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ABSTRACT Surface tailoring of Pt-based nanocatalysts is

an effective pathway to promote their electrocatalytic per-

formance and multifunctionality. Here, we report two kinds

of one-dimensional (1D) ultrafine PtCu nanowires (smooth

surface & rugged surface) synthesized via a wet chemical

method and their distinct catalytic performances in electro-

oxidation of alcohols. The alloyed PtCu nanowires having

rough surfaces with atomic steps exhibit superior catalytic

activity toward multiple electrochemical reactions compared

with the smooth counterpart. Density functional theory si-

mulations show the excellent reactivity of rugged PtCu na-

nowires and attribute it to the surface synergetic Pt-Cu site

which accounts for the promotion of water dissociation and

the dehydrogenation of the carboxyl intermediate. The

current study provides an insight into reasonable design of

alloy nanocatalysts in energy-related electrocatalytic

systems.

Keywords: PtCu nanowires, surface tailoring, high-index facets,

alcohol oxidation, ultrafine

INTRODUCTION
A large variety of energy-related electrocatalytic systems
have attracted widespread attention [1–3], such as elec-
trochemical alcohol oxidation reactions (EAOR), oxygen
reduction reaction (ORR), and hydrogen evolution reac-
tion (HER) [4–17]. Platinum is one of the most effective
monometallic electrocatalysts in acidic media due to its
superior catalytic nature [18]. However, the low abun-

dance and CO poisoning of platinum catalysts remain a
huge challenge [19]. The use of alloying with transition
metals has achieved Pt-based bimetallic or multimetallic
electrocatalysts that enable significantly improved activity
and durability [20–39]. Meanwhile, precisely controlled
fabrication of Pt-based alloys with tailored facets and
compositions can not only improve the utilization effi-
ciency of Pt, but also modify the electronic and geometric
structures, thus benefiting for achieving higher catalytic
activities [40–43]. Recently, Feng and co-workers [44]
demonstrated that bimetallic PtCu alloyed nanocages
with high-index facets exhibited enhanced catalytic ac-
tivities toward oxygen reduction and polyhydric alcohol
oxidation. Remarkably, massive studies show that one-
dimensional (1D) nanowires (NWs) exhibit enhanced
electrocatalytic activity owing to their large surface area,
high surface electron conductivity, surface defects, and
abundant unique quantum effects [45–53]. For example,
Dong and co-works [54] reported that PtRu NWs ex-
hibited much higher performance toward alcohol oxida-
tion reactions as compared with PtRu nanocubes (NCs).
Designing 1D Pt-based nanocatalyst with high-indexed
facets is also an effective way to promote the catalytic
performance, in which atoms at the steps, edges and
bends may serve as the active sites for catalysis [55–59].
For instance, Huang’s group [60,61] demonstrated that Pt
nanocrystals with high-index {411} facets and screw
thread-like PtCu NWs had excellent electrocatalytic ac-
tivities. Therefore, rational preparation of shape-con-
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trollable nanocatalysts is of great significance to the im-
provement of catalytic performance.

In this work, we report two kinds of 1D ultrafine PtCu
NWs (smooth surface & rugged surface) synthesized by
using a wet-chemical approach. Interestingly, the rugged
PtCu NWs exhibit superior electrocatalytic activities to-
ward the EAOR in comparison with smooth PtCu NWs
and commercial Pt/C. As evidenced by a series of char-
acterizations, the enhanced catalytic performance of
rugged PtCu NWs is ascribed to their abundant atomic
steps that serve as the active sites and higher content of
Cu, resulting in the superior intrinsic activity.

EXPERIMENTAL SECTION

Chemicals

Platium(II) acetylacetonate (Pt(acac)2), cupricchloride
dihydrate (CuCl2·2H2O), hexacarbonyltungsten
(W(CO)6), glucose (C6H12O6), dodecyl trimethyl ammo-
nium bromide (DTAB), oleylamine (OAm), 1-octadecene
(ODE), cyclohexane (C6H12), acetic acid (CH3COOH),
ethanol (CH3CH2OH), methanol (CH3OH), and Vulcan
XC-72 carbon were used as received. Deionized (DI)
water was used for all aqueous solutions.

