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ABSTRACT

In this paper, we propose a simple yet effective method of
identifying traffic conditions on surface streets given location
traces collected from on-road vehicles—this requires only
GPS location data, plus infrequent low-bandwidth cellular
updates. Unlike other systems, which simply display vehicle
speeds on the road, our system characterizes unique traffic
patterns on each road segment and identifies unusual traffic
states on a segment-by-segment basis. We developed and
evaluated the system by applying it to two sets of location
traces. Evaluation results show that higher than 90% accu-
racy in characterization can be achieved after ten or more
traversals are collected on a given road segment. We also
show that traffic patterns on a road are very consistent over
time, provided that the underlying road conditions do not
change. This allows us to use a longer history in identifying
traffic conditions with higher accuracy.

Categories and Subject Descriptors

H.2 [DATABASE MANAGEMENT]: Database Appli-
cations; H.3 [INFORMATION STORAGE AND RE-
TRIEVAL]: Online Information Services

General Terms

Algorithms, Design, Measurement

Keywords

Traffic, Estimation, GPS

1. INTRODUCTION
Driving a vehicle is an essential part of our daily lives,

but traffic congestion increasingly leads to significant delays.
According to a recent report [19], US drivers wasted 3.7
billion hours of time, 2.3 billion gallons of fuel, and a total
cost of 63 billion dollars in 2003 due to traffic delays. If it
were possible to detect congestion and notify drivers in real
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time, many drivers might have been able to avoid congested
routes before they join the backup, further exacerbating the
problem.

One already has a crude approximation of this, with con-
gestion detected by eyewitness reports from news organi-
zations or operators themselves. These are augmented by
closed-circuit cameras and sensors that have been installed
as infrastructure. Unfortunately, the coverage of those sys-
tems is extremely limited due to high installation and main-
tenance costs. For example, a vehicle loop detector costs
$700 for a loop, $2500 for a controller, $5000 for a controller
cabinet, $300000 for fiber optic cable per mile, and 10%
of the original installation cost for annual maintenance as
of 1999 [2]. As an example of the limited coverage, New
York City Department of Transportation provides only 22
traffic monitoring cameras for 8 million New Yorkers [4]. It
is practically impossible to install traffic monitoring systems
densely enough to cover the entire network of surface streets.

Instead, we propose a simple yet effective method to cap-
ture and identify traffic status without any aid of costly traf-
fic monitoring systems. We leverage vehicular mobile net-
works such as GM’s OnStar [5]. OnStar is an optional sys-
tem with GPS, two-way radio, and sensors built in GM vehi-
cles mainly for emergency and vehicle maintenance. Such a
service could allow vehicles to transmit GPS data to service
providers and receive useful traffic information from them in
return. Moreover, many cellular phones, PDAs, and vehi-
cle navigation systems already have GPS plus two-way data
communication capabilities, including mobile WiMAX [6],
HSDPA/UPA, or EV-DO/DV. In this paper we show how
GPS data collected from these vehicles and devices can be
used to provide personalized road traffic information in real
time. We present an algorithm that can extract useful traffic
information from such collective GPS traces, and show that
even a modest fraction of vehicles so equipped can enable
real-time traffic monitoring. Our real-time traffic monitor-
ing system is shown in Figure 1.

Such traffic estimation is relatively straightforward on free-
ways; they have limited access, and traffic interruptions are
the exception rather than the rule. Contrast this with sur-
face streets, with traffic lights, stop signs, crosswalks, and
similar traffic obstacles. In this setting, identifying trou-
blesome traffic states is more complex. For instance, a low
speed does not necessarily mean a bad traffic jam, because
it may be caused by traffic signals, whereas the actual traf-
fic flow is fine. Furthermore, all roads are not the same;
they have different speed limits, numbers of lanes, road
lengths, or road curvatures. We cope with such diversity
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Figure 1: A block diagram of our real-time traffic
monitoring system.

by partitioning roads into segments, and then characterize
unique traffic patterns on each segment, considering vehicle
speeds, traffic light durations, segment lengths, and traver-
sal times—all extracted from GPS data. Based on the traffic
characteristics on each road segment, we can identify current
traffic states on the road segment using GPS data transmit-
ted from vehicles in real time.

For evaluation, we applied our method to two different
trace sets collected in the Ann Arbor area. Although we had
to collect GPS data during a wide time window because of a
limited number of GPS-equipped vehicles, evaluation results
show that we can achieve higher than 90% accuracy after ten
traversals on a road segment.

The remainder of this paper is organized as follows: Sec-
tion 2 covers background and related work. Section 3 pro-
vides a brief overview of our system. Section 4 shows how
to extract traffic information from GPS data, while Section
5 describes how to classify traffic states and identify current
traffic status based on the traffic features extracted in Sec-
tion 4. Section 6 evaluates our method by applying it to
two different GPS trace sets, and Section 7 concludes this
paper.

2. RELATED WORK
Vehicle traffic has been an important research issue ever

since the invention of the automobile. Greenshields con-
ducted empirical studies on the traffic flow theory in the
1930s, and a number of work has been done to analyze traf-
fic in terms of speed, flow rate, density, and many other fac-
tors [11, 12, 15]. However, most work was focused on finding
the empirical relationships between many traffic factors like
speed and flow rate.

