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Abstract

The surface tension (ST) of ionic liquids (ILs) and their accompanying mixtures allows 
engineers to accurately arrange new processes on the industrial scale. Without any doubt, 
experimental methods for the specification of the ST of every supposable IL and its mix-
tures with other compounds would be an arduous job. Also, experimental measurements 
are effortful and prohibitive; thus, a precise estimation of the property via a dependable 
method would be greatly desirable. For doing this task, a new modeling method accord-
ing to artificial neural network (ANN) disciplined by four optimization algorithms, namely 
teaching–learning-based optimization (TLBO), particle swarm optimization (PSO), genetic 
algorithm (GA) and imperialist competitive algorithm (ICA), has been suggested to esti-
mate ST of the binary ILs mixtures. For training and testing the applied network, a set of 
748 data points of binary ST of IL systems within the temperature range of 283.1–348.15 K 
was utilized. Furthermore, an outlier analysis was used to discover doubtful data points. 
Gained values of MSE &  R2 were 0.0000007 and 0.993, 0.0000002 and 0.998, 0.0000004 
and 0.996 and 0.0000006 and 0.994 for the ICA-ANN, TLBO-ANN, PSO-ANN and GA-
ANN, respectively. Results demonstrated that the experimental data and predicted values 
of the TLBO-ANN model for such target are wholly matched.
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List of symbols

IL  Ionic liquid
ANN  Artificial neural network
MRE  Mean relative error
ICA  Imperialist competitive algorithm
R2  Coefficient of determination
STD  Standard deviation
MLP  Multi-layer perceptron
SVM  Support vector machine
ST  Surface tension
MSE  Mean squared error
BP  Back-propagation
PSO  Particle swarm optimization
EC  Evolutionary computation
ARD  Average relative deviation
GA  Genetic algorithm
TLBO  Teaching–learning-based optimization
RMSE  Root-mean-squared error
DT  Decision tree
FS  Fuzzy system
GEP  Gene expression programming
RBF  Radial basis function
BP  Backpropagation
AI  Artificial intelligence
r  Relevancy factor

1 Introduction

In recent years, the use of new chemicals such as nanoparticles, ionic liquids, and sur-
factants has opened a new window on research (Bakthavatchalam, 2020; Dehaghani & 
Daneshfar, 2019; Keykhosravi & Simjoo, 2018, 2019, 2020). Among these materials, ionic 
liquid has been introduced in various sciences such as chemical engineering and petroleum 
engineering and has received much attention (Harada et al., 2020; Liu, 2016). In a simple 
word, small organic or inorganic anions and almost large organic cations make up a new 
set of ionic organic salts whose melting points are below or near the ambient tempera-
ture, known as ionic liquids (ILs) (Baghban, 2015). The exceptional applicability of ILs 
in comparison to more conventional compounds has drawn great attention in both indus-
try and academia. This is mainly due to their high ionic conductivity, very low volatility, 
high stability (thermal and electronic), good solubility, and a wide liquid temperature range 
(Vega, 2010). Of course, a knowledge of thermophysical and physicochemical attributes of 
the accompanying ILs is crucial to design an effective process (Gharagheizi, 2013). Espe-
cially, precise information about the ST of these fluids and their mixtures is indispensable 
in exploitation and designing modern industrial processes such as extraction, absorption, 
and also distillation involving IL (Carvalho, 2008; Oliveira, 2012). In recent years, many 
researchers have entered the field of laboratory studies of ionic liquids (Asl, 2020; Mosal-
lanejad et al., 2018; Shaahmadi et al., 2018; Tajikmansori et al., 2020), and a number of 
them have measured the surface tension of compounds containing these substances (Oz, 
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2020; Shojaeian, 2019). Clearly, the experimental measurement cannot take the properties 
of each possible IL and its mixture with other compounds because there are infinite num-
bers of conceivable systems. Besides, empirical measurements usually involve expensive, 
time-consuming procedures and the measurements might suffer from non-negligible uncer-
tainties (Gharagheizi, 2013). Thus, developing a reliable method for estimating the diverse 
properties of these kinds of systems will be extremely attractive (Baghban, 2015). In the 
literature, meticulous articles on the estimation methods of pure compounds ST have been 
previously offered (Dehaghani, 2019; Gharagheizi, 2013). A review of the ST approxima-
tion of ILs has been collected by (Tariq, 2012) and (Gharagheizi et al., 2012). Briefly, they 
demonstrated associated deficiencies of the methods utilized for modeling of ST of ILs and 
their accompanying mixtures. They represented that these methods have their disadvan-
tages. Also, this fact was shown that ST of ILs is an open field of research because mod-
eling of such property is predicted by few models.

