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We propose a new duality relation between codimension-two space-like surfaces in gravita-
tional theories and quantum states in dual Hilbert spaces. This surface/state correspondence
largely generalizes the idea of holography such that we do not need to rely on the existence of
boundaries in gravitational spacetimes. The present idea is motivated by the recent interpreta-
tion of anti-de Sitter space/conformal field theory (AdS/CFT) in terms of the tensor networks,
so-called MERA (multi-scale entanglement renormalization ansatz). Moreover, we study this
correspondence from the viewpoint of entanglement entropy and an information metric. The
Cramer–Rao bound in quantum estimation theory implies that the quantum fluctuations of the
radial coordinate of the AdS are highly suppressed in the large-N limit.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index B21, B24

1. Introduction

Recent progress in string theory strongly suggests that the idea of holography [1–3] will play a crucial
role in constructing a complete theory of quantum gravity. The holographic principle argues that
gravitational theories are equivalent to non-gravitational theories, which are defined as quantum
many-body systems or quantum field theories. As in the AdS/CFT correspondence [4], which is
the best known example of holography, a dual non-gravitational theory lives on the boundary of its
original gravitational spacetime.

In the AdS/CFT, a dual conformal field theory (CFT) lives on a time-like boundary of an anti-de
Sitter space (AdS). Since the boundary includes the time direction, the dual CFT is a dynamical
theory in a Lorentzian space. We can also perform a Wick rotation of both sides and this leads to
a duality between a CFT on a Euclidean space and a gravity on a hyperbolic space. As has been
confirmed by numerous papers, the AdS/CFT works perfectly in both signatures.

On the other hand, if we turn to other spacetimes, such as de Sitter spaces (dS), the idea of
holography, which assumes a theory on the boundary, gets much more complicated and subtle. For
example, in de Sitter spaces, the only available boundaries are space-like ones. One possibility of
its holography is known as the dS/CFT correspondence [5], which argues that gravitational theories
on de Sitter spaces are dual to some Euclidean CFTs on their space-like boundaries. However, the
AdS/CFT already argues that Euclidean CFTs are dual to gravity on hyperbolic spaces and thus
we need to better understand how the dS/CFT works compared with the AdS/CFT. Moreover, if
we perform a Wick rotation to find a Euclidean space, we obtain a sphere that has no boundaries.
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Therefore these motivate us to consider a generalization of the holographic principle without refer-
ring to dual theories on boundaries. For this purpose, we need a new framework-of-correspondence
principle and the main aim of this paper is to propose one such possibility.

In this paper, we would like to propose a new framework of correspondence between structures of
gravitational theories on any spacetimes and those of quantum states in quantum many-body systems.
In particular, we argue that each codimension-two convex surface in gravitational spacetime is dual
to a certain quantum state; we call this surface/state correspondence. This leads to an understanding
that gravitational spacetimes emerge from various distributions of quantum states. As a particular
example, our formulation provides a refined structure of AdS/CFT correspondence.

It has been conjectured in Ref. [6] (see also Ref. [7] for a modified version of this conjecture)
that the AdS/CFT can be interpreted as a real-space renormalization flow called entanglement
renormalization or MERA (multi-scale entanglement renormalization ansatz) [8–11]. Refer to, e.g.,
Refs. [12–18] for more progress in this direction. Our proposal in this paper is highly motivated by
this and the continuum version (called cMERA [19]) of this conjecture, studied in Refs. [20–22]. In
the cMERA interpretation of the AdS/CFT, we can consider dual quantum states for each value of
the radial coordinate z of the AdS, corresponding to each step of the real-space renormalization flow.
We would also like to refer to earlier interesting arguments [23,24] and [25,26], where the mecha-
nism of the emergence of gravitational spacetimes has been discussed from the viewpoint of quantum
entanglement.

This paper is organized as follows. In Sect. 2, we will present our main proposal of surface/state
correspondence. In Sect.3, we will extend our proposed correspondence to the analysis of an infor-
mation metric. We will also comment on an implication of quantum estimation theory in the final
subsection. In Sect.4, we will discuss several examples. In Sect.5, we will summarize our conclusions
and discuss future problems.

2. Surface/state correspondence proposal

Consider a gravity on an arbitrary d + 2-dimensional spacetime Md+2. Below we would like to
present our proposal, which describes the gravity on Md+2 in terms of quantum many-body sys-
tems. We assume that this gravitational theory is approximated by the Einstein gravity coupled to
various matter fields, such as supergravity theories. However, we expect that our proposal described
below can be generalized to any gravitational theories by taking quantum effects appropriately into
account.

2.1. A basic principle of surface/state correspondence

We start with a very large Hilbert space Htot, associated with the total spacetime Md+2. Since Htot

is often given by an infinite-dimensional Hilbert space of a (generically non-local) quantum field
theory, it is useful to introduce a UV cutoff ε, interpreted as a lattice constant. For example, the
Hilbert space is identified with that of a d + 1-dimensional CFT if Md+2 is given by the d + 2-
dimensional AdS spacetime following AdS/CFT. However, our construction is much more general
and we do not need even time-like boundaries of Md+2 as long as we can assume the presence of the
total Hilbert space Htot.

Now we take a codimension-two (i.e., d-dimensional) surface � in Md+2. In this paper, we always
require that this surface � is convex. Here we call a surface convex if an extremal surface γ that
ends at an arbitrarily chosen d − 1-dimensional submanifold in � is always included inside the
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Fig. 1. Schematic images of surface/state correspondence.

region1 surrounded by �. In other words, there always exists a d + 1-dimensional space-like surface
N� that ends on � such that the extremal surface γ is completely included in N� . This condition
becomes important in defining the entanglement entropy in the next subsection.