Since the idea of intelligent transportation system (ITS)
was introduced a couple of decades ago, research focus started
to move on to how to measure traffic remotely and detect
incidents or delays automatically by using sensors built on
roads. For example, Lin and Daganzo [16] and Coifman [10]
proposed simple schemes to detect freeway incidents using
traffic detectors on roads. But using detectors on roads has a
limited coverage problem due to high installation and main-
tenance costs. So some started to pay attention to using
vehicles equipped with GPS and/or a cellular positioning
system as probes [18, 22, 17]. However, they just proposed
how to measure vehicle speeds usually on simple freeways,
whereas we focus on how to identify traffic states in complex
urban areas rather than just how to estimate speeds directly
from GPS traces.

Recently, some real-time traffic monitoring products have
entered the marketplace. For example, IntelliOne [3] intro-
duced a new real-time traffic monitoring service using mobile
phone positioning systems. Unlike our approach, it simply
reports vehicle speed on road segments—users are left to
convert this to overall traffic conditions. On limited-access
roads, this may be reasonable, but it is not effective for sur-
face streets. As another example, Inrix [1], a Microsoft’s
spin-off, also introduced their new real-time traffic moni-
toring system using statistical analysis of a large variety of
data inputs. These include sensor data from Department
of Transportation and probe data from commercial fleets.
However, they also just show vehicle speeds on roads using
probe data, and require outside information—e.g., weather,
incident, or construction reports—to identify traffic states.
Instead, we capture and identify traffic states with only GPS
traces in a much simpler way.

3. OVERVIEW
The goal of our work is to identify traffic states from GPS

data. To achieve this goal, we proceed to address a number
of fundamental questions.

(1) What kind of traffic information can be ex-
tracted from GPS data?

The information we can obtain directly from GPS data
is very limited: user’s coordinates, timestamp, and optional
speed and heading. Although many traffic features may be
embedded in the raw data, it is not clear which features are
suitable for capturing and identifying traffic status. For this
reason we studied several candidate features and analyzed
them to determine which had explanatory power.

(2) What is a good or bad traffic state?
It is not straightforward to define a good or bad traffic

state, because there are no obvious objective criteria. But
based on past data, we developed a method to make de-
cisions on traffic states in comparison to what is expected.
This method was then evaluated by comparing the estimated
states to surveys of real drivers.

(3) What is a good way to classify the current
traffic state, given past data?

When past data is given, there are several possible meth-
ods to classify an observation into one of several traffic states,
for example: maximum a-posteriori (MAP), maximum like-
lihood (ML), or simple threshold-based classification. Al-
though MAP would be the best in the ideal case, it is not
applicable in our situation as its assumptions do not hold.
Consequently we compared and evaluated the remaining
methods to find the right one for our setting.
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Figure 2: The pre-specified route where GPS data
was collected for the preliminary study in Ann Ar-
bor, Michigan.

(4) How can a traffic state be quantified for com-
parison?

Even if we can identify all the bad traffic states correctly,
all of them may not be the same bad states; one can be
worse than the other. Thus we also developed a metric to
quantify traffic states. We will show that this metric can
be useful for the detection of unusual traffic states such as
traffic backup due to construction.

(5) How accurate is our system?
For evaluation, we used real GPS traces collected from

several vehicles over ten months. Furthermore, we used for-
ward visual data recorded in the vehicles and took visual
surveys to obtain the ground truth on traffic states for fur-
ther analysis.

4. EXTRACTING TRAFFIC INFORMATION

4.1 Preliminary data collection
For a preliminary study, we collected GPS traces by driv-

ing a GPS-equipped vehicle in Ann Arbor, Michigan. Al-
though it would be ideal to deploy a number of GPS-equipped
vehicles simultaneously for GPS data collection, for cost rea-
sons we drove a single vehicle along a pre-specified route
repeatedly.

We selected a route passing through the Ann Arbor down-
town and suburban areas so that we can build a system
working in both areas. Specifically, the route starts from
north campus of the University of Michigan along Plymouth
Road, Main street through downtown, Stadium Boulevard,
Washtenaw Avenue, Huron Parkway, and Plymouth Road
back to north campus as shown in Figure 2. The total dis-
tance is about 10.5 miles and there are 30 traffic lights along
the route. All roads have two lanes per direction except the
downtown area with a single lane per direction. Speed limits
are 25 mph on Main, 40 mph on Plymouth, Huron Parkway,
and Stadium, and 45 mph on Washtenaw.

We used a Garmin cf que 1620 compact flash memory type
GPS receiver, installed in a Dell Axim x50v PDA. The GPS
receiver records timestamp, altitude, speed, distance, head-
ing, and coordinates once every 4 to 10 seconds, irregularly.
Between 2 PM and 7 PM from April 1 to April 20, 2006 and
from May 25 to June 1 in the same year, we have collected
GPS data of 50 laps on weekdays from a personal vehicle
driven by four different drivers to reduce any bias caused by
each driver. We will also show in Section 6 that traffic data
is generally driver-independent in these scenarios.

0 1 2 3 4 5 6
x 10

4
0

10

20

30

40

50

60

S
p

ee
d

 (
m

p
h

)

Distance (feet)

(a) Speed changes along the entire path.
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(b) A magnified graph of the rectangular area in (a).

Figure 3: Sample trace data along the pre-specified
path. Vertical lines indicate the locations of inter-
sections.

During data collection, there was only a single one-day
road construction, blocking a right lane and causing an un-
usual traffic backup near the intersection of Stadium Boule-
vard and Washtenaw Avenue on June 1. There was no se-
vere weather except for light rain on April 2 and 3, and no
car accident throughout the entire period of data collection.
Mild to moderate traffic jams occurred regularly during rush
hours depending on the road.