Gharagheizi and his colleagues (Gharagheizi et al., 2012) had employed a group-con-
tribution method which is not occasionally beneficial in terms of simplicity and time as 
it requires a detailed understanding of the IL structures. Also, the specification of group 
parameters for different functional groups of IL structures has not been still available 
(Hezave, Lashkarbolooki, et al., 2012). Because of the restricted usage of such methods, 
the lack of an alternative method makes sense.

Recently, emerging artificial intelligence (AI) methods, including least square support 
vector machine (LSSVM) (Faghihi et al., 2019; Kardani, 2018; Kardani & Baghban, 2017; 
Nabipour, 2020), ANN (Daneshfar, 2020a; Kardani, 2019; Vanani et al., 2019), multivari-
ate adaptive regression splines (MARS) (Choudhury et  al., 2020), adaptive neuro-fuzzy 
inference system (ANFIS) (Daneshfar, 2020b; Daryasafar et  al., 2019; Ghadiri, 2020), 
group method of data handling (GMDH) (Majumder et  al., 2019), and firefly algorithm 
(De & Majumder, 2019) are accepted as an adequate approach especially in the develop-
ment of a model for complex systems (Dehaghani, 2019). In this regard, these methods 
have been applied as efficient and viable tools in a great deal of research works over the 
past decades due to their simple implementation in multi-functional problems (Alrashed, 
2018; Bagherzadeh, 2019; Bahrami, 2019; Karimipour, 2018, 2019; Moradikazerouni, 
2019; Peng, 2020; Qu et al., 2020; Safaei, 2019; Wu, 2019; Zhu, 2019).

In the last decade, various studies have reported the successful use of intelligent meth-
ods to correlate the properties of ILs. Hezave et  al. investigated systems containing ILs 
demonstrating appropriate predictability of ANNs for pure ILs’ thermal conductivity 
(Hezave, Raeissi, et al., 2012), binary heat capacity (Lashkarbolooki et al., 2012), binary 
density (Lashkarbolooki et  al., 2013), ternary bubble points (Hezave et  al., 2013), ter-
nary electrical conductivity (Hezave, Lashkarbolooki, et al., 2012), and ternary viscosity 
(Lashkarblooki, 2012).

Among these interesting and innovative methods, the attention of some researchers 
has been drawn to AI models in order to predict the different properties of pure (Deng 
et al., 2020; Lazzús, 2017; Low et al., 2020; Mulero et al., 2017; Wang et al., 2021), binary 
(Lashkarbolooki, 2017; Lashkarbolooki et al. 2012, 2013), and ternary (Hezave et al. 2013) 
systems containing IL.