First, let us focus on the case where � is a closed convex surface that is topologically trivial,
i.e., is homologous to a point. In this case, our basic principle starts by arguing that there exists a
pure quantum state |�(�)〉 ∈ Htot that corresponds to the surface � (see the upper-left panel in
Fig. 1):

|�(�)〉 ∈ Htot ←→ � ∈ Md+2 (topologically trivial). (2.1)

More generally, if � is a topologically non-trivial surface, then its corresponding state is given by
a mixed state ρ(�) in a Hilbert space H� , which is a subspace of Htot (see the lower-right panel in
Fig. 1):

ρ(�) ∈ End(H�)←→ � ∈ Md+2 (topologically non-trivial). (2.2)

This is reduced to (2.1) if the surface is topologically trivial by setting ρ(�) = |�(�)〉〈�(�)|. This
subspace H� only depends on the topological class of � and does not change under continuous
deformation of � in the sense of homology. In the case of the AdS eternal black hole [27], Htot

is given by a product of two copies of CFT Hilbert space based on the thermofield construction. If
� is wrapped on the black hole horizon, then H� is given by one of the two CFT Hilbert spaces.
If � is a topologically trivial surface, then we have H� = Htot.

So far we have assumed that � is closed. If � has its boundary ∂�, the dual quantum state becomes
a mixed state again as in (2.2), depicted in the lower-left panel in Fig. 1. When � is a submanifold
of a closed convex surface �̃ in Md+2, then its mixed state is given by tracing out the Hilbert space
corresponding to the complement of � in �̃, denoted by H�̃/� :

ρ(�) = TrH
�̃/�

[
ρ(�̃)

]
. (2.3)

It is also useful to consider the zero size limit of a topologically trivial surface �. We argue that it
corresponds to the state |�〉 in Htot with no real-space entanglement:

lim
A(�)→0

|�(�)〉 −→ |�〉, (2.4)

1 If � is an open surface, then we define the region to be surrounded by � and the extremal surface that
connects the boundary ∂�.
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where A(�) denotes the area of a topologically trivial manifold �, depicted in the upper-right panel
in Fig. 1. This identification comes from an additional principle on the interpretation of the surface
area as the sum of real-space entanglement, which will be explained in the next subsection. In a
recent paper [22], such a state was identified with boundary states (or Cardy states) of a given CFT.

When two surfaces �1 and �2 are connected by a smooth deformation preserving convexity, we
can describe this deformation by an integral of infinitesimal unitary transformations:

|�(�1)〉 = U (s1, s2)|�(�2)〉, (2.5)

U (s1, s2) ≡ P · exp

[
−i

∫ s1

s2

M̂(s)ds

]
, (2.6)

where P denotes the path-ordering and M̂(s) is a Hermitian operator; the parameter s describes the
continuous deformation such that s = s1 and s = s2 correspond to �1 and �2, respectively. In the
expression (2.5) we assume that the surfaces are topologically trivial so that they are dual to pure
states.

When two surfaces �1 and �2 share the same boundaries ∂�1 = ∂�2 and are related to each
other by a smooth deformation preserving convexity, the corresponding density matrices are related
by unitary transformation

ρ(�1) = U (s1, s2)ρ(�2)U
−1(s1, s2), (2.7)

as long as there is no extremal surface between �1 and �2. This requirement of the absence of
extremal surface is because of the requirement of convexity (for more details refer to the next sub-
section). The claim (2.7) can be naturally understood if we note that the deformation of �1 with
fixed endpoints acts non-trivially only for quantum entanglement inside �1 and not for entanglement
between �1 and its complement.

Finally, let us comment that the precise definition of topological (non-)triviality is sometimes sub-
tle. It is clearly defined if we can Wick-rotate Md+2 into a regular Euclidean geometry by using the
homology as in the case of holographic entanglement entropy [28]. For example, in a typical example
of black holes, the non-trivial surfaces correspond to the black hole horizons. However, such a Wick
rotation is not always possible, as in time-dependent black holes. We would like to refer to recent
discussions [29–31] and future developments in the context of holographic entanglement entropy for
more details and we will not get into this subtle problem in this paper.

2.2. Entanglement entropy and effective entropy

A basic physical quantity that we can associate with a given (pure or mixed) quantum state for a
d-dimensional (closed or open) surface � is the entanglement entropy. For this purpose, we would
like to consider a division of � into two subregions: �A and �B such that � = �A ∪�B and �A ∩
�B = φ. Following the basic principle (2.2), the surface �A corresponds to a reduced density matrix
ρA. The choice of subregions corresponds to a factorization of Hilbert space:

H� = HA ⊗HB . (2.8)

The reduced density matrix ρ�
A is defined by

ρ�
A = TrHB ρ(�). (2.9)
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Fig. 2. Calculations of entanglement entropy in surface/state correspondence.

Then we conjecture that the von Neumann entropy of ρ�
A or equally the entanglement entropy S�

A
(with respect to the quantum state ρ(�)) is given by the area formula:

S�
A =

A
(
γ �

A

)
4G N

, (2.10)

where A
(
γ �

A

)
is the area of the extremal surface γ �

A in Md+2 (refer to Fig. 2). Also, G N is the Newton
constant of the d + 2-dimensional gravity on Md+2. This extremal surface γ �

A is defined such that
its boundary coincides with that of �A and that it is included in the region surrounded by �. The
latter condition requires that the surface � should be convex, as we have mentioned.

In this formulation, the true dimension of the density matrix �A (or equally HA) is invariant under
a smooth deformation with the two boundaries of �A fixed because they are related by the unitary
transformation as in (2.7). Indeed, the von Neumann entropy S�

A does not change under this defor-
mation, as is clear from (2.10), which is consistent with the unitary evolution. Note that this unitary
deformation of �A (denoted by �̂A) is terminated when it reaches the extremal surface γ �

A . This is
because we need to keep the closed surface �̂A ∪�B convex in order to define the reduced density
matrix ρ(�̂A). We can also argue that ρ(�A) does not change if we deform the surface �B with the
same constraint.

Note that if we apply these claims to the AdS/CFT correspondence and take � to be the AdS
boundary, then (2.10) is reduced to the holographic entanglement entropy formula [32–36]. There-
fore our proposal (2.10) can be regarded as a generalization of holographic entanglement entropy.
For example, we can prove the strong subadditivity in the same way as that in the holographic
entanglement entropy [28,37].