Synthesis of smooth PtCu NWs

In a typical synthesis, Pt(acac)2 (10 mg), W(CO)6

(1.8 mg), glucose (16.7 mg) and DTAB (15.8 mg) were
mixed with OAm (3 mL) and ODE (2 mL) in a vial
(30 mL). After sonication for 25 min, the obtained solu-
tion was heated up to 170°C and maintained for 0.5 h in
an oil bath. Then CuCl2·2H2O (2.1 mg) dissolved in OAm
(1 mL) and ODE (1 mL) was added into the above solu-
tion under magnetic stirring and maintained at 170°C for
5.5 h. Finally, the products were cooled down to ambient
temperature, collected by centrifugation and washed
several times with an ethanol/cyclohexane mixture.

Synthesis of rugged PtCu NWs

In a typical synthesis, Pt(acac)2 (10 mg), glucose
(16.7 mg) and DTAB (15.8 mg) were mixed with OAm
(3 mL) and ODE (2 mL) in a vial (30 mL). After sonica-
tion for 25 min, the obtained solution was heated up to
170°C and maintained for 0.5 h. Then CuCl2·2H2O
(2.1 mg) dissolved in OAm (1 mL) and ODE (1 mL) was
added into the above solution under magnetic stirring
and maintained at 170°C for 5.5 h. Finally, the products
were cooled down to ambient temperature, collected by
centrifugation and washed several times with an ethanol/
cyclohexane mixture.

Preparation of the PtCu/C catalysts

The PtCu nanocatalysts (5 mg) dispersed in cyclohexane
(10 mL) were mixed with Vulcan XC-72 carbon (15 mg),
and sonicated for 1 h. The resulting PtCu/C catalysts were
collected by centrifugation, washed with ethanol and
acetic acid, and dried overnight in a fume hood.

Characterization

Transmission electron microscopy (TEM), high-resolu-
tion TEM (HRTEM), energy dispersive spectrometer
(EDS) and EDS elemental mappings of PtCu NWs were
performed on a JEOL JEM-2010 transmission electron
microscope operating at 200 kV. High-angle annular
dark-field scanning transmission electron microscopy
(HAADF-STEM) measurements were conducted with an
FEI Themis Z transmission electron microscope operat-
ing at 300 kV. The X-ray diffraction (XRD) analysis was
recorded on Smart Lab 9 KW using Cu-Kα radiation. The
Pt and Cu contents in the PtCu catalysts were determined
by inductively coupled plasma optical emission spectro-
scopy (ICP-OES). X-ray photoelectron spectroscopy
(XPS) characterization was carried out on a Thermo
ESCALAB 250 with Al-Kα radiation.

Electrochemical measurements

Electrochemical measurements were performed using a
three-electrode system with a CHI 660E electrochemical
workstation at room temperature. Glassy carbon (GC)
disk electrode (5 mm, 0.196 cm

2
) was used as the working

electrode. A KCl-saturated Ag/AgCl electrode was taken
as the reference electrode and Pt sheet was used as the
counter electrode in acidic media. A leak-free Hg/HgO
electrode was taken as the reference electrode and Gra-
phite electrode was used as the counter electrode in al-
kaline media. A moderate amount of PtCu/C catalysts
were dispersed in mixed solution containing 480 μL
ethanol and 20 μL Nafion (5%). The suspension of PtCu/
C catalysts with the volume of 20 μL (0.25 mgPt mL

−1
) was

pipetted on the surface of GC and dried at ambient
temperature. Commercial Pt/C (20%) catalysts were used
as the contrast catalyst during the electrochemical test.

RESULTS
The PtCu NWs with smooth surfaces were obtained by a
simple wet-chemical, and two-step synthetic process.
PtCu NWs with the rugged surfaces were also obtained in
the absence of W(CO)6 through the similar synthetic
process (Scheme 1, see EXPERIMENTAL SECTION for
details).