4.2 Road segmentation
Figure 3 shows vehicle speed changes along the entire path

specified in Section 4.1. Vertical lines in the plot indicate
the locations of intersections on the path. Speed tends to
vary with location as shown. However, there are two obser-
vations to make. First, speed changes appear to repeat in
a similar and consistent fashion whenever the vehicle tra-
verses the same road segment between two neighboring in-
tersections, as shown in Figure 3(b). This is because vehicles
traversing a road segment are affected by the same funda-
mental road conditions such as traffic light, road length,
width, and the number of lanes. On the other hand, each
road segment has its own unique shape of traffic pattern, be-
cause different segments have different conditions, as shown
in Figure 3(a). Thus, traffic patterns must be characterized
on a segment-by-segment basis. Figure 3(a) also shows that
roads should be divided into segments between two neigh-
boring intersections, as traffic lights are natural traffic de-
limiters. Likewise, stop signs and crosswalks can also be
used as delimiters for road segmentation. Thus there will
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be more segments in downtown areas and fewer in suburban
areas. Locations of traffic delimiters can be easily found
from GPS traces by looking for frequent stopping positions.
The coordinates of these locations can be acquired from a
digital map. Throughout the paper, our traffic analysis and
characterization are on a segment-by-segment basis. Thus,
there will be no significant trade-offs between too many and
too few segments in a region.

4.3 Traffic features and problems
GPS data contains the receiver’s latitude, longitude, and

timestamp, which are not directly related to vehicular traf-
fic. Optionally, recent GPS receivers also provide vehicle
speed and heading information. However, it is not clear
how traffic state may be described with such information.
For example, how low must speed be before it is interpreted
as bad traffic? What role is played by road characteris-
tics such as road length, road width, or traffic light timing?
How about traversal time or stopping distances? To address
these questions, we extract several potential traffic features
and check if they are suitable for capturing and describing
traffic states.

1) Speed feature - Average of speed samples on a
road segment during some time window: Consider the
average of all speed samples from vehicles on a road segment
during some time window. Presumably, a low average speed
indicates worse traffic conditions and a high average implies
better conditions. This may be true on highways, but it
may not be the case on urban roads with a lot of traffic
lights, because vehicles may have to stop even if there are
no other vehicles at all. Because an average speed on a road
segment during some time window does not consider spatial
information—e.g., where vehicles stopped—it may not be
able to clearly tell a traffic jam apart from a red light in
urban areas.

2) Speed feature - Speed distribution on a road
segment during a time window: Instead of average, a
speed distribution may be used to represent overall speed
information from vehicles on a road segment. However, it
is not ideal because of the lack of spatial information. For
example, if vehicles in good overall conditions are decelerat-

ing, stopping, and accelerating due to a traffic signal change,
their speed distribution is likely to look similar to that of
poor conditions where vehicles are frequently stopping and
starting.

3) Spatial speed feature - Speed changes along a
road segment: If vehicles send their speed and location
data regularly, one may plot their speed changes along a
road segment (a speed-location plot) and use them to main-
tain spatial information. However, one loses temporal in-
formation in the process. Suppose two vehicles happened
to generate exactly the same speed-location plots, having
stopped once at the same location as shown in Figure 4(a).
But suppose that one has stopped there for just one second
while the other has stopped for ten minutes due to some
serious road-blocking accident. Although the two traffic sit-
uations are quite different, their speed-location plots turn
out to be identical.

4) Temporal speed feature - Total time spent in
traversing a road segment: From the timestamps in the
GPS data, one can compute traversal times of vehicles on a
road segment, expecting that poor conditions may cause a
longer traversal time. In fact, this feature is directly related
to each vehicle’s average speed over time on the road seg-
ment, because the time average of vehicle speed is the road
segment length—a constant that we can figure out from the
GPS coordinates—divided by the total time spent passing
through the road segment. So traversal time is another form
of speed-related feature. However, it is not straightforward
to find a perfect threshold to distinguish a good traversal
time from a bad one, because traversal times are impacted
significantly by traffic lights on urban roads.

5) Spatial and temporal speed feature - Cumula-
tive time along a road segment: To overcome the prob-
lem of the speed-location plot and also to consider both spa-
tial and temporal information, one may want to use a cumu-
lative time plot along a road segment instead of using speed
directly. Even if a vehicle stops for a long time, the time-
location plot is able to catch it. In addition, it still contains
speed information, because the inverse of slope at a certain
location represents the vehicle’s instantaneous speed there.
However, the problem of this feature, as shown in Figure
4(b), is that there could be many different shapes of plots
and there is no clear way to compare and categorize them.
Suppose one choose to apply spatial correlation, spatial dif-
ference, or some other statistical measures (e.g., chi-square
statistics) to categorize them into several different classes
of shapes. However, it is still not easy to tell which shape
of plot belongs to a good or bad condition, what threshold
should be used to distinguish them, or which shape implies
a better traffic condition.

6) Other types of features: GPS data can also provide
other types of data in addition to speed. For example, when
a traffic slowdown or backup occurs, drivers often have to
decelerate and accelerate repeatedly. In the GPS trace data,
this is shown as a local minimum in the speed-location plot.
One may choose to count the number of local minima, ex-
pecting that a bad traffic is likely to have many such points.
Likewise, one may choose to count the number of stopping
points for the same reason. However, these features may or
may not show real traffic status, because a traffic jam does
not necessarily produce a large number of local minima of
speed or stopping points. For instance, some road-blocking
accident may cause serious traffic backup and make drivers
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completely stop just once or twice, while drivers in good traf-
fic conditions also may stop once or twice on a red light. On
the other hand, if one uses the locations of local minimum
speeds or stopping points to consider spatial information, it
has to be noted that stopping far away from a traffic light
does not necessarily mean a traffic backup either.