In the last few years, various innovative methods have been used to predict the surface 
tension of pure ILs (Atashrouz et al. 2017; Lazzús, 2017). According to the latest study in 
literature, few works have predicted the surface tension of IL binary systems using various 
artificial intelligence methods which are described below (Atashrouz, 2017; Hashemkhani, 
2015; Lashkarbolooki, 2017; Shojaeian & Asadizadeh, 2020; Soleimani, 2018).
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In 2015, Hashemkhani et  al. used SVM and LSSVM models coupled with coupled 
simulated annealing (CSA) and GA to predict the surface tension of binary mixtures con-
taining 748 data and 31 different IL mixtures (Hashemkhani, 2015). They considered tem-
perature, liquid ionic properties (including mole fraction, molecular weight and density), 
and non-ionic liquid properties (including boiling temperature and molecular weight) as 
input parameters of their models. They concluded that the CSA-LSSVM model has a better 
ability to predict target values compared to other models, which results in  R2 = 0.987044 
and RMSE = 1.629 E-3. In 2017, Atashrouz and his colleagues used the GA-LSSVM, 
GA-SVM, and group method data handling type polynomial neural network (GMDH-
PNN) models to estimate the surface tension of binary mixtures containing ionic liquid 
(Atashrouz, 2017). They analyzed 573 data containing 32 different mixtures. The input 
data of their models were temperature and properties of ionic and non-ionic liquids (includ-
ing mole fraction and density). They concluded that the two models GA-LSSVM and GA-
SVM have a higher ability to predict laboratory values of surface tension compared to the 
GMDH-PNN model. Although their proposed models have a high accuracy in predicting 
the results (maximum value of  R2 equal to 0.9989), the number of input data as well as the 
number of input parameters to their models are less compared to other similar works, and 
it is possible that if they took into account more data, the accuracy of their models would 
be less. In 2017, Lashkarbolooki used the artificial neural network to provide a model for 
predicting the surface tension values of binary mixtures containing ionic liquid. His model 
was made up of 836 input data consisting of 32 different mixtures, and the input param-
eters to his model included temperature and properties of the ionic and non-ionic liquid 
(including melting temperature, mole fraction, and molecular weight). This model was able 
to predict the output data with  R2 = 0.9948 and MSE = 6.67 E-7. In 2018, Soleimani and 
his colleagues used a model based on an artificial neural network to predict the surface ten-
sion of mixtures containing ionic liquid (Soleimani, 2018). They used 748 data and were 
able to accurately predict the output parameter by considering the input parameters of their 
model including temperature, ionic liquid properties (mole fraction and molecular weight), 
and non-ionic liquid properties (boiling temperature and molecular weight). According to 
statistical analysis, their model was able to predict surface tension with  R2 = 0.9995726 
and AARD% = 0.44%. By examining the input parameters and trying to predict an accurate 
model in 2020, Shojaeian and Asadizadeh showed that the ANN model has a good ability 
to predict the surface tension of binary mixtures containing ionic liquid (Shojaeian & Asa-
dizadeh, 2020). The best model they proposed was a model with root-mean-square error 
(RMSE) equal to 7.88 ×  10–3.

In this article, the effect of different parameters on the ST of various binary mixtures of 
ILs has been studied using a new modeling approach according to ANN coupled by four 
powerful optimization algorithms, namely TLBO, PSO, GA, and ICA. To this end, a big 
dataset of binary ST of IL systems is collected from the literature. Then, for estimating the 
accurate ST, models are developed based on effective inputs such as the operational tem-
perature (T) and ILs’/non-ILs’ specifications. Next, statistical analysis was used for evaluat-
ing the efficiency of the recommended models. Then, we use William’s analysis to evalu-
ate the accuracy of the actual results from which the model is made. Finally, a sensitivity 
analysis was used to determine the most important parameters affecting the output.
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2  Materials and methods

This section provides a complete description of the models and algorithms used to predict 
the target parameter.

2.1  ANN

As a computational intelligence model, ANN can learn from experience, improve its per-
formance, and adapt to environmental fluctuations (Mohanraj et al., 2015). ANNs are sys-
tems dispersed in parallel comprised of simple components called neurons, as operating 
elements, which are arrayed in layer(s) and interrelated by connections. Two widespread 
ANNs are MLP and radial basis function (RBF) networks. A representative MLP neural 
structure contains three groups of layers (input, hidden, and output). Each layer contains 
several neurons and the number of neurons in the hidden layer should be optimized via 
optimization methods. The MLP structure connections deal with the variables of equiva-
lent problems; the training procedure is performed by way of interconnections construc-
tion. It is noteworthy that these interconnections must be established optimally (by adopted 
optimization techniques) to build up an effective MLP structure (Baghban et al., 2015).