Now it is also intriguing to ask what the quantum interpretation of the area of � itself is.
Even though � is not an extremal surface in general, we can divide it into infinitely many small
subregions, which are all well approximated by extremal surfaces. In such a small region, the geom-
etry is approximated by a flat space and thus the extremal surfaces are given by flat planes. This
consideration and the proposed correspondence (2.10) lead to the following relation:

∑
i

S�
Ai
= A(�)

4G N
, (2.11)

where Ai describes the infinitesimally small portions of � such that � = ∪i Ai and Ai ∩ A j = φ.
S�

Ai
is the entanglement when we trace out the complement of Ai inside �. It is useful to note that

the left-hand side of (2.11) is always larger than or equal to the total von Neumann entropy for ρ(�)

owing to the subadditivity relation.
We would like to call the left-hand side of (2.11) the effective entropy Seff(�). This quantity can

be interpreted as the log of the effective dimension of the Hilbert space H� , written as log[dimHeff
� ].

Note that this effective dimension dimHeff
� counts the dimension of effective degrees of freedom
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Fig. 3. Tensor network of MERA and surface/state correspondence in AdS/CFT. In the standard AdS/CFT
correspondence, the CFT state (UV state) is given by |�UV〉 and is defined by the quantum state realized at
the boundary (Bdy) of the above MERA network. The black lines describe the flow of quantum states on
discretized lattice points, which are acted on by the coarse-graining and (dis)entangler operations. For a given
convex closed surface �, we define the corresponding pure quantum state |�(�)〉 by contracting the indices
of the tensors starting from the UV state |�UV〉, following the tensor network as � is homologous to the AdS
boundary. Note that we can add a dummy trivial state |0〉 for each coarse-graining operator so that both |�(�)〉
and |�UV〉 live in the same Hilbert space Htot. Equally, we can start from any point inside the region surrounded
by � and expand into � to eventually find the state |�(�)〉. Therefore, we can apply this correspondence to
any network, even those without boundaries.

that participate in the entanglement between Ai and its complement and is smaller than the actual
dimension of the Hilbert space dimH� . We expect that this quantity Seff(�) is of the same order as
the number of links in the tensor network representation that intersect with �. For this, refer to Fig. 3
and the arguments in the next subsection.

Then the relation (2.11) can be written as2

Seff(�) = log
[
dimHeff

�

]
= A(�)

4G N
. (2.12)

If we apply this to the AdS/CFT and choose � to be the AdS boundary, then this estimation of
effective dimension is reduced to the holographic bound [47]. Note also that the quantity (2.12) does
not depend on the details of the decomposition of � into infinitesimally small pieces.

As the simplest example, consider the case where we shrink the closed surface � to zero size. Then
all SA and the effective dimension become vanishing. This means that the corresponding pure state
|�(�)〉 does not have any real-space entanglement, in spite of the fact that this state is defined in the
infinitely large Hilbert space Htot and this justifies our previous identification (2.4).

If a closed or open surface � is an extremal surface, then the entanglement entropy S�
A coincides

with the effective entropy Seff(�) for the surface �A. This means that the state ρ(�A) saturates the
subadditivity for any choices of subsystems in �A. Therefore the density matrix ρ(�A) is a direct
product of density matrices at each point: ρ(�A) = ⊗iρ(�Ai ). This means that there is no true
quantum entanglement within �A. Indeed, a typical example of such a closed surface is a black hole
horizon. If �A is an open surface as in Fig. 2, S�

A and S�
Ai

are non-trivial and all come from the
entanglement between �A and �B , not from the entanglement inside �A.

2 The areas of generic surfaces as in the right-hand side of (2.12) have recently been interpreted as an inter-
esting quantity called differential entropy in the dual CFT [38–44]. Also, another intriguing interpretation of
the same quantity in terms of entanglement of gravitational theories has been conjectured in Refs. [45,46]. Note
that our interpretation (2.12) is apparently different from these in that our basic principle introduces quantum
states for each surface.
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2.3. Relation to (c)MERA and tensor networks

In the setup of AdS/CFT correspondence, our surface/state correspondence can be understood from
the framework of real-space renormalization called multi-scale entanglement renormalization ansatz
(MERA), introduced in Refs. [8–11]. Our construction is closer to its continuum version, called
continuous MERA (cMERA) [19]. In Ref. [6], it has been argued that the mechanism of AdS/CFT
can be understood as that of MERA if we consider discretizations (or lattice versions) of CFTs.
Also, to realize continuum quantum field theoretic descriptions of AdS/CFT, we can relate cMERA
to AdS/CFT [20] to eliminate lattice artifacts. We would like to refer the reader to these references
for detailed explanations of the conjectured equivalence between (c)MERA and AdS/CFT. Below
we will give a brief summary of the argument.3

MERA gives a scheme of real-space renormalization in terms of wave functions. This is rather
different from the familiar Wilsonian approach, where the renormalization-group flow in momen-
tum space is studied in terms of effective actions. Suppose we are interested in the ground state of
a quantum spin chain with a complicated Hamiltonian. We can coarse-grain the original spin sys-
tem by combining two spins into a single spin according to an appropriate linear map (so-called
isometry). We can repeat this process an arbitrary number of times until we reach just a single spin.
However, if we literally do this, the short-range entanglement of the coarse-grained quantum state is
not necessarily removed. Therefore, we need to cut out the short-range entanglement just after each
coarse-graining process by a unitary transformation, called a disentangler. These whole processes
that modify the original spin state into a single spin state can be regarded as a network of spins,
which is a particular example of a tensor network (see Fig. 3). The conjecture in Ref. [6] argues that
the tensor network of MERA can be identified with the AdS spacetime, which can be qualitatively
confirmed, e.g., from evaluations of entanglement entropy. For reviews on tensor networks refer to,
e.g., Refs. [55–57].