With all these problems considered, it is clear that (1)
we should use both spatial and temporal speed information
to capture traffic status and (2) we should also quantify it
for comparison and classification. Moreover, (3) we want
to avoid any manual setup in doing so. To achieve all of
the above, we propose a spatio-temporal traffic status plot
with dynamically adjusted quadrants and a universal traffic
status metric.

4.4 Spatio-temporal traffic status plot
Among traffic feature candidates in Section 4.3, one that

contains both spatial and temporal information was a cu-
mulative time-location plot. The problem in using this was
that it is hard to quantify the shapes of plots and compare
them for identification and classification of traffic states. To
overcome these drawbacks, we convert each observation to
a single point in the spatio-temporal space, minimizing loss
of spatial and temporal traffic information.

Figure 5(a) shows cumulative time-location plots of 50
traversals on a road segment on Washtenaw Avenue in the
city of Ann Arbor, Michigan. Among the sample traces
here, we pick one, denoted by an arrow, and illustrate how
to convert it to a point in the spatio-temporal traffic status
plot.

A point in the spatio-temporal traffic status plot has two
values as coordinates: a temporal mean speed and a spa-
tial mean speed. A temporal mean speed is the average
speed over time, i.e., the length of a road segment divided
by the traversal time. In a cumulative time-location plot, it
is straightforward to compute a temporal mean speed, be-
cause the length of a road segment and the traversal time are
X and Y coordinates of the end point of the time-location
plot as shown in Figure 5(b).

On the other hand, a spatial mean speed is the average
speed over location, i.e., the arithmetic mean of instanta-
neous vehicle speeds at the evenly spaced locations (e.g.,
every 50 feet). An instantaneous vehicle speed is equiva-
lent to the inverse of tangential slope of time-location plot
at each location, as illustrated in Figure 5(b). Intuitively,
a lower spatial average speed given a particular temporal
average indicates more “stop and go” driving.

If GPS data was not collected regularly, each gap between
the data points can be interpolated. In fact, time-location
plots in Figure 5(a) were interpolated so that the instanta-
neous speeds in every sampling distance could be computed.
We have set the sampling distance to 50 feet, considering the
accuracy (less than 25 feet) of GPS receiver that we used to
collect the data.

Figure 5(c) shows the spatio-temporal traffic status plot
on the road segment converted from the time-location plots
in Figure 5(a). The point denoted by an arrow in Figure 5(c)
corresponds to the similarly-marked trace in Figure 5(a).

5. CLASSIFYING TRAFFIC STATES
Given a representation of individual vehicle/segment traver-

sals, we next turn our attention to classifying these traver-
sals into qualitative bins.
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(a) Cumulative time-location plots of 50 sample traces.
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(b) A sample trace in some heavy traffic jam during rush
hours.
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(c) A spatio-temporal traffic plot converted from (a).

Figure 5: Converting cumulative time-location plots
on a road segment (on Washtenaw avenue in Ann
Arbor) to points in the spatio-temporal traffic status
plot

5.1 Clustering unlabeled past data
Although the spatio-temporal traffic status plot shows

how traffic data on a road segment is distributed spatially
and temporally, it still does not show which points in the
plot belong to good or bad traffic conditions. To resolve this
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issue, one could apply basic clustering algorithms to classify
the data, because GPS trace data is unlabeled. Classifying
unlabeled data is a well-known problem [21, 9] in the area
of data mining and can be solved in general by clustering.
However, most clustering algorithms are usually based on
certain assumptions: for example, the number of clusters is
known in advance, clusters are not completely overlapped
in the scatter plot to make a distinction, or the characteris-
tics of data do not vary with time. If these assumptions do
not hold, classifying unlabeled data becomes more compli-
cated. If clusters are exactly overlapped in the scatter plot
or data points are almost uniformly distributed without dis-
tinct gaps, general clustering algorithms do not work well.
Furthermore, if the total number of clusters is unknown, it
complicates the problem even more. Unfortunately, GPS
trace data suffers from all of these problems.

To address such shortcomings, Lapidot et al. [13] devel-
oped a method that sets the total number of clusters to a
very large number (i.e., over-clustering) and then contin-
ues to merge two nearest clusters until a metric indicates
that the best number of clusters has been reached. Unfor-
tunately, this approach cannot help us process GPS trace
data, because it is extremely inefficient to execute the over-
clustering process given the fact that trace data points are
collected at regular, frequent time intervals. Moreover, when
we applied the over-clustering to the trace data with a vot-
ing strategy of clustering validation index [8] as a metric, we
found that it was not helpful because GPS trace data points
overlap without much in the way of distinct gaps as shown
in Figure 5(c). The typical result was a single, large cluster
containing almost all data points, plus a handful of outliers
including only one or two data points. Since general cluster-
ing algorithms do not work with unlabeled GPS data, we de-
veloped a threshold-based clustering algorithm customized
for our data, called threshold-based quadrant clustering. We
describe this method below.