On the other hand, RBF-ANNs are more facile in designing compared to MLP-ANNs 
while they are also capable of responding quite properly to patterns that were not applied in 
the training procedure (Yao, 2004). As a class of feedforward neural networks, the design 
of RBF-ANNs depends on the iterative estimation of localized basis function networks. 
Due to a simpler structure and a more quick training process, RBF-ANN is a favorable 
alternative to the MLP-ANN (Girosi & Poggio, 1990). RBF-ANN structure also includes a 
hidden layer, input layer, and output layer. RBF is used for every node in the hidden layer 
and it comprises this nonlinear activation function as a network neuron. The precise shape, 
the distance scale, and the center of the radial function are the model parameters. The 
whole parameters are adjusted if it is linear. According to the linear optimization approach, 
the RBF-ANN can provide an inclusive optimum solution to the adaptable weights in the 
minimal MSE. The output of the RBF-ANN is presented as follows (for an input pattern x ) 
(Du & Swamy, 2006):

x
k
 is the archetype of the center of the k_th hidden unit,W

ki
 is the connection weight 

between the k_th hidden unit and the i_th output unit, and ‖‖ symbolizes Euclidean norm. 
The Gaussian function that is utilized here is the RBF (φ). The Gaussian is a representative 
radial function that is incorporated in Eq. (2) (in the event of a scalar input) (Du & Swamy, 
2006):

The radius and center are the parameters of Gaussian RBF that have been denoted by r 
and c, respectively. Getting away from the center makes a Gaussian RBF undergo mono-
tonic reductions. Contrarily, distancing from the center (in the event of scalar input) causes 
a monotonic rise in a multi-quadric RBF as expressed in Eq. (3) (Bemani et al., 2019):

(1)yi(x) =

h�

k=1

Wki∅
�
‖x − xk‖

�

(2)h(x) = exp

(

−
(x − c)

2

r2

)
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Gaussian-like RBFs are local with further common uses than multi-quadric type RBFs 
which have a universal response. Gaussian-like RBFs are also of more biological plausibil-
ity due to their finite responses (Park & Sandberg, 1991; Schilling et al. 2001).

2.2  TLBO

In a relatively recent study, Rao et  al. (Rao et  al., 2012) offered the TLBO algorithm 
(Yildiz, 2013). A population that consists mostly of ‘‘learners” prompts enhancements to 
advance swiftly toward an optimal solution in this algorithm. Our research covers a popula-
tion of 250 preliminary “learners” cooperating with a limited few numbers of ‘‘teachers” 
via two activities: 1) the teacher stage, which involves enhancement resulting from the cur-
rent science of the teacher(s), and then 2) the learner stage, which involves enhancement 
obtained from interplay with the increasingly acquired knowledge from inside the learner 
population.

Developing the general performance of the learner population according to the mean 
result of the teacher’s current knowledge originates from the teacher stage of the class 
from whatever value to its level based on its capacity (Nazari, 2020). If the quality of the 
teacher’s solutions is shown by T

i
 and the average performance of the learners’ solutions 

in whatever special iteration i is denoted by M
i
 , then T

i
 is used to elevate the value of M

i
 , 

i.e., prompting alterations that cause M
i
 to proceed toward an amended/enhanced average 

performance,M
new

 , closer to T
i
 . According to Murty et al. (Črepinšek et al., 2012), Eq. (4) 

instigates the modifications done as part of the teacher phase:

In the above equation:T
F
 is the teaching factor, which can modify the average value of 

the learners under adjustment. A uniform random number in [0, 1] interval is chosen and 
denoted by r

i
 . T

F
 is chosen at random (with equivalent likelihood) to obtain values of either 

1 or 2 (i.e., integer or rounded values) based on the association presented in Eq. (5) (Rao 
et al., 2012):

Using Eq. (6), a learner’s solution in iteration i is changed from its solution in the prior 
iteration (i-1) (Rao et al. 2012):

The learner phase concentrates on the improvement of the learners’ solutions quality 
via interplay amongst the learner population throughout every iteration of this algorithm. 
Adjustment of a learner’s solution is done toward solutions of those learners in the popula-
tion who possess greater performance solutions. For two separate learners Xj and X

k
 , where 

solutions j ≠ k , during each iteration i of the TLBO, Eqs. (7) and (8) are proposed by Rao 
et al. (Rao et al. 2012) to instigate learner modifications:

or,

(3)h(x) =

√

r2 + (x − c)
2

r

(4)Difference_Meani = ri

(

Mnew − TFMi

)

(5)T
F
= round[1 + rand(0, 1)(2 − 1)]

(6)Xi = Xi−1 + Difference_Meani

(7)Iff
(

Xj

)

< f
(

Xk

)

thenX,i = Xi−1 + ri

(

Xj − Xk

)



Surface tension of binary mixtures containing environmentally…

1 3

The X
i
 values are obtained with Eqs. (7) or (8) are solely acceptable in case the values 

create a function (e.g., f (Xj) or f (Xk) ), which is enhanced from prior iteration i − 1.
The simplicity of the modifications included in Eqs. (4)–(8) facilitates the coding and 

implementation of TLBO.