TEM images reveal that PtCu NWs with different
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atomic surfaces and compositions have been synthesized
(Figs 1a and 2a). Generally, the as-prepared PtCu NWs
are monodisperse and with a high synthetic yield. As
shown in Fig. 1b, the as-obtained PtCu NWs have smooth
surfaces with an average diameter of 3 nm. The inset
shows the corresponding fast Fourier transform (FFT)
pattern in the [001] orientation, indicating the growth of
the as-prepared NWs along <110> direction and the side
surface parallel to (220). Meanwhile, the (200) side facets
were also observed in different orientations (Fig. S1a).
Therefore, the results demonstrate that the as-obtained
smooth PtCu NWs predominantly expose their (220) and
(200) facets. When no W(CO)6 was added, keeping all
other experimental conditions unchanged, PtCu NWs
with stepped surfaces were further obtained. The re-
presentative TEM image (Fig. 2a) shows that the average
diameter of the rugged PtCu NWs is about 4 nm. Im-
portantly, the side surface of the as-prepared PtCu NWs
is not smooth. Characteristically, the HAADF-STEM
image presents the {111} facets and a high density of low-
coordinate surface steps, such as the (511) surface (Fig. 2b
and Fig. S1b).

The EDS mapping profile was also conducted to
manifest Pt and Cu elements in both smooth and rugged
PtCu NWs (Figs 1c and 2c), indicating their uniform
distributions around the 1D PtCu nanostructures.
Meanwhile, the Pt/Cu atomic ratio of smooth PtCu NWs
(69.8%/30.2%) was measured by EDS (Fig. S2a), which is
in accordance with the results determined by ICP-OES
(71.6%/28.4%). For comparison, the EDS spectrum (Fig.
S2b) indicates that the atomic ratio of Pt/Cu for the
rugged PtCu NWs is 54.1%/45.9%, similar to that by ICP-
OES (53.2%/46.8%). It is evident that the Cu content of
rugged PtCu NWs is significantly higher than that of
smooth PtCu NWs. But no obvious W element was de-
tected in the smooth PtCu NWs, possibly because W
(CO)6 was only used as a powerful reductant for Pt and
Cu precursors.

To further investigate their structures, XRD character-

ization for the smooth and rugged PtCu NWs was con-
ducted (Fig. 3a). The XRD peak positions of the as-
obtained products are between Pt and Cu standard card,
which suggests that both PtCu NWs have face-centered
cubic (fcc) alloy structure. In addition, the element va-
lence of both PtCu NWs was analyzed by XPS (Fig. 3b
and c). Compared with pure Pt, the XPS results show that
the Pt 4f7/2 peaks (Pt

0
) of the PtCu NWs catalysts shift to a

higher binding energy because of the incorporation of Cu
atoms [62]. And the positions of Cu 2p peak and Pt 4f
peak for both PtCu NWs are almost identical. In addition,

Scheme 1 Schematic diagram of the synthetic route to PtCu NWs with
variable atomic surfaces and compositions.

Figure 1 TEM image (a), HAADF-STEM image (b) (inset shows the
corresponding FFT pattern), and EDS elemental mapping images (c) of
the smooth PtCu NWs (Pt: red, Cu: green).

Figure 2 TEM image (a), HAADF-STEM image (b), and EDS elemental
mapping images (c) of the rugged PtCu NWs (Pt: red, Cu: green).
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platinum and copper have the same valence state in both
PtCu NWs.

In order to clarify the formation mechanism of PtCu
NWs, the morphologies of the intermediates at different
reaction times were investigated by TEM. Fig. 4a and d
display that pure Pt NWs were formed in the initial re-
action stage. After 0.5 h of reaction at 170°C, ultrathin Pt
NWs with an average size of ∼1 nm could be obtained.
Glucose and DTAB may play cooperative structure-di-
recting roles in the growth of 1D Pt nanostructures. Note
that the as-obtained 1-nm-thick Pt NWs may be divided
into short NWs under high intensity electron beam ir-
radiation, due to its atom-level thickness [63]. After 1 h of
reaction, the addition of CuCl2·2H2O in the reaction
system could lead to PtCu NWs instead of Pt NWs (Fig.
4b and e). The difference between the reduction poten-
tials of platinum and copper precursors may lead to the