A temporal mean speed of X in the spatio-temporal traffic
status plot is the road segment length divided by the traver-
sal time. Because the road segment length is constant, the
temporal mean speed is inversely proportional to the traver-
sal time. So the rightmost point in Figure 5(c) represents the
shortest traversal time on the road segment, which happens
when a vehicle passes through the segment under the best
traffic condition ever observed in the trace data. Generally,
the vehicle does not stop during such traversals. However,
not all vehicles are expected to traverse at this speed. For
example, consider a vehicle that does not get caught on a
red light in the best traffic condition and so it had the fastest
traversal time on the road segment. Compare this to a vehi-
cle which does stop on red for a full cycle, but otherwise has
identical traffic conditions. The second vehicle has a traver-
sal time close to the fastest total time plus a single red light
cycle. In other words, the shortest traversal time plus a red
light duration on the road segment implies that the traffic
condition was still close to the best, but that the vehicle had
to stop. Thus, if we can figure out the red light duration
from GPS trace data, we can consider the minimum traver-
sal time plus the red light duration as a reasonable threshold
for good traffic conditions.

Figure 6 is a histogram of stopping durations of vehicles
observed in the trace data on the same road segment as in
Figure 5. If a vehicle stopped more than once, each stop is
plotted separately. In Figure 6, stopping durations ranged
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Figure 6: A histogram of stopping durations on the
road segment in Figure 5. Minimum = 2 second,
maximum = 127 second, and the 95th percentile =
115 second.

95th percentile of Average red light
Intersection stopping duration duration (σ)

1 115 128.4 (2.5)
2 43 47 (0)
3 51 48 (0)
4 50 45 (0)
5 48 56.8 (0.4)
6 53 48 (0)

Table 1: The 95th percentiles of stopping durations
observed in the trace data and the average red light
durations measured 10 times during rush hours. σ

is a standard deviation.

from 2 to 127 seconds. On the other hand, the red light du-
ration measured ten times in a row during rush hours was
128.4 seconds on average with the standard deviation of 2.5.
Although our GPS receiver has a low sampling rate of much
less than 1 Hz, the maximum stopping duration observed in
the trace data is very close to the actual red light duration.
This suggests that the maximum stopping duration comes
from the red light duration, as it agrees with intuition. Table
1 shows the comparison of the 95th percentile of stopping
durations and the red light durations measured at six dif-
ferent intersections. Instead of maximum values, the 95th
percentile of stopping durations was used to avoid extremely
unusual data samples or glitches. The red light durations
were measured ten times in a row during rush hours in the
afternoon on May 5 and June 9, 2006. Errors in Table 1 are
mostly due to the low sampling rate of the GPS receiver.

Once a red light duration is estimated from the trace data,
we can split a spatio-temporal traffic status plot into two
temporally different subspaces by setting a temporal thresh-
old to

road segment length

5th percentile of traversal time + red light duration

as shown in Figure 7(a). The right-sided subspace indicates
traffic conditions with “good” traversal times, while the left-
sided one shows less desirable conditions.

Recall that low spatial averages generally indicate stop-
and-go or slow-and-go conditions. An interesting observa-
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Figure 7: Quadrants splitting the spatio-temporal
traffic status plot into four spatially and temporally
different subspaces on the same road segment as in
Figure 5.

tion in Figure 7(a) is that a vertical (i.e., spatial) traffic
breakdown or deterioration does not occur noticeably in the
right-sided subspace, while trace data spreads out vertically
in the left-sided one. In other words, trace data is dis-
tributed like a logarithmic curve which drops quickly as the
data is getting close to the origin. This observation can be
made very generally when we look at the spatio-temporal
traffic status plots of all trace data.

Consequently we can define a spatial threshold as the 5th
percentile of spatial mean speed in the right-sided subspace,
which divides a spatio-temporal traffic status plot horizon-
tally as shown in Figure 7(b). We used the 5th percentile
of spatial mean speed instead of a minimum for the same
reason as before.

Among four quadrants in Figure 7(b), the first (upper-
right) quadrant indicates a both spatially and temporally
good traffic—steady travel at good speed. The second (upper-
left) quadrant represents a spatially good but temporally
bad one. Similarly, the fourth (lower-right) quadrant de-
picts good average speed, but with some slow-and-go peri-
ods. The last (lower-left) quadrant shows poor traffic con-
ditions.

Put another way, spatially bad traffic means that there is
some serious traffic delay, slowdown, or backup all over the

entire road segment. For example, if a vehicle passes through
a road construction area at a reduced speed continuously, it
suffers from a spatially bad traffic. On the other hand, a
low average speed but high spatial speed indicates a sudden
stopping or slowdown for a while at a certain location on
the road segment, but no where else. For instance, if a
traveling vehicle suddenly has to stop for a while due to some
road blocking accident, the trace data of the vehicle shows
that its traversal time was unusually long (i.e., temporally
bad) although a traffic was mostly good over the entire road
segment (i.e., spatially good).

Traffic can be both spatially and temporally “bad”; the
former is likely to give rise to the latter. For example, pass-
ing through a road construction area naturally results in a
long traversal time. But the converse does not necessarily
hold. In other words, a long traversal time with good speed
“in most places” happens rather frequently, while the oppo-
site is rare. This also explains why a spatial traffic break-
down usually does not occur in the right-sided subspace in
Figure 7.

5.2 Identifying a current traffic state
Once traffic states are defined from past trace data on

a road segment, we must classify new data points into one
of them to identify a current traffic state. In general, one
may think of three options in making a decision, depending
on the given conditions. If no prior information is given,
one can use one of the simplest methods such as the nearest
neighbor (e.g., [7]) or threshold-based classification. If more
information is given, one may use a maximum likelihood
(ML) with likelihood functions or a maximum a posteriori
(MAP) classification with both likelihood functions and a
priori probabilities. If the given condition is ideally true,
MAP would be the best choice to classify a current data
point. However, this is not the case in our work, because all
the prior information is empirically obtained from past trace
data by using kernel density estimation [20]. Thus, to iden-
tify a current traffic state based on the past data, we used
as candidates three different methods: ML, MAP, and our
threshold-based quadrants defined in the previous subsec-
tion. When ML and MAP are used, traffic state quadrants
previously defined from past data are slightly adjusted ac-
cording to the computations of ML and MAP. On the other
hand, the same thresholds are used for the threshold-based
quadrants classification. We will show the evaluation results
in Section 6.