In MERA or, more generally, tensor networks, we can pick up a convex closed surface in a given
network and define a quantum state defined on the boundary of that part, by contracting indices
of matrices of disentanglers and coarse-grainings (see the surface � in Fig. 3). This consideration
naturally leads to our surface/state correspondence, assuming that the tensor networks are equivalent
to gravitational theories. For this connection, as already mentioned in Ref. [20], we do not need the
presence of any actual boundaries in a gravitational spacetime, as is usually required in holography.

It is also useful to note that the number of intersections between � and the links in the tensor
estimate the effective entropy S(�). On the other hand, the entanglement entropy S�

A is estimated
by the minimum number of intersections for curves that are homologous to A. However, we are not
arguing for a precise match for these estimations as each link in a tensor network is not necessarily
maximally entangled.

In the cMERA formulation [19], we focus on a one-parameter family of quantum states |
(u)〉. The
parameter u (−∞ < u < 0) denotes the scale of renormalization such that the momentum cutoff is
given by |k| ≤ eu/ε, where ε is the original UV cutoff (lattice spacing) of the theory that we consider.
The UV limit corresponds to u = 0 and its state |�(0)〉 coincides with the vacuum of a given CFT. On
the other hand, u = −∞ corresponds to the IR limit and, with an appropriate IR cutoff (i.e., a very

3 For recent progress on different approaches to the construction of bulk theory from the boundary via
renormalization-group (RG) flow, refer to, e.g., Refs. [48–54].
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small mass term), this IR state is given by the state |�〉 with no real-space entanglement. We can
identify such states with boundary states [22] in CFTs with an appropriate regularization.

Since the vacuum state |
(0)〉 is highly entangled, we can construct this state by adding quantum
entanglement to the trivial state |�〉 as

|
(u)〉 = Pe
−i

∫ u
uIR

(K (s)+L)ds |�〉, (2.13)

where P denotes the path-ordering [19]. The Hermitian operators K (s) and L describe the disentan-
gler and the coarse-graining procedure. For our purpose it is useful to introduce another (equivalent)
formulation [20] given in terms of the state

|�(u)〉 ≡ eiuL |
(u)〉 = Pe
−i

∫ u
uIR

K̂ (s)ds |�〉, (2.14)

where K̂ (s) is defined by the disentangler in the interaction picture

K̂ (u) = eiuL K (u)e−iuL . (2.15)

Note that we perform a scale transformation after disentangling for the states |
(u)〉, while we do
not for |�(u)〉.

One important idea of cMERA is to keep the dimension of the total Hilbert space the same. This can
be realized by combining the coarse-graining procedure with adding trivial dummy states (e.g., |0〉
at each lattice point) to keep the dimension the same, so that the coarse-graining is described by a
unitary transformation. We can do the same procedure for the coarse-graining operator in the network
of Fig. 3 so that the states |�(�)〉 live in the same Hilbert space Htot. Therefore, any states |�(u)〉
belong to states in the large Hilbert space Htot defined in the UV theory. This trick was also borne
in mind in our discussions of Sect. 2, where we argued that the Hilbert space does not change as
long as the deformation of a surface preserves the homology class. For our purpose, we have in
mind a generalization of cMERA such that we can choose the parameter u for any inhomogeneous
coarse-graining procedure (or inhomogeneous RG flow).

From the AdS/CFT viewpoint, this parameter u corresponds to the coordinate of extra dimension
defined by the following metric of Poincaré AdSd+2:

ds2 = R2du2 + R2

ε2 e2udxμ dxμ, (2.16)

where R is the AdS radius and ε is the UV cutoff of the dual CFT.
It is also possible to extend the cMERA formalism to finite-temperature CFTs, which has been

done in Ref. [21] for free scalar field theories. The MERA for quantum many-body systems at finite
temperature was recently formulated in Ref. [18] by improving the construction in Refs. [6,14].
The finite-temperature (c)MERA can be nicely interpreted as the geometry of a double-sided AdS
black hole.

3. Information metric

Consider two different closed surfaces � and �′, which are both topologically trivial. According to
(2.1), we can associate them with pure states in the common Hilbert space Htot. This allows us to
define the inner product

〈
�(�)|�(�′)

〉
between them and provides us with additional information

on the structure of quantum states. In this section, we will focus on the inner product when the two
surfaces � and �′ are very close to each other by extracting the information metric and will study
its dual gravity description. We will also comment on an implication of quantum estimation theory
in the final subsection.
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Fig. 4. Infinitesimal deformations of surfaces for the information metric.

3.1. Information metric and gravity dual

Consider a one-parameter family of codimension-two closed surfaces �u and assume that the surface
�u for any u is topologically trivial such that it corresponds to the pure state |�(�u)〉. We are inter-
ested in an infinitesimal shift du of u and in the inner product 〈�(�u)|�(�u+du)〉 (refer to Fig. 4).
Note that this inner product approaches 1 in the limit du → 0 and it is straightforward to confirm
that it always behaves as 1− 〈�(�u)|�(�u+du)〉 = O

(
du2

)
. Therefore we will define the quantity

G(B)
uu as follows in the limit du → 0:

1− |〈�(�u)|�(�u+du)〉| = G(B)
uu du2. (3.17)

This quantity G(B)
uu is called the Fisher information metric (in terms of Bures distance) [58–62] and

measures the distance between two different quantum states.4 We will give a more general definition
of this metric in a later subsection including mixed states.

We describe the metric of Md+2 by using the Gaussian normal coordinate as follows:

ds2 = R2du2 + gμν(x, u)dxμ dxν, (μ, ν = 0, . . . , d), (3.18)

and consider the shift of u. Here R is a constant with the length dimension so that u becomes
dimensionless. Our formulation is covariant on the choice of R.

In this setup, we conjecture that the information metric G(B)
uu defined by (3.17) is expressed in terms

of the gravity on Md+2 in the following form:

G(B)
uu =

1

G N

∫
�u

dxd
√

g(x)

∫
�u

dyd
√

g(y) · Pμνξη(x, y, u)

(
∂gμν(x, u)

∂u

) (
∂gξη(y, u)

∂u

)
,

(3.19)
where G N is the Newton constant of the gravity on Md+2 and Pμνξη is a certain function that is
proportional to the degrees of freedom (such as the central charges in CFTs). Note that, even though
xμ and yμ are originally coordinates of d + 1-dimensional space, we restricted to the d-dimensional
space-like surface �u in the integrals in (3.19).