2.3  GA

The preliminary step is to form the primary population to initiate the GA-related pro-
cess. The next stage is to assess every individual by a suitable statistical fitness func-
tion followed by examining every individual’s compatibility. The alleged ‘‘Global Best 
Satisfactory’’ individual has been created when the resulting error is permissible. The 
algorithm has to be ended with extracting the parameters; otherwise, the next stage is 
to select the weaker individuals for removal. Then, randomized cross-over and muta-
tion processes are purposively performed to produce a novel population whose param-
eters lead to lowering the level of error, which is feasible by shifting to the stage of the 
‘‘Evaluation Fitness’’ (Jefferys, 1993; Romero & Carter, 2001).

2.4  PSO

This plan begins with initializing the prime population with the dedication of locations 
and velocities randomly. It is followed by the fitness of every particle, which is done by 
making use of a statistical function. The criteria have to be abandoned and the assumed 
parameters have been created when the best particle’s fitness rate meets the stopping 
criteria. However, failure to reach this rate can be redressed by updating the speeds and 
locations of particles under specific conditions. In this case, the first stage is to update 
the linked parameters of the universal best, in case the particle fitness is higher than that 
of the global best, and then to update the elements relating to the particle best, if the 
particle fitness is higher than the that of particle best. In the end, the next particles need 
to be reevaluated by a shift toward the second stage (Zendehboudi, 2012, 2014).

2.5  ICA

This algorithm is based upon forming several empires and displacing some colonies 
between empires, followed by questioning the charge of a colony for an empire. In the 
case of a high colony cost, the roles of imperialist and colony need to be altered. In the 
subsequent phase, the charge of total empires is calculated. The weakest colony of the 
weakest empire has to be assigned to the empire with the uppermost level of potential, 
as the succeeding stage. After that, an empire with no colonies has to be removed. In the 
subsequent level, the ending situations are examined to find the level of gratification to 
halt the algorithm (Ahmadi, 2013; Zendehboudi, 2013).

(8)Iff
(

Xj

)

> f
(

Xk

)

thenX,i = Xi−1 + ri

(

Xk − Xj

)
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2.6  Prediction of ST values by the TLBO‑ANN model

The presently introduced hybrid model applies a customary ANN and integrates it into 
TLBO to network training. The clarity of the ANN technique can be improved by its 
hybridization with TLBO, which can be advantageous both theoretically and practically.

The development of the hybrid TLBO-ANN model involves seven forthright stages:

(1) Organization and introduction of the dataset for analysis.
(2) Normalization of the data such that ANN would be able to process the data, which is 

done using Eq. (9) (Chu, 2017):

In which for a given data point, X
N

 denotes the normalized value of variable X.
(3) Preparation of testing and training data subgroups from the normalized data points. The 

training set comprised 561 data sets chosen at random which is utilized in the proposed 
model. For training the neural network, this training set will be used. About 25% of 
the collected data (187 data set) comprise the testing subgroup. Upon processing the 
training subgroup by the ANN, the accurate status of the constructed model is evaluated 
by testing the subgroup.

(4) Using a three-layer feedforward ANN to process the training set: this ANN structure 
was detected to have the highest effectiveness for this problem, which includes an 
output layer, an input layer, and a hidden (latent). In this process, only one hidden 
layer (including 20 neurons) is used. Activation (or transfer) functions process the data 
that is to be transferred between the ANN layers. Some options exist for the transfer 
functions, viz. nonlinear, sigmoidal, and piecewise linear functions which are more 
common (Ahmed & Sarma, 2007; Dorofki, 2012). For the introduced model, tansig 
(hyperbolic tangent) activation function is used between input and first hidden layer, 
logsig (log-sigmoid) activation function is used between the first hidden layer and 
second hidden layer, and purelin (linear) is used as the activation function between 
output and second hidden layer.

