
Distance †

UMAP 30 µm 3 mm 100 0.15 µN 349 kHz − non
ACP 120 µm 1 mm 8 1 µN 260 kHz 15 N/m 200–300 nm

Vibrating tactile probe 70 µm 1 mm 14 − 1.6 kHz 15 N/m 100 nm
Resonant probe 200 µm 4 mm 20 − 0.73 kHz 10 N/m non

Share force detection probe 50 µm 2.5 mm 50 − − − 30 nm
Resonant triggering probe 80 µm 1 mm 12.5 µN order 32 kHz 143 N/m A few nm

Laser-trapping-based probe 8 µm 30 µm 4 − 2.7 kHz 1.5 × 10−4

N/m 10 µm

† Respond distance means the distance from the measurement surface where the probe response signal begins to
be detected.

First, it is interesting that even with the same vibration-based sensing principle, the
response signals of probes differ. For UMAP [68] and resonant probes [115], when the
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vibrating probe tip is brought close to the measurement surface, the vibration decays after
making contact with the surface (Figures 8c and 11c). For ACP [114] and vibrating tactile
probes [96], when the vibrating probe is brought closer to the surface, the vibration starts to
decay before making contact at a gap of several hundred nanometers (Figures 9c and 10c).
This difference could be the sensitivity difference of the probe systems or the probe tip
size. In any case, it can be maintained that detecting the exact moment of contact with
the surface is challenging. For the vibration probe, it is important to consider the probe
vibration amplitude. When the amplitude is large, the probe tip may start to sense the
surface relatively far away from the surface and the probing distance until stabilization
and probe vibration will be longer. The effects of the liquid film on the surface may cause
certain vibration damping. Furthermore, for a vibrating probe, both the physical probe
tip size and the effective probe tip size, which includes the probe vibration amplitude,
must be considered. Smaller sphere size is better for measurement; however, a larger
amplitude must obtain a large signal-to-noise ratio. Thus, the relationship between the
surface direction and vibrating probe axis should be considered. If the probe is always
vibrating perpendicular to the measurement surface, it does not consider the effective
diameter [97,98].

The surface position can be detected by share force detection using a probe system with
higher stiffness, which detects the liquid layer on the measurement surface. A resolution
of several nanometer levels can be obtained using the share force even if the probe size is
reduced. Moreover, it shows an abrupt change when the surface is close to the measurement
surface. However, the distance between the measurement surface and probe must be closer
than a few tens of nanometers to detect the measurement surface, which may slow down
the approach speed. For practical detection, devices such as a camera systems will be
helpful. Microprobe systems using tuning forks can obtain a high Q-value different from
other vibration probe systems, possibly using frequency shifts for sensing, which increases
the S/N ratio of the probe signal. The detection curve cannot significantly vary depending
on measurement conditions such as surface texture and materials [121].

Furthermore, for the vibration probe, probe stiffness is an important factor to charac-
terize the microprobe system. Laser-trapping-based probes have extremely low stiffness.
Therefore, unlike other probes, they can detect air damping between the probe tip and
measurement surface. Therefore, whereas other probes detect the surface position by
bringing the probe tip close to the measurement surface down to nanoscales, laser-trapping-
based probes can detect the measurement surface from >10 µm away from the surface.
However, there is a concern that sensing lateral resolution may be degraded. This vibra-
tion phenomenon, known as air-damping detection, is affected less by the texture of the
measurement surface; however, because it is an optical method, the optical scattering,
reflection, and vignetting of the laser beam are important. Furthermore, the low-stiffness
probe system can detect the positions of soft materials such as liquids and biomaterials.

A common issue with vibration probes is that the measurement sensitivity differs
depending on the directions of vibration and the measurement surface. Furthermore,
when sensing steep surfaces, the slipping phenomenon might be important. Therefore,
a mechanism to control the vibration such that the vibration direction is aligned with
the measurement surface has been proposed [97,98], although this requires a complex
mechanism that can vibrate in three axes. Vibration probes tend to realize a compact
microprobe system, except for laser-trapping-based probes, which require an optical system
to trap and measure the probe tip in terms of probe packaging. An interesting example is
that the probe tip of the laser-trapping-based probe is captured in air without a shaft and
little force; therefore, it slightly vibrates in the three-axes direction because of Brownian
motion and does not require additional devices for oscillation [129]. However, a system to
measure the probe tip position in three axes is necessary. Furthermore, as previously stated,
for a vibrating probe, the vibration response may vary depending on microfluidic and
tribological conditions of the measurement surface, i.e., it may be affected by the surface
roughness, and the material of the measurement surface.
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3.3. Probe System of Other Sensing Principles
3.3.1. Standing Wave Probe by InsituTec Inc.

