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SURFACE TENSION AND DEFORMATIONS OF MEMBRANE STRUCTURES :

RELATION TO TWO-DIMENSIONAL PHASE TRANSITIONS

F. BROCHARD, P. G. DE GENNES and P. PFEUTY

Laboratoire de Physique des Solides (*), Université Paris-Sud, 91405 Orsay, France

(Reçu le 11 mars 1976, accepté le 13 mai 1976)

Résumé. 2014 On analyse les deformations d’une membrane flexible pour deux types de systèmes :

1) Systèmes fermés (ex. : membrane d’une cellule biconcave de globule rouge) où le nombre de
constituants chimiques de la membrane est fixé, mais la surface S est ajustable.

2) Systèmes ouverts (ex. : film formé par une bicouche) où les molécules sont en contact avec un
réservoir.

Dans le premier cas, la tension de surface est nulle. Les fluctuations sont par conséquent très larges
et limitées seulement par certains termes anharmoniques. Nous montrons que ces termes peuvent être
calculés exactement. Ce problème est relié au modèle sphérique des transitions de phase. On retrouve

pour la diffusion de la lumière les lois calculées dans un modèle harmonique plus simple (construit
récemment par l’un d’entre nous).
Dans le second cas, il y a une tension de surface finie et les fluctuations sont très réduites. Ce résultat

est en accord avec des mesures récentes de diffusion de la lumière par des films noirs obtenus par
Grabowski et Cowen.

Abstract. - We analyse the thermal fluctuations of two types of flexible membranes :

1) Closed systems (such as the membrane of a biconcave red blood cell) where the chemical
constituents of the membrane are fixed in number, but the membrane surface S is adjustable.

2) Open systems (such as bilayer films) where constituent molecules can be exchanged with a
reservoir (at the outer surface of the rim).

For the first case, the surface tension is zero; fluctuations are then very large, and limited only by
certain anharmonic terms. We show that these terms can be analysed exactly - the problem being
related to the spherical model of phase transitions. Although the anharmonic terms are strong, they
do not modify the laws derived for the light scattering in the simpler harmonic model constructed
earlier by one of us [1].
For the second case, there is a finite surface tension, and the fluctuations are much less patholo-

gical. This seems to agree with recent measurements by inelastic light scattering on black films by
Grabowski and Cowen.
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1. Introduction. - Thin, flexible, membranes are
realized in particular with the bilayer films of

Mueller [2] (Fig. 1). They are also found at the surface
of biological cells : an example of primary interest is
the red blood cell [3] shown in figure 2. For many
mechanical or optical studies, it is of interest to

understand the long range deformations of these thin
structures. At first sight, it appears natural to assume
that there is a surface tension which tends to limit the

deformations. However, upon reflection, membranes
are qualitatively different from a simple fluid/fluid
interface : in the latter system an increase of surface is
realized by bringing more molecules from both fluids
towards the surface. But in a red blood cell, for ins-

tance, the number of molecules participating in the
membrane is essentially fixed. There is thus a real

question as to the existence of a surface tension in
membrane systems : it was raised (but not solved !)
in a previous paper by Papoular and one of us [4].
More recently, Lennon and one of us [1] reported

experiments on the flicker phenomenon in red blood
cells and proposed an interpretation for them. The
key to the interpretation was

a) to assume zero surface tension for unswollen

cells,
b) to treat the system in a small motion (harmonic)

approximation. The results were in plausible agree-
ment with various scaling laws extracted from the
data. However, one serious problem remained : the
anharmonic terms, when examined, appeared strong,(*) Laboratoire associe au C.N.R.S.
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FIG. 1. - Open system, the lipid bilayer exchanges molecules with
the outer ring.

FIG. 2. - Closed system : human erythrocyte. Dotted line : equi-
librium biconcave discoidal shape of a normal erythrocyte. Full line :

ripple deformation of the RBC membrane.

and could be dangerous in a similar manner to the
4th order terms in the Landau-Ginsburg free energy
of a system near a critical point [5]. 

Unfortunately, the discussion of the anharmonic

terms in ref. [1] was based on an incorrect analytic
form. The aims of the present paper are :

1) to correct this, and discuss fully the anharmonic
effects for the red blood cell case. It turns out that with

the correct form, the problem is entirely soluble, and
that the conclusions of the simple harmonic model
remain valid (section 2) ;

2) to discuss the fluctuations of black films : here,
we are dealing with an open system, as is clear from
figure 1. A change in the shape of the film can be
accompanied by an increase in the number of lipids in
the film : the situation is thus much closer to the fluid/
fluid interface, and indeed we shall see that a finite

(although small) surface tension is maintained in this
case (section 3).

Our emphasis is constantly on principles, not on
numbers. In particular we make no attempt to include
in our discussion the real shape of a red blood cell,
and we do not predict the actual magnitude of any of
the coefficients involved.