(5) In this step, the TLBO algorithm is used for network training. This is the combined 
stage and amendment to the customary ANN method, which uses the BP (back-prop-
agation) algorithm for network training for almost 30 years (Rumelhart et al., 1986) 
and is still an acceptable standard (Nielsen & Neural networks & deep learning. Vol., 
2018). The TLBO helps improve the efficacy and clarity of network training.

(6) Testing a subgroup of data points from step 3 (that do not contribute to steps 4 and 5) 
helps to assess the trained network’s performance power.

(7) Analysis and presentation of the findings, namely performing statistical examination 
using other correlations and algorithms, repeating the algorithm run to confirm dupli-
cability, and proving the relative influences of the dependent variables on the outcomes 
by the sensitivity examination.

(1) Organization and introduction of the dataset for analysis.

(9)X
N
= 2

X − min(X)

max(X) − min(X)
− 1
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2.7  Estimation of ST values by the GA‑ANN model

In the GA-ANN model, after developing the ANN, GA was utilized to optimize the weights 
and biases for predicting ST. According to Nguyen et al. (Nguyen et al., 2019), regression 
problems could be solved by at most two hidden layers of the ANN model. Accordingly, 
the procedure of “Trial and Error” was implemented using one and two hidden layers. 
Using the scale method of min–max, the overfitting of the initial ANN model was avoided 
by fixing the range in the interval [− 1, 1]. The performance of the GA optimization was 
evaluated based on the values of the RMSE and there were 1000 search iterations to gain 
the optimal weights and biases corresponding to the lowest RSME. The GA-ANN model 
was trained using the BP algorithm.

2.8  Estimation of ST values by the PSO‑ANN model

Here, the ST values were predicted based on PSO-ANN, in which the weights and 
biases optimization phase were conducted using the PSO algorithm. The same develop-
ing techniques as in the GA-ANN model, such as scaling and back-propagation algo-
rithm, were used in the PSO-ANN. The case with the lowest RMSE was determined as 
the best PSO-ANN model.

2.9  Estimation of ST values by the ICA‑ANN model

The ST values were also predicted by the ICA-ANN model. Like the other three pre-
vious ANN optimization algorithms, the ICA algorithm was utilized to optimize the 
ANN elements. Then, the colonies, i.e., biases and weights, were globally searched by 
the imperialists’ competition. As expected, the best ICA-ANN model had the lowest 
RMSE. Although the PSO-ANN, GA-ANN, and the ICA-ANN structures are similar, 
their biases and weights are different. It is noteworthy that the development techniques 
for these three models are also the same, i.e., the BP algorithm and the min–max scale 
[− 1, 1].

3  Case study

This section provides explanations about the steps of collecting laboratory data, how to 
use and analyze these data in order to model output values.

3.1  Data acquisition

For achieving the desired goals, a set of 748 experimental data of binary ST mix-
tures were collected from literature (Ahosseini, 2009; Dong, 2007; Dong, et al., 2006; 
Geppert-Rybczyńska, 2013; Harris et  al., 2006; Jiang, 2013; Kermanpour & Niakan, 
2012; Machida, 2010; Mallard & Linstrom, 2000; Rilo, 2009, 2012; Seki, 2012; Tron-
coso, 2006; Vakili-Nezhaad, 2012; Wandschneider et  al. 2008; Wang, 2011a, 2011b; 
Wei, 2010). Independent input variables must be selected for models in the next step. 
Accordingly, input parameters were the operational temperature (T), ILs’ specifica-
tions (including the molecular weight of the components  (MwIL), the density of the 
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components (ρIL) and the component compositions  (xIL)), and non-ILs’ specifications 
(including molecular weight  (Mwnon-IL) and boiling point  (Tbnon-IL)) and the target vari-
able is the ST of IL containing binary mixtures. The ST was then estimated using a 
dataset that was randomly divided into two distinct data collection, i.e., testing dataset 
and training dataset with the proportion of 25% and 75% of total data points, respec-
tively. In order to model the desired process, we used MATLAB toolbox ANN code and 
coupled it with optimization codes to determine optimized weight and bias values. As 
an operational note, the performance of the proposed models has been evaluated using 
test data points which must not be employed at the training stage.