A fascinating method which realizes a significantly high aspect ratio of >700 has been
developed (Figure 15) [131,132]. Carbon fiber with a diameter of 7 µm and a length of
5 mm is vibrated in the horizontal direction compared with the axial direction. When the
vibration frequency is adjusted to a particular frequency, the vibration of the fiber becomes
a standing wave vibration and becomes a resonance state. In this state, the fiber tip at the
free end becomes a probe tip. The repeatability of the measurement is approximately 10 nm.
Although the probe tip remains in contact with the measured surface, the measurement
force is as small in the range of 0.02–100 µN.
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from ref. [132]. Copyright 2005 AIP Publishing, License Number: 5158840910424: (a) conceptional
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3.3.2. Tunnel Current Microprobe

Vibrating probes are similar to the dynamic mode probe in AFM, which is an SPM
technique. Another high-resolution SPM method is scanning tunnel microscopy (STM). A
tunnel current is a quantum electrical near-field phenomenon, where tunneling current
flows when the measurement surface and probe tip are close. STM enables us to image
a surface at an atomic scale; therefore, a microprobe system using this principle can be
expected to have a high resolution [133–136]. For the microprobe system, a spherical probe
tip was used, thus allowing isotropic sensitivity to be measured on a surface in any 3D
direction. A tip diameter of 300 µm was used. The signal change when the probe tip was
brought close to the measurement surface is different from that of the STM: in the STM,
tunneling current flows when the probe is brought close to the measurement surface at the
scale of a few nanometers; however, in this probe, the current begins to flow at a distance of
a few hundred nanometers or more from the surface. However, the distance signal can be
obtained in the range of approximately 200 nm away from the measurement surface. This
characteristic can be used for scanning measurements. Furthermore, because the tunnel
current sensing is used, the lateral resolution of the measurement may differ from that of a
contact-type microprobe system. The probe tip with a diameter of 300 µm has a high lateral
resolution (Figure 16d). The measurement characteristics of this microprobe system may
vary depending on the material and textures of the measurement surface; furthermore, the
measurable materials are limited. The probe sensitivity is 3D isotropic; thus, determining
the normal vector of the measurement surface is difficult. Therefore, the normal vector
of measurement surface is measured by rotating the probe tip and observing its signal
characteristics [136].



Metrology 2022, 2 63

Metrology 2022, 2, FOR PEER REVIEW  20 
 

 

has a high lateral resolution (Figure 16d). The measurement characteristics of this micro-
probe system may vary depending on the material and textures of the measurement sur-
face; furthermore, the measurable materials are limited. The probe sensitivity is 3D iso-
tropic; thus, determining the normal vector of the measurement surface is difficult. There-
fore, the normal vector of measurement surface is measured by rotating the probe tip and 
observing its signal characteristics [136]. 

  

(a) (b) 

  

(c) (d) 

Figure 16. Tunneling current probe developed by University Erlangen-Nuremberg: (a) conceptual 
image of probe, reprinted with permission from ref. [135]. Copyright 2008 Elsevier, License Num-
ber: 5158841052985; (b) photograph of probing [136]; (c) probing signal [134]; (d) measured result 
[134]. 

3.3.3. Capacitive Microprobe 
A sensing principle based on the electrical energy was used in the same manner as 

the tunnel current, and a capacitive sensor was applied to the surface detection principle 
[137]. When the probe tip was brought close to the surface, the change in capacitance be-
tween the probe tip and measurement surface was measured for detection (Figure 17a). 
The tunnel current had a high lateral resolution, whereas the capacitive sensor had a low 
lateral resolution because of the extended electric field; however, extremely high axial 
sensitivity could be expected. Furthermore, the sensor had 3D isotropic detection and was 
not affected by adhesion forces because it did not make contact with the measurement 
surface. For the prototype, the probe tip diameter was as large as approximately 3 mm, 
and the shaft was 100 mm with an aspect ratio of 33. When the probe was brought close 
to the measurement surface, the response signal changed from a few micrometers. Figure 
17b shows the representative probing data. The sensing resolution exceeded 4 nm, and 
there was concern that the measurement characteristics changed depending on the surface 
material and texture. Furthermore, the measurable materials were limited. 

3.3.4. Acoustic Emission 

Figure 16. Tunneling current probe developed by University Erlangen-Nuremberg: (a) conceptual
image of probe, reprinted with permission from ref. [135]. Copyright 2008 Elsevier, License Number:
5158841052985; (b) photograph of probing [136]; (c) probing signal [134]; (d) measured result [134].