If we assume that the metric gμν(x, u) does not depend on the transverse coordinate x , then we
argue that (3.19) gets simplified into

G(B)
uu =

1

G N

(∫
�u

dxd√g

)
· P̂μνξη(u)

(
∂gμν(u)

∂u

) (
∂gξη(u)

∂u

)
. (3.20)

In order to match the cMERA results, as we will discuss briefly later, the tensor P̂μνξη should scale
like gμνgξη under the Weyl scaling. The fact that the information metric is non-negative suggests

4 As we will mention in Sect. 3.4, there is another definition of the Fisher information metric G(S)
uu based on

the relative entropy. These two metrics G(B)
uu and G(S)

uu are equivalent only for classical states. However, in this
paper, we will not distinguish them seriously and assume that the results in this paper can be applied to both
metrics.
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that P̂ is also non-negative. From this estimation we can find that the tensor P in (3.19) scales as
Pμνξη(x, y, u) ∼ δd(x − y)gμνgξη/

√
g + · · · , where we have abbreviated non-local terms.

To understand the form (3.19), it is useful to think of an artificial Hamiltonian H(u) such that
the state |�(�u)〉 is the ground state of H(u) for each u. Note that in general the real-time evo-
lution by the time t can be described by another true Hamiltonian Htrue(u). In particular, in the
cMERA description of a CFT ground state, H(u) is given by the Hamiltonian after entanglement
renormalization and coincides with the true Hamiltonian Htrue(u) because the time evolution is
trivial.

Then, by using the standard second-order perturbation theory of quantum mechanics (assuming
no ground-state degeneracy), we can derive

1− |〈�(�u)|�(�u+du)〉| = (du)2 ·
∑
m �=0

|〈m|∂u H(u)|0〉|2
(�Em)2 , (3.21)

where the ground state |0〉 should be regarded as |�(�u)〉 and |m〉 denote all of its excited
states; �Em is the energy difference between |m〉 and |0〉 with respect to the Hamilto-
nian H(u). The infinitesimal change δgμν in (3.18) linearly affects the Hamiltonian δH(u) =∫
�u

dxdδgμν(x)Oμν(x), where Oμν is a certain operator that is analogous to the energy momen-

tum tensor Tμν . Because we have δgμν = du · ∂gμν

∂u for the infinitesimal change of u, we reproduce
the expression (3.19). Note also that (3.21) shows the well known fact that the information metric
G(B)

uu is non-negative for any unitary theory.
To estimate the normalization of P and P̂ in (3.19) and (3.20), consider the cMERA description

of a d + 1-dimensional CFT ground state. The information metric in cMERA was computed in Ref.
[20] for surfaces �u defined by a fixed u in the AdS space (2.16) and the result is given by

G(B)
uu = Ndeg · Vd

εd
edu ∼ Seff(�u), (3.22)

where Ndeg estimates the number of fields and is proportional the central charge. It is also useful to
notice that the right-hand side of (3.22) is identical to the effective entropy (2.12) up to an order-one
factor.

Note that, even though this behavior (3.22) was derived for a free massless scalar field theory, we
naturally expect it to also be applicable to any CFTs due to the scaling property, where it is propor-
tional to the effective volume of phase space. We can indeed confirm that (3.22) can be reproduced
from (3.20) by substituting the metric of pure AdS (2.16) and noting that P̂μνξη∂ugμν∂ugξη is an
O(1) constant and that the ratio Rd/G N is proportional to the central charge of the CFT.

So far we have only discussed the information metric for topologically trivial closed surfaces, which
correspond to pure states. However, it is natural to expect that our expressions (3.19) and (3.20) can
be applied to open surfaces and topologically non-trivial closed surfaces, which are dual to mixed
states. Indeed, we can define the Fisher information metric for mixed states, as we will explain in
Sect. 3.4.

Finally, we would like to suggest a plausible argument to fix the form of the tensor P̂ . For simplicity,
let us assume that our space is static. Consider an AdS/CFT setup when �u becomes extremal (or
equally minimal) at u = u0. As we mention, the dual state is very special in that there is no real-
space entanglement inside �u0 as the subadditivity is saturated. As we move from the AdS boundary
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to the bulk, the information metric Guu is expected to decrease5 and eventually it becomes zero.
However, we know that Guu is non-negative and thus this flow is terminated at this point. Indeed,
according to our arguments in the previous section, we cannot move the surface across the extremal
surface (see our argument in section 2.2). Therefore, this implies that we have Guu = 0 at u = u0.
As the condition of the extremal surface is given by the vanishing of the trace of extrinsic curvature,
Ku = gμ̄ν̄∂ugμ̄ν̄ = 0, we find that the tensor P̂ should only have spacial components and is given
by the form P̂μ̄ν̄ξ̄ η̄ = CP · gμ̄ν̄gξ̄ η̄, where (μ̄, ν̄, ξ̄ , η̄) denotes the d-dimensional spacial part of the
Lorentzian d + 1-dimensional indices (μ, ν, ξ, η). The coefficient CP is proportional to the degrees
of freedom of the CFT. We can extend this argument to the time-dependent case as our present
argument tells us that Guu is proportional to the integral 1

G N

∫
�u

dxd√gK 2
u , where Ku is the trace

of extrinsic curvature in the direction of our surface deformation.

3.2. Analysis of the information metric in AdS/CFT

Here we would like to present an explicit analysis of the information metric by concentrating on
the AdS/CFT example by applying the cMERA construction. We focus on the state |
(u)〉 defined
in (2.13) instead of our standard state |�(u)〉. Note that they are related by the scale transformation as
in (2.14). Thus, the information metric that we compute in this subsection is different from the orig-
inal one (3.17). Nevertheless, it may still be helpful to know the general behavior of the information
metric in CFTs.