3.2  Implementation and analyses

This study has been aimed at estimating ST for binary mixtures involving ILs via the 
development of four computational models, including PSO-ANN, GA-ANN, TLBO-
ANN, and ICA-ANN applied to the operational temperature (T) and ILs’ & non-ILs’ 
specifications. Based on the theoretical background, specific optimization algorithms 
(PSO, GA, TLBO, and ICA) should be used for optimizing the bias and weight terms 
of the ANN. After optimization, accuracy and capability of the four models would be 
examined through statistical analyses, including average relative deviation (ARD), 
root-mean-square error (RMSE), R-squared  (R2), standard deviation (STD), and mean 
squared error (MSE) as described below (Ahmadi, 2020):

where the term N stands for the number of total data points, and also �
exp

 and �
cal

 represent 
actual and estimated data points in the above equations.

(10)MSE =

1

N

N
∑

i=1

(

�exp − �
cal

)2

(11)ARD(%) =
100

N

N
∑

i=1

�exp − �
cal

�exp

(12)STD
error

=

(

1

N − 1

N
∑

i=1

(

error − error
)2

)2

(13)R
2
=

�

∑N

i=1

�

�exp−�exp

�

�

�
cal−�

cal

�

�2

�

∑N

i=1

�

�exp−�exp

�

∑N

i=1

�

�
cal−�

cal

�

�

(14)RMSE =

√

√

√

√

(

1

N

N
∑

i=1

(

�exp − �
cal

)2

)
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4  Results and discussion

The ANN optimization was accomplished using PSO, GA, TLBO, and ICA algorithms. 
The performances of the proposed models are compared in Fig.  1 which indicates 
the mean square of errors for estimated and actual data points versus the number of 

Fig. 1  Performance (MSE) plot of the ANN models for estimating ST by a TLBO-ANN b PSO-ANN c 
GA-ANN and d ICA-ANN

Table 1  Details of the proposed 
models

Model Parameter Value/comment

ICA Ncountry 85

Nimp 10

β 1.7

γ 0.2

ξ 0.2

Revolution rate 0.4

PSO Swarm size 85

C1 2

C2 2

GA Population 85

Generation 2000

TLBO Population 85

Iteration 2000

ANN structure Hidden neuron 20

Hidden layer 1

Transfer function Sigmoid
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Fig. 2  Actual versus estimated ST by the proposed models at training and testing stages: a TLBO-ANN b 
PSO-ANN c GA- ANN and d ICA-ANN

Fig. 3  Regression plots estimation of the ST using the proposed models at training and testing stages: a 
TLBO-ANN b PSO-ANN c GA- ANN and d ICA-ANN
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the corresponding iteration. This Figure shows that the number of iterations which is 
required to minimize MSE is 2000, 1000, 1000, and 400 for the TLBO-ANN, PSO-
ANN, GA- ANN, and ICA-ANN, respectively. Table 1 also provides more information 
about these four models. This table contains the values of utilized parameters in the dif-
ferent proposing algorithms that are set based on our expertise.

Figure 2 graphically explains the estimated and actual ST of mixtures for both testing 
and training stages. According to this Figure, it is clear that all models have a relatively 
good ability to predict experimental values at the training and testing stages because, 
as can be seen, the values of the laboratory and the model are very close to each other. 
According to this analysis, apparently, all models have a good ability to predict labora-
tory values. In order to clarify the issue and determine the best model, we will continue 
with other analyzes.

Figure 3 demonstrates the regression between actual values and results achieved from 
the proposed models. Real values have a relationship with model outputs as indicated 
by the  R2 value. This relationship would be exactly linear if  R2 is equal to unity. Fig-
ures representing the regression obviously show that the TLBO-ANN model has the 
most accurate fitting. Diagrams of ST of binary mixtures containing ethanol & [BMIM]
[L-lactate], methanol & [BMIM][L-lactate] and dimethyl sulfoxide & [EMIM][TF2N] 
as a function of IL concentration and temperature are presented in Figs. 4, 5 and 6.