2. Deformations of closed membranes. -

2.1 VOLUME AND SURFACE VARIABLES. - Our typical
example is a red blood cell with surface area S and
internal volume V. The following properties are

essential :

(i) The membrane of surface S is made of a fixed
number of constituent molecules (lipid + protein).
The local surface density of these constituents will be
denoted by p and we may write

where dM is a surface element, S is the deformed

surface; So and po are the unperturbed surface and
density. The density p is the average of p in the

deformed state.

(ii) The red blood cell is unswollen in the following
sense : the internal volume V is smaller than a critical

value Vc which would correspond to a sphere of
area 5’0

when V  Vr the variables So and V are independent,
and the overall free energy F of the system must be

minimal with respect to both of them. This implies
that

The surface tension r must vanish in this case, as

explained in ref. [1].

2.2 IDEALISATION OF THE SHAPE. - From now on

we shall ignore the real shape of the red blood cell, and
substitute for it a sheet lying near the (xy) plane, and
described by a vertical displacement u(xy).
The surface So is replaced by a square (0  x  L

and 0  y  L) of area So = L 2. To imitate the fact
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that So has no edge, but is closed on itself, we shall
impose periodic boundary conditions

This will allow for a simple Fourier analysis of the
modes

where q = 0 will be excluded (to maintain the equi-
valent of a constant volume inside the cell).

2.3 STRUCTURE OF THE ELASTIC ENERGY. - The

elastic energy of the distorted membrane has the

following contributions

a) A bare surface tension term

The reason for maintaining this ro is the following;
after inclusion of the fluctuation effects, we shall find
that the complete surface tension r differs from ro

As explained in [1], it is this total coefficient r which
must be set equal to 0.

b) The elastic energy due to changes in the local
density p of the membrane is

The last term in this expression describes the density
fluctuations of non zero wave vector inside the film,
and is not different from what we have in an unper-
turbed film : it is thus completely decoupled from the

ripples in which we are interested, and can be omitted
in what follows. This leads to

which differs from the form used in ref. [1]. The
incorrect procedure used in ref. [1] amounted to

assuming that the molecules had no horizontal motion
when the displacement u(xy) was applied. This then
imposed a change in the local density

and led to the form

In actual fact, the molecules do move horizontally to
minimize the average of (p - p)2, and this leads

to (2.10).
In addition to the two-dimensional compressional

energy (2.8) we might have to include another term,
related to shear deformation : this will occur if the

membrane is not a liquid, but rather a rubber-like
material, as emphasized by Evans [6]. This however
will not affect our discussion, and is omitted here for

simplicity.

c) Another essential contribution to the elasticity is

the curvature energy. - The importance of this term
for lipid bilayers and red blood cell membranes has
been emphasized by Helfrich [7] and by others (1).
This energy is of the form

where K is a constant with the dimension of an energy,
of order 10- 13 ergs.
C = ’B12u is the local curvature, and Co is the

spontaneous curvature (present if the two sides of the
membranes differ). The role of Co is important for
understanding the biconcave fonn of real red blood
cells; but for our idealised problem Co must be
ignored.

2.4 FLUCTUATION EFFECTS. - Having specified the
free energy f = fd + fe + fc for any deformation of the
membrane, we can find the statistical weight for any
conformation as exp - fIT and obtain the partition
function of the membrane by summing these weights
over all possible shapes. It turns out that this problem
is solvable exactly, even in the presence of the anhar-
monic terms (2.10). In the language of phase transi-
tions, the membrane system is a realization of the

two-dimensional spherical model for which there exists
an extensive literature [8]. The analogy can be seen
on Fourier transformation : defining

the free energy f is

where

Eq. (2.14) has indeed the structure associated with
a one component spherical model. The main feature

(1) Gruler, H., private communication.
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is that the quantity I is extensive (of order So) and has
only weak relative fluctuations (of order So 1/2) . The
calculation of the partition function Z is classical and
will be summarized only briefly here. We write

where Zo(rl) is the partition function calculated
without the anharmonic terms but with the constraint

that the integral in (2.15) has a fixed value I. It is easy
to calculate the Laplace transform of Zo

where Zfree is the partition function calculated without
the anharmonic terms and without any constraint.