Below, we will evaluate the Fisher information metric for the state |
(u)〉. We would like to
postpone general studies of the Fisher information metric in quantum field theories to future work
(M. Miyaji et al., work in progress). Note that the change of u is simply interpreted as the standard
renormalization-group flow in the relativistic field theories. Refer also to Ref. [63] for interesting
results of the inner products under quantum quenches.

Consider the ground states |0 : Vi 〉 (i = 1, 2) for the theories whose Euclidean actions are given by
SCFT +

∫
dtVi (t), where Vi (t) describes a infinitesimally small perturbation around a CFT defined

by the action SCFT; t is now a Euclidean time. Then the overlap between these vacuum states is given
by the following formula (M. Miyaji et al., work in progress):

〈0 : V2|0 : V1〉 =
Z

[∫
dtθ(−t)V1(t)+

∫
dtθ(t)V2(t)

]
√

Z
[∫

dtV1(t)
]

Z
[∫

dtV2(t)
] , (3.23)

where Z [V ] denotes the partition function in the presence of the interaction V . If Vi are infinitesimal,
we can expand (3.23) as

〈0 : V1|0 : V2〉 = 1− 1

2

〈∫ ∞
ε

dt (V1(t)− V2(t))
∫ −ε

−∞
dt ′

(
V1

(
t ′
)− V2

(
t ′
))〉+ O

(
V 3), (3.24)

where we have assumed time-reversal symmetry of the interaction Vi (t). Note also that we have
introduced the UV cutoff ε to remove the divergent contributions when the positions of two inter-
action vertices collide. Moreover, we find that the inner product (3.24) is real valued by considering
the case where Vi are Hermitian operators.

5 This looks analogous to the c-theorem. We would like to come back to this in more detail in future work
(M. Miyaji et al., work in progress).
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We express the gravitational spacetime metric as in the Fefferman–Graham coordinate

ds2 = R2du2 + R2

ε2 e2u ĝμν(x, u)dxμdxν (μ, ν = 0, 1, 2, . . . , d), (3.25)

where R is the AdS radius and ε is the UV cutoff of the dual CFT. The rescaled metric ĝ corresponds
to the metric in the CFT.

We assume that the metric perturbation is time independent, so that the action for the Euclidean
theory on �u is given by

SCFT +
∫

dt dd x δĝμν(x, u)T μν(x, t), (3.26)

where we have defined ĝμν = ημν + δĝμν .
In this setup, we can show that6

1− |〈
(u)|
(u + du)〉| = (du)2

2

∫
dd x dd y

(
∂ ĝμν(x, u)

∂u

) (
∂ ĝσρ(y, u)

∂u

)
Qμνσρ(x − y),

(3.27)
where we have introduced the tensor Q as follows:

Qμνσρ(x − y) =
∫ ∞

ε

dt
∫ −ε

−∞
dt ′

〈
Tμν(x, t)Tσρ

(
y, t ′

)〉
. (3.28)

We can calculate this by using the explicit expression [64]:

〈
Tμν(x, t)Tσρ

(
y, t ′

)〉 = CT(
(x − y)2 + (

t − t ′
)2)d+1 Rμα

(
x, t : y, t ′

)
Rνβ

(
x, t; y, t ′

)ET
αβ:σρ, (3.29)

where

ET
μν:ηξ =

1

2

(
δμηδνξ + δμξ δνη

)− 1

d + 1
δμνδξη (3.30)

Rμν(x, t : y, t ′) = δμν − 2
(x − y)μ(x − y)ν

(x − y)2 + (t − t ′)2 . (3.31)

Note that, in even-dimensional CFTs, the coefficient CT is proportional to the central charge of the
dual CFT in the Einstein gravity description of AdS/CFT.

For simplicity, let us set d = 1, i.e., a 2D CFT, and compute the tensor Qμνσρ explicitly. To sim-
plify the expressions, we define the components (a, b, c) so that they denote pairs of components
(t t, xx, t x). Note that in this convention the tensor Q is written as a symmetric 3× 3 matrix. We
obtain

Qaa = Qbb = −Qab = −Qcc = CT
3ε4 − 6ε2(x − y)2 − (x − y)4

12
(
(x − y)2 + ε2

)3 ,

Qac = −Qbc = CT
2ε3(x − y)

3
(
(x − y)2 + ε2

)3 = −
π

12
CT δ′(x − y),

(3.32)

where we have taken the ε → 0 limit in the final expression.

6 Strictly speaking, the deformation in (3.26) corresponds only to the shift ĝμν(x, u)→ ĝμν(x, u + du)

with the warp factor e2u unchanged in the metric (3.25). However, we can find the same result even if we do
the infinitesimal shift u in e2u , owing to the fact that the scale invariance of our CFT leads to the identity
Qμ

μσρ = Qμν
ρ
ρ = 0.
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It is also useful to perform the Fourier transformation Qμνρσ (x − y) = ∫∞
−∞ dk Qμνρσ (k)e−ikx ,

which leads to

Qaa = Qbb = −Qab = −Qcc = 1
24CT |k|,

Qac = −Qbc = 1
24 iCT k.

(3.33)

After we goes back to the original Lorentz signature by the Wick rotation t → i t , we get

Qaa = Qbb = Qab = Qcc = 1
24CT |k|,

Qac = Qbc = 1
24CT k.

(3.34)

In particular, if we assume that the metric ĝ does not depend on the coordinate xμ, we simply find that
|〈
(�u)|
(�u+du)〉| = 1, i.e., the information metric is trivial, as follows from (3.32) and (3.34).

In the presence of a more general x-dependent metric perturbation, we can evaluate (3.27) as
follows:

1− |〈
(u)|
(u + du)〉| = π2

6
CT (du)2

∫ ∞
−∞

dk|k|
(
|∂u ĝtt (k)|2 + 2∂u ĝtt (k)∂u ĝxx (−k)

+ |∂u ĝxx(k)|2 + 4|∂u ĝtx (k)|2
)

. (3.35)

We can easily confirm that the information metric G(B)
uu is indeed non-negative.