reduction and diffusion of Cu species, eventually forming
alloyed PtCu NWs. When the reaction time was further
prolonged to 2.5 h (Fig. 4c), small clumps began to grow
on the surface and the diameter of the rugged PtCu NWs
became ~3 nm, similar to the final product. With the
increase of reaction time, the rugged surface structure
became obvious. With the extended reaction time, the
average diameter of smooth PtCu NWs also increases
(Fig. 4d–f). When the reaction time reached 2.5 h, the
average diameter of the obtained NWs increased to
~2 nm (Fig. 4f). Notably, the as-synthesized PtCu NWs
are always thinner than the rugged NWs, and the surface
remains smooth. The results indicate that W(CO)6 is vital
for the nucleation and growth of PtCu NWs. The absence
of W(CO)6 might reduce the nucleation rates of Pt

2+
and

Cu
2+

ions, leading to the growth of rugged PtCu NWs
with high-indexed stepped surfaces. However, the in-

Figure 3 (a) XRD patterns of smooth and rugged PtCu NWs. XPS valence band structure of (b) Pt and (c) Cu.

Figure 4 Growth process for the unique PtCu NWs. Typical TEM images of rugged PtCu NWs (a–c) and smooth PtCu NWs (d–f) formed at
different reaction times, respectively.
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troduction of W(CO)6 enables the precursors to grow
into the PtCu NWs with smooth surfaces.

Electrocatalytic activities of the as-prepared PtCu NWs
toward EAOR were further evaluated by cyclic voltam-
metry (CV) curves in comparison with the commercial
Pt/C. Fig. S3 compares the CVs on these three different
catalysts recorded in N2-saturated 0.5 mol L

−1
H2SO4 so-

lution at a sweep rate of 100 mV s
−1

. The electro-
chemically active surface areas (ECSAs) calculated by
integrating the hydrogen-adsorption charge were
31.3 m

2
gPt

−1
for the rugged PtCu NWs, 25.9 m

2
gPt

−1
for

the smooth PtCu NWs, and 64.3 m
2

gPt
−1

for commercial
Pt/C.

The methanol oxidation reactions (MORs) of rugged
PtCu NWs, smooth PtCu NWs and commercial Pt/C
were measured in 0.5 mol L

−1
H2SO4 + 1 mol L

−1
CH3OH

at room temperature with a sweep rate of 50 mV s
−1

. As
shown in Fig. 5a and b, both the as-prepared catalysts
show better separation peaks than those of commercial
Pt/C in the processes of forward and reverse sweeps. The
rugged and smooth PtCu NWs exhibit specific activities
of 4.39 and 2.26 mA cm

−2
, respectively, which are 9.15

and 4.71 times greater than that of commercial Pt/C
(0.48 mA cm

−2
). Similarly, the mass activity reaches 1.03

and 0.72 A mgPt
−1

for the rugged and smooth PtCu NWs,
which are 3.32 and 2.32 times higher than that of com-

mercial Pt/C (0.31 A mgPt
−1

), respectively (Fig. 5c). Spe-
cific and mass activities of both PtCu NWs were
significantly higher than those of commercial Pt/C, in-
dicating that the 1D bimetallic nanostructures sig-
nificantly improved the electrochemical properties. To
evaluate the MOR stability of the three catalysts, chron-
oamperometry (CA) curves were conducted at 0.8 V vs.
RHE for 2000 s (Fig. S4a). Specifically, rugged PtCu NWs
and corresponding smooth PtCu NWs exhibited better
durability than commercial Pt/C.