As a consequence, different statistical analyses, including MSE, RMSE, STD, ARD, 
and  R2, were employed to investigate the models’ capability. Figure 7 represents relative 
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Fig. 4  Diagram of ST of binary mixture ethanol and [BMIM][L-lactate] as a function of temperature and 
concentration of IL component
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deviations of estimated and actual ST mixtures of models in percentage. Additionally, 
Table 2 provides the values of RMSE, MSE,  R2, ARD, and STD at training and testing 
phases, respectively. Also, Fig. 8 (known as William’s plot) demonstrates the leverage 
analysis of ST estimation for detecting outliers in the dataset which have higher hat 
values in comparison with warning leverage hat value as well as standardized remaining 
values out of the acceptable range of + 3 to − 3.

4.1  Sensitivity analysis

ANN models relate the input to the output and sensitivity analysis examines how variations 
in the input can influence the output. The present study has chosen TLBO-ANN as the best 
model structure. Chen et al. (2014) introduced the relevancy factor (r) equation to find the 
most effective input as well as the effect of each input on the output values (Chen, 2014). 
The value of r ranges from −1 to + 1. Observing input and output with high absolute values 
of r shows a higher impact of input on the output. Negative and positive coefficients are, 
respectively, obtained when the increment of input causes an increase or a decrease in the 
output. Figure 9 represents a direct relationship between ST, IL’s mole fraction ( x

IL
 ) and 

boiling point of non-ILs ( Tb
non−IL

 ). It also indicates an inverse dependency between ST and 
the operational temperature ( T  ), the density of IL ( 

IL
 ) and molecular weights of IL ( Mw

IL
)/

non-IL ( Mw
non−IL

 ) components. Moreover, it was found that the IL mole fraction ( x
IL

 ) has 
the most important effect on ST of the mixtures with r = 0.1 , while the molecular weight of 
non-ILs ( Mw

non−IL
 ) has the minimum effect on that withr = −0.55.
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Fig. 5  Diagram of ST of binary mixture methanol and [BMIM][L-lactate] as a function of temperature and 
concentration of IL component
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Fig. 6  Diagram of ST of binary mixture dimethyl sulfoxide and [EMIM][TF2N] as a function of tempera-
ture and concentration of IL component

Fig. 7  The percentage of relative deviation between the actual and estimated density using: a TLBO-ANN 
b PSO-ANN c GA- ANN and d ICA-ANN
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5  Conclusion

The present paper has applied an ANN model with four optimization algorithms (PSO, 
GA, TLBO, and ICA) for ST prediction in binary mixtures involving 31 different ILs 
according to the operational temperature, and ILs’ & non-ILs’ specifications. The proposed 
ANN model employed 748 data points collected from different literature resources as the 

Table 2  Evaluating the performance of proposed models using statistical analysis

Model Data Set R2 MRE (%) MSE RMSE STD

TLBO-ANN Train 0.998 0.520 0.0000002 0.0004 0.0004

Test 0.997 0.614 0.0000003 0.0005 0.0005

Total 0.998 0.543 0.0000002 0.0005 0.0004

PSO-ANN Train 0.996 0.674 0.0000004 0.0006 0.0006

Test 0.997 0.803 0.0000003 0.0006 0.0005

Total 0.996 0.706 0.0000004 0.0006 0.0005

GA-ANN Train 0.995 0.812 0.0000005 0.0007 0.0007

Test 0.993 0.971 0.0000007 0.0008 0.0008

Total 0.994 0.852 0.0000006 0.0008 0.0007

ICA-ANN Train 0.994 1.118 0.0000006 0.0008 0.0007

Test 0.992 1.245 0.0000009 0.0009 0.0008

Total 0.993 1.150 0.0000007 0.0009 0.0007

Fig. 8  William’s plots for the estimation of ST by a TLBO-ANN b PSO-ANN c GA- ANN and d ICA-
ANN
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training and testing sets. Statistical analyses indicated that the TLBO-ANN was the most 
accurate among the proposed models as confirmed by the leverage mathematical approach. 
Based on statistical analysis, this model has the ability to predict laboratory values with 
 R2 = 0.998, MSE = 0.0000002, and STD = 0.0004. Sensitivity analysis was then performed 
illustrating the IL’s mole fraction and non-IL’s molecular weight as the most effective and 
the least effective factor on ST, respectively. Furthermore, this easy-to-apply model would 
largely help chemical and petroleum engineers to estimate the ST of ILs and their relevant 
mixtures.
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