The relation between the CFT metric ĝμν defined by (3.25) and the gμν one in (3.18) is given by

gμν = R2

ε2 e2u ĝμν . Note also the familiar relation CT ∝ R/G N and remember that the UV cutoff in
the momentum integral in (3.35) will be 1/ε. Since the transformation from the information metric
for |
(u)〉 to that for |�(u)〉 corresponds to removing the scale factor e2u in (d-dimensional) spacial
metric components, it is natural to get the form (3.19) and (3.20) in the |�(u)〉 frame.

3.3. Distance between quantum mixed states

Here we would like to briefly review the information metric. First we should admit that the definition
of the information metric is not unique in quantum theory. For example, we can define two different
Fisher information metrics G(B)

θθ and G(S)
θθ as follows (see, e.g., Refs. [58–60]):

G(B)
θθ du2 = B(ρθ+dθ , ρθ ),

2G(S)
θθ du2 = S(ρθ+dθ ||ρθ ),

(3.36)

where we have introduced two different measures of distance between two quantum states given by
the density matrix: ρ and σ

B(ρ, σ ) = 1− Tr[
√√

ρσ
√

ρ],

S(ρ||σ) = Tr[ρ(log ρ − log σ)].
(3.37)

The quantity B(ρ, σ ) is called the Bures distance, while S(ρ||σ) is known as the relative entropy,
both of which measure entropic distance between two quantum states. Notice that, in particular, for
two pure states |u〉〈u| and |v〉〈v|, we can show

B (|u〉〈u|, |v〉〈v|) = 1− |〈u|v〉|. (3.38)

It is known that these two different metrics G(B)
θθ and G(S)

θθ coincide for classical states, while they
do not for generic quantum states. In this paper, we simply focus on the former, G(B)

θθ , for our con-
venience, assuming that the difference is not important for our purpose. We would also like to note
that the distance (3.17) in our conjectured surface/state correspondence can be naturally generalized
for that between two mixed states, corresponding to topologically non-trivial surfaces.
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3.4. Quantum estimation theory and the information metric

The information metric plays an important role in (quantum) estimation theory. Assume that the
density matrix is parameterized by a real value θ ∈R, denoted by ρθ . Now we would like to estimate
the value of θ based on the so-called positive-operator valued measure. We define X as an operation
that describes the measurement of θ such that its expectation value 〈X〉 for ρθ coincides with θ . Then
we would like to estimate the mean-square error 〈(δθ)2〉 = 〈(X − θ)2〉. In this setup, it is known that
this error 〈(δθ)2〉 is bounded by the inverse of the Fisher information metric as follows:

〈
(δθ)2〉 ≥ 1

8G(B)
θθ

. (3.39)

In classical information theory, this is known as the Cramer–Rao bound, which has been generalized
to that in quantum information theory [61,62,65]. Intuitively, this inequality means that, if the density
matrix ρθ changes more radically when we vary θ , then the estimation gets easier.

If we apply this bound to a one-parameter family of codimension-two surfaces �u in our
surface/state correspondence, we immediately obtain the inequality

〈
(δu)2

〉 ≥ 1
8G(B)

uu
from (3.39).

The variance
〈
(δu)2

〉
describes an error of the value of the coordinate u in the gravitational spacetime

Md+2.
In particular, if we consider the AdS/CFT setup and identify u with the radial coordinate as

in (2.16), then we get the following bound:〈(
δz

z

)2
〉
= 〈

(δu)2〉 ≥ 1

8G(B)
uu

∼ zd

Ndeg · Vd
∼ G N

A(�u)
, (3.40)

where we have introduced the standard radial coordinate z = εe−u of the Poincaré AdS. Also,
A(�u) = Rd Vd z−d denotes the actual area of the surface �u . For large-N gauge theories, we have
Ndeg ∼ N 2 and thus the error gets suppressed in the large-N limit.7 This seems to be consistent
with the standard expectation in the AdS/CFT that classical geometries appear in the large-N limit.
Moreover, we can also interpret (3.40) in terms of effective entropy as follows:〈(

δz

z

)2
〉

� 1

Seff(�u)
∼ 1

# links intersecting with �u
, (3.41)

where, in the final qualitative relation, we have employed the holographic interpretation of tensor
networks. It is suggestive to rewrite this inequality in the following way:〈

(δA(�u))2 〉
� G N · A(�u), (3.42)

in terms of the area A(�u) of �u . It will be a very intriguing future problem to understand the precise
physical meaning of such a bound in quantum estimation theory from the viewpoint of AdS/CFT
correspondence.

4. Several examples

Here we briefly study several explicit examples to see how our proposals work.

7 If we take �u to be a d-dimensional plane with u fixed, then Vd is already infinite. However, even if
we choose �u to be an open manifold with a finite volume at the same value of u, we expect the same
evaluation (3.40).
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4.1. Pure AdS

Consider the AdS space in the Poincaré coordinate given by the metric (2.16). If we take the surface
�u to be a constant u slice with the time t

( = x0
)

fixed, then (3.22) agrees with the cMERA result
for the dual CFT, as we have already mentioned in the previous section.

It is also intriguing to choose the one-parameter family �xi of surfaces by taking a constant xi slice,
where i can be one of 1, 2, . . . , d, with the time fixed. In this case the proposed formula (3.20) leads
to G(B)

uu = 0. This is consistent with the dual quantum state calculation because there is translational
invariance in the xi direction and the quantum state, which is actually a mixed state, is invariant under
the shift of xa .

4.2. AdS black hole vs AdS soliton

The AdS black hole and AdS soliton are related to each other by a Wick rotation and their Euclidean
spaces include a common cigar-like geometry, whose polar coordinate is defined as (r, θ) [66]. At
r = 0, the θ circle shrinks smoothly to zero size.