In addition, the electrocatalytic performances of the
three catalysts in the ethanol oxidation (EtOR) were
evaluated in 0.5 mol L

−1
H2SO4 + 2 mol L

−1
CH3CH2OH

solutions at a sweeping rate of 50 mV s
−1

. As shown in
Fig. 5d and e, the rugged PtCu NWs display the highest
ethanol oxidation current density compared with smooth
PtCu NWs and commercial Pt/C. The specific activity of
rugged PtCu NWs (5.12 mA cm

−2
) at 0.98 V (vs. RHE) is

1.64 and 4.10 times greater than those of smooth PtCu
NWs (3.12 mA cm

−2
) and commercial Pt/C

(1.25 mA cm
−2

), respectively. And the rugged PtCu NWs
also possess the highest mass activity of 1.31 A mgPt

−1
,

which is 1.62 and 1.82 times higher than those of the
smooth PtCu NWs (0.81 A mgPt

−1
) and commercial Pt/C

(0.72 A mgPt
−1

), respectively (Fig. 5f). To further in-
vestigate the electrocatalytic stability of EtOR, CA curves

Figure 5 (a, b) CV curves of the rugged PtCu NWs, smooth PtCu NWs and commercial Pt/C in a solution of 0.5 mol L
−1

H2SO4 + 1 mol L
−1

CH3OH
at 50 mV s

−1
(a, forward sweep; b, reverse sweep); (c) histogram of mass and specific activities of different catalysts for methanol oxidation; (d, e) CV

curves of the rugged PtCu NWs, smooth PtCu NWs and commercial Pt/C in a solution of 0.5 mol L
−1

H2SO4 + 2 mol L
−1

CH3CH2OH at
50 mV s

−1
(d, forward sweep; e, reverse sweep); (f) histogram of mass and specific activities of different catalysts for ethanol oxidation.
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were obtained at 0.85 V (vs. RHE) for 2000 s (Fig. S4b).
As we can seen, the rugged PtCu NWs possess excellent
durability during the whole electrochemical measure-
ments, in comparison with smooth PtCu NWs and
commercial Pt/C. The experimental results confirm that
the electrochemical performance of the catalysts is sig-
nificantly enhanced by 1D bimetallic NWs.

Moreover, we then evaluated the HER performances of
these electrocatalysts. Fig. S5 displays the linear sweep
voltammetry (LSV) curves of the electrocatalysts con-
ducted in 1 mol L

−1
KOH aqueous solution at the scan-

ning rate of 5 mV s
−1

. The performance of rugged PtCu
NWs is greater than that of smooth PtCu NWs and
commercial Pt/C.

After electrochemical testing, the rugged and smooth
PtCu NWs were collected from the electrodes and further
characterized by TEM and HRTEM. The results show
that there are no noticeable structural and morphological
changes (Fig. S6). As discussed above, these experimental
results demonstrate the enhanced electrocatalytic per-
formance of rugged PtCu NWs for MOR, EtOR and HER
compared with those of smooth PtCu NWs and com-
mercial Pt/C.

DISCUSSION
To reveal the mechanistic nature of electro-oxidation
over PtCu NWs, we performed density functional theory
(DFT) simulations on MOR over PtCu(100), (110), (111)
and (511) surface models (Fig. S7). The former two sur-
faces were mainly observed on the smooth NWs and the
latter two on the rugged NWs. As reported in previous
studies [64,65], the general pathway for methanol electro-
oxidation was considered to include the following seven
elementary steps, (i) *CH3OH → *CH2OH + H

+
+ e

−
; (ii)

*CH2OH → *CHOH + H
+

+ e
−
; (iii) *CHOH → HCO*

(or *COH) + H
+

+ e
−
; (iv) HCO*(or *COH) → *CO + H

+

+ e
−
; (v) H2O*→ *OH + H

+
+ e

−
; (vi) *CO + *OH →

*COOH; (vii) *COOH → CO2 + H
+

+ e
−
, where (i)–(iv)

are the direct dehydrogenation steps of methanol, (v)
denotes the water dissociation step, (vi) is the combina-
tion of *CO with *OH, and (vii) is the dehydrogenation
of carboxyl intermediate *COOH to release CO2. It is
noted that steps (i)–(v) and (vii) are the proton coupled
electron transfer (PCET) steps, and step (vi) is a ther-
modynamic step. In our calculations, we assume that for
PCET step the electrochemical driving force (i.e., the
applied potential) is needed if its free energy change is

Figure 6 Reaction free energy pathways for methanol oxidation over (a) PtCu(100), (b) PtCu(110), (c) PtCu(111), and (d) PtCu(511) at pH 0 and
300 K. Black, red and blue lines represent the dehydrogenation steps, water dissociation, and the depoisoning step (i.e., the combination of *CO +
*OH), respectively.
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positive, while for the thermodynamic step the reaction
could proceed if the kinetic barrier can be overcome
under the experimental temperature. Based on this as-
sumption, we could conclude that the PCET steps mainly
determine the observed potential and the thermodynamic
step is possible to affect the kinetics during methanol
electrooxidation.