Zfree is the partition function of a gaussian system and
is given by

Knowing Zfree and Zo(rP) we can now return to

Zo(rI) 

and finally to the complete partition function

The last integrand has a peak at I = TP/2 v (linear
in So) and a width of order v-’1/2(~_ SJ/2). Thus the
integral can be safely taken from - oo to + oo and
gives const. exp(T p2 /4 v).
The integral over P can then be performed by saddle

point methods : the saddle point condition is

or through (2.18)

This is an implicit equation for P. We prefer to write it
in terms of a renormalized surface tension r = r + 2 PT

We can show that r plays indeed the role of a surface
tension by looking at the fluctuations of one Fourier
component uq. We find by similar methods

This is exactly the form which is expected for a mem-
brane of surface tension r (see for instance ref. [4]).
According to our general arguments, we are led to
impose P = 0. In the phase transition analog, this

means that we stand exactly at the transition point.
There remains to show that there is a transition point,
i.e. that eq. (2.22) with r = 0 can be satisfied by a
suitable choice of r

qmax = Ila is some molecular cut-off. The lower

cut-off qmin is imposed by the boundary conditions
qmin ~ nIL. Thus we are led to

Note that the value of r depends on the size of the
membrane !

(This is typical of a two-dimensional spherical
model, for which there is no transition in the limit

L - oo) [8]. A similar feature was already found in an
appendix of ref. [1] where a weighting factor very
similar to (2.14) was considered.
Numerically T/K = ale, where e is a lipid layer

thickness (e N 50 A). Thus - r ~E/10 ~ a few

ergS/CM2. We conclude that it is possible to achieve
the required equilibrium state, with f = 0, provided
that the unperturbed system has a certain tendency to
increase its surface : this increase is then limited by
the elastic forces.

Some readers may be surprised to find such a

dramatic effect of fluctuations on surface tension

parameters : the point is that these unswollen cells

have huge fluctuations, much more important than
in usual interfaces.

3. Membranes in contact with a reservoir. - Let us

consider a black film with N lipid molecules and a
fixed surface So (Fig. 1). The corresponding free

enthalpy is of the form

The function g(p) is minimal for a certain value p* of
the surface density. It is important to realize that in
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the black film the equilibrium value of p is not equal
to p* : since the film exchanges molecules with the
outer rim, which plays the role of a reservoir, we must
in fact minimise the following potential

where ,ur is the chemical potential of the lipid in the
reservoir, and N, is the total number of lipid molecules
(film + reservoir). The minimization condition gives
a density po defined by :

Since the chemical neighbourhood of a lipid molecule
in the reservoir differs from what it is in the film, we
have ,ur = Q(p*) and eq. (3.3) gives po 0 p*.

Let us now consider a different problem, where we
start from an unperturbed system with area So and
No = Po So, and then impose a small change in area :

The film stays in contact with the reservoir : thus

eq. (3.3) remains valid and the density remains equal
to po. This implies

The change in the potential G is then

There is a finite surface tension

Thus in a static light scattering experiment on a black
film, we expect Fourier components of the displace-
ment uq with mean square values of the form

These static experiments are extremely hard to

perform. Dynamic experiments have been realised

recently on some black films [9], and they do suggest
the existence of a small but finite surface tension.
These experiments deserve some comments :

a) At finite frequencies, it is not certain that the
local lipid density can indeed adjust itself to the

optimal value po : this depends on a delicate compa-
rison between the frequencies of the capillary modes
and of Lucassen modes [10]. However, this effect does
not react on the restoring forces for capillary waves :

for instance if, in a high frequency regime, 6N is zero
(instead of being equal to po ðS) the surface tension
is èFlèS IN and (as is clear from eq. (3.1) it is still

equal to r).
b) The experimental surface tension is small (of

order 1 erg/cm’ for cholesterol bilayers). One possible
explanation of this point is sketched in figure 1 where
we picture two possible states for the lipid molecule :
- at the rim (reservoir) the molecule is in contact

with a deep octane fluid, very similar to its own

aliphatic part,
- in the film there is very little octane : the short

range interactions between one aliphatic tail and it’s
neighbourhood are not very different from the

preceding case. But the long range interactions (the
tail of the Van der Waals potential) are cut out

because the film is thin.

It is this comparatively small effect which gives an
equilibrium density po (in the film) slightly smaller
than p*. The surface tension is proportional to

- (p’(po) q/’(p*) (p* - po) and is accordingly small.

4. Conclusions. - We have seen that the surface
tension of thin membrane systems depends on certain
specific conditions

4.1 For closed systems like unswollen red blood

cells the static surface tension (after inclusion of all
fluctuation effects) should vanish, and the fluctuations
should be described by a very simple formula (derived
from (2.23))

Thus, for static properties, we recover the simple
predictions of the harmonic approximation in ref. [1].
Does this conclusion remain true for the dynamic

experiments which probe the flicker ? We believe that
it does, because for a given q the frequency of the
Lucassen mode [10], which relaxes the local density,
is always much larger than the frequency of the

peristaltic modes discussed in [1].
4.2 For open systems, we expect a finite surface

tension, controlled by the differences in energy for one
molecule in the film and in the reservoir. All these

considerations may appear rather formal; they ignore
the practical complications associated with red blood
cell shapes, with their spontaneous curvatures, etc...
But hopefully they should be of use as a starting point
for more realistic discussions in many membrane

systems.
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