5.3 Quantifying traffic states
Even if many data points belong to the same qualitative

state, all of them do not necessarily reflect the same traffic
quality. In particular, in the third quadrant, traffic status
becomes worse as trace data points are getting closer to the
origin. Thus it is necessary to quantify traffic status of trace
data points in the plot to differentiate them. More specifi-
cally, we need to define a metric to quantify bad traffic. All
the data points in the first quadrant can be considered as
simply good. Since the second quadrant indicates a spatially
good but temporally bad traffic state, it should be quantified
based on how slow travel is in the quadrant. Likewise, the
data points in the fourth quadrant mean a spatially worse
traffic as they go down. Those in the third quadrant become
worse as they are getting closer to the origin. In other words,
traffic status becomes worse as the data points in the second,
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Figure 8: Relative traffic status metrics on the same
road segment as in Figure 5.

third, or fourth quadrants are getting far away—leftwards,
downwards, or both—from the first quadrant. Therefore we
can define a distance-based metric from a new origin that
the quadrants of spatio-temporal traffic status plot make as
shown in Figure 7(b).

The distance-based traffic metric, denoted by T (x, y), is
defined as

T (x, y) =

8

>

>

<

>

>

:

0, (x, y) ∈ 1st quadrant
xo − x, (x, y) ∈ 2nd
(xo − x) + (yo − y), (x, y) ∈ 3rd
yo − y, (x, y) ∈ 4th

where (x, y) is the coordinates of a data point in the spatio-
temporal traffic status plot (i.e., x = a temporal mean speed,
y = a spatial mean speed), and (xo, yo) indicates the coordi-
nates of the new origin made by the quadrants. Manhattan
distance was used instead of Euclidean distance, because
it can show the metric difference more clearly in the third
quadrant. Although the metric unit looks the same as spa-
tial and temporal mean speeds, we do not use any metric
unit, because it is different from a speed unit in the third
quadrant and thus may be misleading.

Since traffic status metrics on different road segments are
not comparable due to different quadrants, it may not be
intuitively clear or informative how bad traffic really is given
an estimate. We therefore convert T to a relative traffic
status metric, Tr between 0 and 1, compared to the worst
possible traffic status on each road segment as follows.

Tr(x, y) =
T (x, y)

Tw

=
T (x, y)

T (0, 0)
=

T (x, y)

xo + yo

where Tw means the worst traffic status case (i.e., completely
stopped vehicles) on the road segment. We used the worst
traffic status instead of the best, because there is no best
traffic state in a spatio-temporal traffic status plot whereas
the worst state exists at the origin of the plot. Figure 8
shows the relative traffic status metric, Tr, on the same
road segment as in Figure 7. By definition, T (x, y) and
Tr(x, y) are all continuous over the entire spatio-temporal
traffic status plot regardless of quadrants. Intuitively, this
measurement is appealing, as drivers have some notion of
“how bad” a particular segment is.

6. EVALUATION
In this section, we evaluate our scheme against two sets

of traces. The first were taken by the University of Michi-
gan Transportation Research Institute—a broad but irreg-
ular set of naturalistic driving behaviors. The second is a
more regular set of traces described in Section 4.1.

6.1 Evaluation: UMTRI traces
The University of Michigan Transportation Research In-

stitute (UMTRI) has performed a field operational test of
their road departure crash warning (RDCW) system by de-
ploying 11 fully-instrumented vehicles driven by 78 drivers
for ten months beginning in May, 2004 [14]. Each vehicle
has been equipped with the RDCW system, a forward video
recorder, and a GPS logger, collecting the data of about 400
channels at 10 Hz. The total size of the data set is roughly
200 GB excluding video data. For evaluating our scheme, we
obtained GPS traces and forward video data from UMTRI.
GPS data contains vehicle’s coordinates, speed, and heading
with timestamps. Any private information that may reveal
personal identities was not included in the data.

Although 78 drivers participated in the test for about 3
weeks each, GPS traces were very sparse, because test ar-
eas were not limited. Moreover, the traces showed that test
vehicles were not frequently used. Thus it was difficult to
find road segments with enough traversals for our evalu-
ation. For this reason we chose one—Plymouth road be-
tween Huron parkway and Green road in Ann Arbor—near
UMTRI having 80 traversals for ten months. The road seg-
ment length is about 950 meters and a single traversal GPS
trace contains roughly 500–700 data samples depending on
traffic conditions.

For evaluation, we had to know the ground truth of GPS
traces on traffic states. However, it is practically impossible
to know the perfect ground truth of traffic states, because
there is no objective and absolute definition of good or bad
traffic that everyone agrees on. Thus we gathered a rep-
resentative estimate of traffic states by conducting surveys
with forward video data. Since people are likely to lose their
concentration if they have to look at the low-resolution video
clips repeatedly, we randomly chose 40 traversals out of 80
on the road segment, and divided them into four subsets of
10 traversals each to maintain subject focus. We collected
five surveys for each subset, a total of 20 surveys from par-
ticipants.