3.3.3. Capacitive Microprobe

A sensing principle based on the electrical energy was used in the same manner as the
tunnel current, and a capacitive sensor was applied to the surface detection principle [137].
When the probe tip was brought close to the surface, the change in capacitance between
the probe tip and measurement surface was measured for detection (Figure 17a). The
tunnel current had a high lateral resolution, whereas the capacitive sensor had a low lateral
resolution because of the extended electric field; however, extremely high axial sensitivity
could be expected. Furthermore, the sensor had 3D isotropic detection and was not affected
by adhesion forces because it did not make contact with the measurement surface. For the
prototype, the probe tip diameter was as large as approximately 3 mm, and the shaft was
100 mm with an aspect ratio of 33. When the probe was brought close to the measurement
surface, the response signal changed from a few micrometers. Figure 17b shows the
representative probing data. The sensing resolution exceeded 4 nm, and there was concern
that the measurement characteristics changed depending on the surface material and
texture. Furthermore, the measurable materials were limited.

3.3.4. Acoustic Emission

As previously reported, even a small contact force can damage the measurement
surface at the microscale. Therefore, most probe systems minimize measurement forces or
avoid contact. Acoustic emission (AE) is a signal generated during contact and is often used
for contact detection and process condition monitoring in mechanical machining [138]. A
microprobe system that uses AE has been proposed [139,140]. Moreover, a wire with a sharp
edge was rotated at high speed to induce AE signals. Figure 18a,b shows the schematic and
image of the probe tip. The excited AE signals were collected by an AE sensor attached
closely to the measured object. The wire was composed of stainless-steel and coated with
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polytetrafluoroethylene (PTFE). The radius of rotation of the wire was considered as the
effective probe tip diameter, which varied depending on the rotational speed; for rotations
of 10,000–80,000 rpm; the effective diameter was 720–730 µm. The shaft length was several
millimeters, and the sensing repeatability of ~0.86 µm has been used for 90 measurements.
Figure 18c shows that the AE signal can be obtained during probe contact. Contact excites
the AE signal; therefore, probe tip wear, and measurement surface damage are important.
The probe tip wears a few micrometers between measurements; however, the damage to
the measurement surface could not be identified via SEM observations.
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3.4. Summary of Other Various Types of Probe Systems

As previously reported, multiple interesting probe systems have been proposed.
Unlike hinge-typed and vibrating probes, the probe systems described in Section 3.3 exhibit
interesting properties but may be challenging to apply them to general-purpose micro-
CMMs because of measurable material limitations and damage concern to the measured
objects. Although the measurement targets and applications may differ and there may be
certain limitations, microprobes have extraordinary characteristics, such as extremely high
aspect ratio measurements, high sensing or lateral resolution, and 3D isotropy. Standing
wave probes and probe systems based on acoustic emission may work for specific tasks,
e.g., standing wave probes will be suitable for measuring aspect ratio structures such as
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micro-holes and micro-grooves. Furthermore, probe systems based on acoustic emissions
will be applicable for on-machine/in situ measurements.

The electrical sensing principle is characterized by extremely high resolution and 3D
isotropy in the order of a single nanometer. Moreover, probe systems with the electrical
sensing principle do not require complex mechanical systems such as vibration; further-
more, the electrical wiring can be integrated in narrow spaces, thus allowing for compact
design of the probe system. Non-contact measurement and a high aspect ratio can be
achieved because there is no contact with the measurement surface; however, the material
comprising the measurement surface is limited. Moreover, the electrostatic force might
affect the surface sensing reproducibility if the stiffness of the probe system is low. To detect
the surface, the probe signal’s threshold value must be set; however, the probing curve
may change depending on the conditions of the measurement surface (such as material
and texture). The calibration may be difficult, which can affect the measurement accuracy.

Various types of measurements are required for general CMMs; as such, various
types of measurements are increasingly required for micro-CMMs. In particular, at the
microscale, the influence of the surface increases; furthermore, the best probe system may
differ depending on the object surface to be measured. Therefore, it is important to develop
probe systems with various measurement characteristics.

4. Discussion

Hinge-type microprobe systems detect a surface by coming in contact with the mea-
surement surface. Physical interaction probes can be non-contact or semi-contact with
vibrations. Therefore, for physical interaction probes, the probe tip diameter must be cor-
rected. The physical probe tip diameter and gap between the probe tip and measurement
surface are included in this effective diameter. The shape of this virtual probe tip with
the effective diameter includes the gap, in addition to the probe tip shape. If the sensing
sensitivity is not 3D isotropic, the virtual probe tip cannot be treated as a true sphere even if
the probe tip shape is a true sphere. In this case, precise 3D probe tip diameter calibrations
will be required to obtain proper measurement surface positions. However, the physical
shape and dimension of the probe tip become less important for practical measurement,
whereas the calibration accuracy of the virtual probe becomes important. For example,
a calibration method that includes the proven sensing properties, such as [59,61], might
be promising in practice. At this point, the calibration standard for effective probe tip
diameter is important. Therefore, spherical artifacts with precisely known diameters and
with high sphericity are required for calibrating the probe tips of the physical interaction
probe. Multiple ultra-high precision sphere measurement techniques for re-defining the SI
unit of kilograms [141] have been developed; therefore, these techniques will be used to
provide ultra-high-precision spheres. Notably, the probing properties for multiple probe
systems may differ on different measurement surface textures, materials and shapes, which
causes difficulty for probe tip calibration in the order of nanoscales. Thus, the primary
issue to be addressed is the probe tip calibration for physical interaction probes.