In the AdS black hole, the Euclidean time is taken in the θ direction. A one-parameter family of
surfaces �r is defined by fixing r with θ = 0, which is a point in the cigar. Therefore it is not possible
to contract �r to zero size by a smooth deformation. Our conjecture tells us that the corresponding
state is a mixed state ρ(�r ), as expected from the thermal nature of the black hole. The von Neumann
entropy of ρ(�r ) coincides with the black hole entropy SBH for any r , while we can have matching
for the effective entropy: Seff(�r ) = SBH only for r = 0.

On the other hand, in the AdS soliton, the time direction is not included in the cigar. We define �r

by fixing the value of r with the time fixed. Then � is wrapped on the θ circle. However, this circle
can be smoothly contractible to zero size and thus we can conclude that the corresponding state is a
pure state |�(�r )〉, as expected.

4.3. Flat spaces

If we consider the flat spacetime R1,d+1 and choose u to be one of the Cartesian coordinates:

ds2 = du2 + dxμ dxμ, (4.43)

then we immediately find that the right-hand side of the information metric (3.20) is simply vanishing.
On the other hand, the translation symmetry in the u direction implies that |�(�u+du)〉 = |�(�u)〉
and this clearly explains why the left-hand side of (3.19) is also vanishing. Note that �u is itself
an extremal surface and therefore its entanglement entropy SA for a finite-area part of A satisfies
the volume law and is equal to the effective entropy Seff(A). This shows that the quantum state
dual to ρ

�u
A is non-locally entangled, while the entanglement between finitely separated regions is

vanishing.8 This is consistent with the analysis of flat-space holography in Refs. [67,68]. See also
Ref. [69] for an interesting analysis of entanglement entropy in flat-space holography from a different
viewpoint.

We can generalize this argument to the class of metric

ds2 = du2 + gμν(x)dxμ dxν. (4.44)

8 This can be understood clearly by compactifying �u , e.g., regarding �u as a limit of a large spherical
surface.
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In this case, we again have translational symmetry in the u direction; we find that the information
metric (3.19) should be trivial and this agrees with the dual description by quantum states.

4.4. Discussion: de Sitter spaces

A much more non-trivial example is de Sitter spaces. A holography for de Sitter spaces, called
dS/CFT, has been proposed in Ref. [5] and it has been suggested that if gravity theories on de Sitter
spaces can be dual to CFTs, then they are non-unitary CFTs [70] (see also Refs. [71–74]).

A global metric of d + 2-dimensional de Sitter space is given by

ds2 = R2(− dt2 + cosh2 t d�2
d+1

)
, (4.45)

where d�2
d+1 is the metric of Sd+1 with the unit radius. First let us define �t as an equator of Sd+1 on

a constant t slice. At t = 0, it is clear that the surface �t=0, which is given by a d-dimensional round
sphere Sd , is an extremal surface. Therefore we find the saturation of subadditivity Seff(�A) = S�t=0

A
for any �A whose size is less than half of �t=0. From this fact, we can conclude that each point in
�t=0 is only entangled with its antipodal point and there is no other entanglement. This property
of quantum entanglement is far from that of CFT vacua. It is also interesting to note that the total
effective entropy Seff(�t=0) coincides with the de Sitter entropy, as follows from the relation (2.12).

On the other hand, for the surfaces �t at t �= 0, we find that their interpretation looks puzzling.
It is obvious that their effective entropy grows exponentially: Seff(�t ) ∝ (cosh(t))d . However, if we
consider the entanglement entropy when we trace some part of �t , it turns out that its corresponding
space-like extremal surface does not always exist. For example, in the late time limit t � 1, but only
if we choose the size of subsystem �A to be as small as O(e−t ), we can find an extremal surface that
computes to the holographic entanglement entropy S�t

A . One possibility to resolve this problem might
be to pick up extremal surfaces by complexifying the spacetime coordinates as in Refs. [73,74]. This
trick leads to negative- or complex-valued entanglement entropy, which might be due to the non-
unitary nature of dual CFTs. Another possibility is to dismiss such surfaces without proper extremal
surfaces and to focus on the other class of surfaces. We would like to leave these problems to future
studies.

5. Conclusions

In this paper, we have proposed a new duality: surface/state correspondence, between codimension-
two space-like convex surfaces in gravity theory and quantum states in an infinitely large Hilbert
space. Quantum states dual to topologically trivial closed surfaces are pure states, while those dual
to open surfaces and topologically non-trivial closed surfaces are dual to mixed states. This proposal
generalizes and refines the idea of holography and is highly motivated by the conjectured equivalence
between AdS/CFT and tensor networks. It will be interesting to see more close connections between
our formulation and the tensor network description. For example, our consideration of extremal sur-
faces for the calculation of entanglement entropy leads to the requirement of convexity, and it will
be important to understand its tensor network counterpart. This looks related to the irreversibility of
coarse-graining operations.

Moreover, we have studied some properties of these states, such as entanglement entropy, effective
entropy, and the Fisher information metric. The entanglement entropy, which is a generalization of
holographic entanglement entropy, is given by the area of an extremal surface. The effective entropy
is simply given by the area of the surface. The information metric is related to an integral of a square
of extrinsic curvatures. Using our evaluation of the information metric, we applied the Cramer–Rao
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bound in quantum estimation theory and showed that quantum fluctuations in the estimated value of
the radial coordinate of AdS space are suppressed in the large-N limit. It would be nice if we could
find the precise form of the tensor P in the information-metric expression from a direct calculation.
Also, it might be intriguing to study other quantities related to quantum entanglement, such as the
entanglement density introduced in Refs. [75–77] (see also Ref. [78] for a closely related work), and
discuss how the Einstein equation appears in our formulation.

The most attractive feature of our proposal is that it does not rely on the existence of boundaries,
as opposed to the standard holography. In principle, we can apply our proposal to understanding the
holography for de Sitter spaces, as we have briefly mentioned in this paper and we would like to
come back to this problem in future publications. Also, in string theory, we often encounter internal
compact spaces such as S5 in the type IIB background AdS5 × S5. Even though interpretations of
internal spaces have been discussed in Refs. [79,80] from the viewpoint of quantum entanglement,
their realizations in tensor networks and in our surface/state correspondence also remain as future
problems.
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