The free-energy pathways at U=0 V under the standard
condition are shown in Fig. 6. The configurations of re-
action intermediates and detail energetics can be found in
Fig. S8 and Tables S1–S4. On the basis of the obtained
free energy pathways, it can be found that water dis-
sociation and the dehydrogenation of carboxyl inter-
mediate (*COOH) are the dominant energy-rising PCET
steps which should determine the overpotential of me-
thanol oxidation. The potentials needed to drive the water
splitting (H2O → OH+ H

+
+ e

−
) are calculated to be 0.34,

0.41, 0.16 and 0.07 V for (100), (110), (111) and (511),
respectively. Similarly, the dehydrogenation of carboxyl
intermediates requires additional potentials of 0.49, 0.61,
0.35 and 0.25 V for each surface. These results suggest
that (111) and (511) surfaces should exhibit better per-
formance for water dissociation and the carboxyl dehy-
drogenation. For the configurations of reaction
intermediates, it is found that the *CO intermediate
strongly adsorb at the Pt site on each surface, which is
usually considered as CO poisoning on Pt electrode.
Fortunately, with the presence of Cu, water is always
activated at the Cu site, forming an active hydroxyl in-
termediate *OH near the *CO. As a result, the combi-
nation of *CO with *OH to form the carboxyl
intermediate at the synergetic Pt-Cu sites is the key
thermodynamic step for the depoisoning of the stable
*CO. We thus also calculated the kinetic barriers for each
surface model as shown in Fig. 7. All the barriers are less
than 1.10 eV with the lowest one (0.72 eV) on (111)
surface. Based on the transition state theory, the energy
barriers are expected to be overcome under the experi-
mental temperature (170°C). Overall, it is concluded that
the rugged NWs should exhibit higher reactivity toward
methanol electrooxidation than the smooth ones, and the
high reactivity is attributed to the synergetic Pt-Cu site
for promoting water dissociation and carboxyl de-
hydrogenation.

CONCLUSIONS
In summary, we have successfully synthesized smooth
and rugged PtCu NWs by regulating the type of pre-
cursor. The rugged PtCu NWs with surface steps exhibit
enhanced electrocatalytic activities toward EAOR, com-

pared with smooth PtCu NWs and commercial Pt/C. The
DFT calculations also show that the rugged PtCu exhibit
much higher reactivity toward methanol oxidation, and
the catalytic nature probably originates from the syner-
getic Pt-Cu site which accounts for the water dissociation
and carboxyl dehydrogenation. This work reports a cat-
alyst with evident electrocatalytic performance, which has
broad application prospects in energy-related electro-
catalytic systems.
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超细PtCu纳米线的表面结构调控及其增强的醇类
电催化氧化作用
黄莉萍1,2†

, 张伟3,4†
, 钟艳飞1,2†

, 李鹏1,2*
, 项东1

, Waqar Uddin
1
,

李小武1
, 王阳刚3*

, 袁孝友1
, 王定胜5

, 朱满洲1,2*

摘要 铂基纳米催化剂的表面结构调控是提升其电催化性能和实
现多功能性的有效途径. 本工作报道了两种超细PtCu纳米线(光滑
型和粗糙型)的湿化学合成方法及其电催化醇氧化的性能. 研究结
果表明, 粗糙型PtCu合金表面具有丰富的原子台阶, 对多种电化学
反应具有较好的催化活性. 密度泛函理论模拟表明, 粗糙型PtCu纳
米线具有较好的反应活性, 这是由于Pt-Cu位点之间的协同作用促
进了反应过程中水的解离和羧基中间体的脱氢. 本工作为能源相
关电催化体系中合金纳米催化剂的合理设计提供了思路.
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