For simplicity, we had participants select one of the only
two traffic states: (1) good or normal and (2) bad. Then
we collected a ground truth of traffic states, only if four or
more answers out of five agreed on each traversal video clip.
Among a total of 40 traversals, 36 of them—34 as good or
normal and 2 as bad—had four or more common answers
out of five. Throughout the following evaluation, we used
these 36 traversals.

6.1.1 Results

Since survey answers are either of two traffic states, we
categorized the first, second, and fourth quadrants as a good
or normal traffic state, and the third quadrant as a bad one.
Then we computed the following three metrics throughout
the evaluation.

(1) Accuracy: A ratio of correct results over all results.
A result is considered correct when it shows the same traffic
state as the ground truth obtained from surveys.
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Figure 9: Accuracy, false alarm, and miss rates
of the threshold-based quadrant clustering, varying
with the number of traversal data used. Error bars
indicate the 95% confidence interval.

(2) False alarm rate: A result is considered as a false
alarm when it says a bad traffic state although the ground
truth is a good one.

(3) Miss rate: A result is considered as a miss when it
says a good traffic state although the ground truth is a bad
one. Accuracy, false alarm rate, and miss rate sum up to 1
by definition.

Evaluation results consist of two parts. First, we evalu-
ate the performance of threshold-based quadrant clustering
that we developed to classify unlabeled GPS data into dif-
ferent traffic states in Section 5.1. Then we measure the
performance of three methods—MAP, ML, and the same
threshold-based quadrants as used in clustering—in identi-
fying a current traffic state based on the quadrants obtained
from past data. Throughout the evaluation, we will refer to
a single GPS data point as a single traversal. The GPS trace
of a single traversal contains more than 500 GPS samples
along the road segment.

Figure 9 shows accuracy, false alarm, and miss rates of
the quadrant clustering by varying the number of unlabeled
GPS data. For example, the results with five traversal data
can be computed when the quadrant clustering is applied to
all subsets of five consecutive traversals among 36 of them.
It is shown that accuracy of 90% or higher can be achieved
when more than 10 traversals are used in applying the quad-
rant clustering to classify unlabeled GPS data. With 15 or
more traversal data, accuracy becomes very consistent with-
out much variation. So once more than 10 traversal data are
collected on a road segment, the quadrant clustering method
can characterize traffic patterns on the road segment and
distinguish traffic states with a fairly high accuracy.

Table 2 shows the effect of weekday rush hours on the per-
formance of the quadrant clustering method using all traver-
sal data. It shows that the performance during rush hours is
slightly better than that of others by about 10%. Although
we may need more data to make sure, this suggests that
the traffic patterns during rush hours are more consistent;
we will show evidence for this in Section 6.2. But in gen-
eral, it seems that accuracy is independent of time-of-day.
Likewise, Table 3 shows a high accuracy overall in spite of
seasonal differences.
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(b) False alarm rate.
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Figure 10: Accuracy, false alarm, and miss rates of
three classification methods, varying with the num-
ber of past data.

Now that we have verified the performance of quadrant
clustering, we evaluate the classification methods in identify-
ing current traffic states based on the results of the quadrant
clustering. In Figure 10, we compared the three methods in
terms of accuracy, false alarm, and miss rates. Recall that
the three methods are MAP, ML, and the quadrants with
the same thresholds used in clustering. Although MAP and
the quadrants method clearly outperform ML overall, the
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Figure 11: Accuracy, false alarm, and miss rates of
the same threshold-based classification, varying with
the freshness of past data. Previous two-month past
data was used for each month.

Weekday rush hours Others
(7-9, 16-18) (10-15, 19-23)

Accuracy 1 0.8947
False alarm 0 0.0526

Miss 0 0.0526

Table 2: Clustering accuracy, false alarm, and miss
rates in weekday rush hours and other hours.

Summer Fall Winter
(Jun-Aug) (Sep-Nov) (Dec-Feb)

Accuracy 0.9333 0.8889 1
False alarm 0 0.1111 0

Miss 0.0667 0 0

Table 3: Clustering accuracy, false alarm, and miss
rates in weekday rush hours and other hours.

quadrants method using the same thresholds is slightly bet-
ter than MAP when the number of past data is less than
25. But both of them can identify a current traffic state
with higher than 90% of accuracy by looking at just 10 past
traversal data. In terms of false alarm and miss rates, the
same quadrants method also slightly outperforms MAP.

In addition to the number of past data, we also evaluated
the effect of freshness of past data on the performance of
our system. Starting with a two-month window, we classi-
fied traffic states after a various number of months. A two-
month window was used to have a sufficient basis on which
to cluster. Although it was expected that the freshness of
past data may affect the performance, Figure 11 shows that
the effect of data freshness is almost negligible. While we
need more data and analysis to make a conclusive statement,
this may imply that traffic patterns on a road segment are
very consistent over a significantly long period of time.

Table 4 shows the seasonal effect on the performance of
the quadrants method in identifying a current traffic state
based on the two-month window as before. Like Tables 3 in
clustering, it is shown than we can achieve higher than 90%
of accuracy regardless of seasons.

Summer Fall Winter
(Aug-Sep) (Oct-Nov) (Dec-Feb)

Accuracy 0.9091 1 0.9167
False alarm 0 0 0.0833

Miss 0.0909 0 0

Table 4: Classification accuracy, false alarm, and
miss rates of the threshold-based method with pre-
vious two-month past data, varying with season.
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Figure 12: A spatio-temporal scatter plot of trace
data on all road segments showing roughly four dif-
ferent distributions.