However, the properties and mechanisms of physical interaction microprobe systems
are still unclear. For example, for vibration probes, detailed sensitivities for various vibra-
tion directions to the surface can differ. For multiple probe systems, there are still unknown
factors such as differences in characteristic curves because of the material and texture of the
measurement surface. The important characteristics of surface detection will be evaluated
for establishing ultra-high-precision 3D microprobe systems. The difference between effec-
tive and physical diameters, i.e., the gap, is important for understanding sensing properties.
Therefore, for the physical probe tip, highly precise artifacts and highly precise and accu-
rate measurement techniques are required. Microprobe systems use physical phenomena
to sense surfaces; however, it is difficult to only exert one physical phenomenon to the
probe tip. For example, multiple surface forces, such as electrostatic, capillary, and VDW
forces, act on the probe tip. These forces change under environmental conditions such
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as humidity changes; therefore, the microprobe system must consistently perform under
different conditions.

Multiple types of measurement principles are becoming available for micro-CMM
probes, such as SPM [142]; therefore, microprobe systems that can simultaneously evaluate
both the position of the surface and various surface properties, such as chemical properties,
can be developed. Furthermore, 3D measurements using a non-spherical probe, such as
a sharpened edge probe, have been proposed [71]. Micro-CMMs can be used to evaluate
multiple shapes and surface conditions using different microprobe systems [143–146]. How-
ever, if measurements are obtained using various physical phenomena rather than contact,
the definition of the surface position will differ depending on the measurement principle.
If we consider metrological traceability, this is a challenging topic; however, it becomes
difficult to simply understand differences between these measurement results. Therefore,
when using various measurement principles, it is important to first understand the phys-
ical model before confirming the measurement principle and understand measurement
characteristics via comparative measurements [147].

In this review, optical microprobe systems were not treated. Optical micro-CMMs that
use the principle of point autofocus and focus variation are rapidly developing [148–150].
The optical measurement of steep surfaces is progressing. The slight roughness of measure-
ment surfaces allows scattered light to use the signal to the sensing surface. Perpendicular
surfaces can be measured using fluorescence [151]; furthermore, the possibility of using
Raman scattering is significant. Therefore, in future, the number of CMMs that use optical
3D shape measurement technology is expected to increase.

5. Conclusions

Micro-CMMs have been under development for more than two decades. Moreover,
multiple micro-CMMs have been developed. Highly precise stage systems have been
developed for the positioning stage; however, microprobe systems still have room for
development. One of the difficult points is reducing the probe tip size to a few tens
of micrometers while maintaining high detection sensitivity and resolution. Therefore,
multiple probe systems have been proposed. Micro-CMMs, which are already in use, are
required to not only meet the performance specifications, but also to have a high aspect
ratio, compactness, and low manufacturing cost.

In this review, first, the probe systems proposed to date and the performance of micro-
probe systems have been summarized. Although high-resolution/repeatability of <10 nm
can be achieved when the probe size is large, the resolution and repeatability increase to
levels of tens of nanometers when the probe tip diameter is several tens of micrometers.
The contact-type probe system has a relatively large probe tip size; furthermore, to achieve
a smaller diameter, probes that detect the physical interaction between the probe and
measurement surfaces have been proposed.

Secondly, in terms of physical interaction probes, the sensing principles of the micro-
probe have been described, and are primarily classified into vibration and electrical probes.
Vibrating probes can significantly reduce the effect of adhesion forces on the measurement
surface, thus allowing the probe tip size to be successfully reduced. However, although the
realistic probe tip size is small, the effective diameter, including the vibration amplitude,
should be considered. There is a gap between the probe tip and measurement surface for
electrical and other probes; thus, the effective diameter should be considered. Therefore,
for physical interaction probes, the effective diameter should be included in the probe for
correcting the diameter. Note that additional microprobes with tens of micrometer diam-
eters are expected to appear in future; therefore, the importance of probe tip calibration
will increase.

Although micro-CMMs are in use, there is still room for developing microprobes.
It is desirable that, in future, higher performance with a smaller effective probe tip size
and low-cost probes will be developed, thus resulting in the additional development of
micro-scale dimensional metrology.
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