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Abstract 

 The surface termination of In4Se3(001) and the interface of this layered trichalcogenide, 

with Au, was examined using X-ray photoemission spectroscopy. Low energy electron 

diffraction indicates that the surface is highly crystalline, but suggests an absence of Cv2 mirror 

plane symmetry. The surface termination of the In4Se3(001) is found, by angle-resolved X-ray 

photoemission spectroscopy, to be In, which is consistent with the observed Schottky barrier 

formation found with this n-type semiconductor. Transistor measurements confirm earlier results 

from photoemission, suggesting that In4Se3(001) is n-type semiconductor, so that Schottky 

barrier formation with a large work function metal, such as Au, is expected. The measured low 

carrier mobilities could be the result of the contacts and would be consistent with Schottky 

barrier formation. 

Keywords: quasi-1D trichalcogenide, surface termination, surface-to-bulk core level shift, 
Schottky barrier, In4Se3 
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1. Introduction 

Over the past few years, the transition metal trichalcogenides have garnered more and 

more attention due to the fact that they possess atomically precise 1D chains as their smallest 

structural unit, which can exist without defects such as dangling bonds or stabilizing functional 

groups [1–3]. Thus, their edges lack the disorder, prevalent in other systems, such as transition 

metal dichalcogenides and graphene based materials, which causes unfavorable electronic 

properties as the channel width decreases [4–10]. As a result, transition metal trichalcogenides, 

such as In4Se3, have great potential for the miniaturization of electronic devices [1,11]. In4Se3 is a 

semiconductor that forms a layered structure characterized by strong covalent-ionic interactions 

within the layer but weaker interactions between layers. The (001) surface is not “smooth”, so 

the layers are not perfectly flat but corrugated [12–19], resulting in quasi-one-dimensional chain 

structures at the semiconducting In4Se3(001) surface. In4Se3 is, in fact, dominated by (In3)
5+ 

multivalent indium bonded with selenium through ionic and covalent bonds. In4Se3 has a highly 

anisotropic band structure [16–18], and a direct band gap variously measured to be between 1.1 

to 1.3 eV [16–18], making the band gap of In4Se3 comparable to that of silicon (1.1 eV). 

Transport measurements place the band gap at a smaller value of about 0.6 eV [19,20]. The 

placement of the valence band well below the Fermi level, seen in angle resolved valence band 

photoemission [16–18], suggests an n-type semiconductor, and is consistent with the transistor 

characteristics [21]. 

 Considerable interest in In4Se3 has been motivated by its thermoelectric properties 

[19,22–29]. One key issue with In4Se3 is that this material is much harder to cleave than 

materials such as TiS3, and the metal dichalcogenides, which can be mechanically exfoliated 

with ease, suggesting the adhesion is greater than for TiS3 [2]. The higher interlayer adhesion 

energies, for In4Se3, raise questions about the exact nature of the surface termination. Unlike 
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TiS3 and the transition metal dichalcogenides, it is less clear that In4X3 (X=S, Se, Te) terminates 

in the chalcogen. The surface termination matters because the interface and device characteristics 

depend on the metal to semiconductor interface. Yet little is actually known about the surface 

termination and the metal-semiconductor interface of semiconducting In4Se3(001) surface.  

In this study, we explored the surface chemistry of the In4Se3(001) surface through angle 

resolved X-ray photoemission spectroscopy, and compared experiment to density functional 

theory calculations.   

 

2. Experimental Methods 

The In4Se3 crystals were grown by the Czochralski method [17] and then cleaved. The 

powder diffraction, taken with Cu Kα1 radiation and Reitveld refinement analysis as seen in 

Figure 1, confirms that the In4Se3 samples are pure and single-phase, with the spatial group 

Pnnm and lattice constants a = 15.290 Å, b = 12.307 Å, c = 4.081 Å, while the volume of the 

elementary cell is seen to be 767.88(4) Å3, as expected [12]. The layered crystal structure of 

In4Se3 allows one to obtain cleaved (001) surfaces [16–18], as schematically indicated in Figure 

2. The resulting surface is highly ordered with the correct surface crystal structure, as is evident 

in low energy electron diffraction, as seen in Figure 3. The cleaved crystals were examined using 