6.2 Case study: Traces for preliminary study
Now that the performance of our system has been evalu-

ated, we will apply it to another trace data for further study.
In Section 4.1, we have collected GPS traces for preliminary
study and now will use them to show the consistency of
traffic patterns on roads and the detection of unusual traffic
status from GPS traces.

In collecting the trace data, four drivers drove the same
vehicle along the same route within nearly the same time
window for about four weeks. But, it was possible that
there might be some bias caused by the different drivers and
driving times. However, it turns out that traffic data is very
consistent, independent of driver, except on the suburban
roads with a relatively long segment length and a low density
of vehicles. This also lends weight to the claim that traffic
patterns during rush hours with a high density of vehicles are
likely to be more consistent, made in Section 6.1.1. To show
this, we categorized road segments into four different groups
depending on the distributions on the spatio-temporal traffic
status plot as shown in Figure 12.

Among four categories, roads in Category 1 generally have
short segment lengths and high densities of vehicles, whereas
those in Category 4 tend to have long segments and low den-
sities. Usually, roads in the center of downtown belong to
Category 1 and suburban roads to Category 4. Categories 2
and 3 are in between them in terms of segment length and
vehicle density. Then, we plotted the GPS data collected by
different drivers on each road segment in all four categories
to see if the distributions of GPS data are independent of
drivers. For simplicity, we compared the traffic data of two
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Figure 13: A least-squares fit to Driver 1’s data
points on one of the road segments in Category 1

groups of drivers: a driver having driven most, denoted by
Driver 1, and the rest of the drivers. There is not a single
clear method to see whether the two different spatial distri-
butions of data points are the same. But if they are visually
close, we may verify the eye-ball test by comparing their
errors to the least-squares fit of the data points as follows.
First, we plot all the traversal data of Driver 1 and the rest
of the drivers on each road segment. For example, Figure 13
shows the plot on one of the road segments in Category 1.
Then we can plot a fitted line of Driver 1’s data on a least
squares basis. From the fitted line, we can compute each
driver group’s root mean squared error (RMSE) of traffic
data. If we repeat this comparison on all road segments in
each category, we can plot the graphs of RMSEs as in Figure
14.

If we compare the two distributions of RMSEs in each
category with a chi-square statistic test, those in Categories
1, 2, and 3 are identical with probability of 99% or higher. In
other words, the traffic data on the road segments in those
categories is consistent regardless of drivers. However, on
the relatively long and sparse roads in Category 4, drivers
may have more space so that they can drive on their own by
speeding or passing. So the traffic data in Category 4 may
be more affected by driver behavior and thus less consistent.

If we collect enough traffic data on a road segment, we
are able to not only identify a current traffic state but also
detect unusual traffic conditions based on the past data. We
will show how our system does this by using the trace data
collected on a road segment on Stadium Boulevard in Ann
Arbor where there was a one-day road construction event,
blocking one of the lanes on June 1, 2006.

Suppose that today is the construction day and we have
collected trace data on the road segment until yesterday. In
Figure 15(a), all the traces except Traces 1, 2, and 3 show
the past traversal data collected on this segment. Trace 4
indicates some unusual traffic jam at about 3:30 PM a couple
of days ago, which was the worst traffic state ever observed
in the trace data to this point. Then we can build a spatio-
temporal traffic status plot of the road segment from the
past trace data as shown in Figure 15(b).

On the construction day, a vehicle passes through the road
segment at about 4 PM, resulting in Trace 3 in Figure 15(a).
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Figure 14: RMSEs of Driver 1’s data and the rest
drivers’ data on each road segment, compared to
the line fitted to Driver 1’s data points in all four
categories.
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(a) Cumulative time-location plot.
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(b) Spatio-temporal traffic status plot.
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Figure 15: Detection of unusual traffic status on a
road segment (on Stadium boulevard in Ann Arbor)
where there was one-lane blocking road construction
on June 1, 2006.

According to our system, the current traffic status at that
time shows a traffic metric of less than 0.5 but greater than
the 99th percentile of the past data on the road segment. So
a traffic service collecting and analyzing GPS traces can in-
terpret the current traffic state as an unusual but not serious
traffic delay.

At about 5:30 PM, Trace 1 is collected and its metric
increases from 0.42 to 0.76. Clearly this is an extremely
unusual traffic status during rush hours at this location. In
about half an hour, the metric is reduced to 0.63, which
means the traffic status on the road segment is still seriously
bad but it is getting a little better. If the next metric gets
lower, it will imply that traffic is going back to normal.

7. CONCLUSION
Traffic problems such as a traffic jam or delay are some

of the most critical issues in our life. If correct traffic in-
formation can be given to drivers in advance, these prob-
lems may be significantly alleviated. However, collecting
traffic information in the traditional way requires enormous
costs for sensor installation and maintenance on the roads.
As GPS gains in popularity and mobile data communica-
tion systems—e.g., mobile WiMAX, HSDPA/UPA, or EV-
DO/DV—are available, a new solution is possible.

In this paper we proposed a simple yet very effective
method that can capture traffic states in complex urban
areas. Unlike existing systems which simply report vehi-
cle speeds on the roads, our system can characterize unique
traffic patterns on each road and identify traffic states in a
road-specific manner. For evaluation, we applied our sys-
tem to two different GPS trace data sets collected in the
Ann Arbor area in Michigan. The results show that ac-
curacy of higher than 90% can be achieved if ten or more
traversal traces are collected on each road. Moreover, traffic
patterns turned out to be fairly consistent over time, which
allows us to use a larger history in classifying current traffic
conditions.
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