X-ray photoemission spectroscopy (XPS). The physical evaporation of the Au adlayer onto 

In4Se3(001) resulted in Au thicknesses between 12 Å and 24 Å. The thickness of Au adlayers 

was monitored using a thickness monitor, with the increments in the adlayer thickness being 

about 4 Å. 
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The core level X-ray photoemission spectroscopy (XPS) was done using a SPECS X-ray 

Al anode (hv = 1486.6 eV) source and a Phi hemispherical electron analyzer (PHI Model 10-360) 

with an angular acceptance of ± 10º or more. The angle resolved XPS was performed with a 

VG100AX hemispherical analyzer also using a SPECS X-ray Al anode (hv = 1486.6 eV) source. 

All XPS measurements were undertaken at room temperature in an ultra-high vacuum (UHV) 

chamber with a base pressure better than 1 x 10-9 mbar. 

Electronic transport properties of In4Se3 were studied using 2- and 4-terminal field-effect 

transistors (FETs). For the device fabrication, a bulk crystal of In4Se3 was cleaved using a razor 

blade, and thin In4Se3 crystals were pressed onto a heavily p-doped Si substrate covered with a 

300-nm-thick layer of SiO2. The heavily p-doped Si substrate served as the bottom gate (G) 

electrode for the electric field-effect measurements. Large and thin In4Se3 flakes suitable for 

device fabrication were located using an optical microscope, and electrodes were patterned by 

standard electron beam lithography (EBL) technique using a Zeiss Supra 40 field-emission 

scanning electron microscope and a Raith pattern generator. An AJA electron beam evaporation 

system, at the base pressure of ~8×10-9 Torr, was used to complete the electrode fabrication by 

depositing 2 nm of Cr and 15 nm of Au immediately after the EBL patterning; the Cr sublayer 

was used to improve the adhesion of gold to the Si/SiO2 substrate and the In4Se3 channel 

material. In order to examine the morphology of In4Se3 crystals, in the fabricated devices, we 

employed atomic force microscopy (AFM), which was performed using a Digital Instruments 

Nanoscope IIIa Dimension 3100 system. The transport measurements were performed in a Lake 

Shore TTPX cryogenic probe station at a base pressure of about 2×10-6 Torr. The electrical 

characteristics of the devices were recorded using an Agilent 4155C semiconductor parameter 

analyzer. A 4μm long In4Se3 phototransistor was created by mechanically exfoliating In4Se3 
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flakes onto SiO2. Again, electrodes comprised of 5 nm Cr and 45 nm Au were fashioned at the 

Nebraska Center for Materials and Nanoscience using Heidelberg DWL 66FS laser lithography 

and AJA electron-beam evaporation systems. Phototransistor measurements were taken at 

Brookhaven National Lab in the Center for Functional Nanomaterials, with illumination from a 

488 nm solid state laser (Coherent Sapphire 100), focused onto the transistor channel using an 

Olympus IX 81 microscope equipped with a 40×, 0.6 numerical aperture lens.  

 

3. Theoretical Methods 

The calculations were performed in the framework of density functional theory (DFT) as 

implemented in the CASTEP code [30]. The plane wave basis set with energy cutoff around 310 

eV and ultra-soft pseudopotentials were employed together with the generalized gradient 

approximation (GGA) in the PerdewBurkeErnzerhof (PBE) [31] form for the exchange and 

correlation functional. Geometry optimizations were performed for the coordinates of the atoms 

until the maximum force on the atoms was less than 0.03 eV/Å. To understand the stability of the 

slab surface systems, we calculated the binding energies (Eb) of the slabs defined as: Eb[Slab] = 

E[Slab] – nE[In] – mE[Se], where E[Slab] represents the total energy of the slab, E[In] and E[Se] 

represent the total energy per atom of In and Se, n and m are the numbers of In and Se atoms in 

the slab. 

 

4. Surface Termination 

 For In4Se3(100) and In4Se3(010) only one surface termination was considered in the DFT 

calculations. For the more facile cleavage plane, In4Se3(001), surfaces capped with either In 
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atoms or with Se were considered possible, as indicated in Figure 2. The energies of these 

various surfaces have been calculated, as summarized in Table 1. The results revealed that, in 

principle, In4Se3(010) is the most stable in terms of binding energy per atom. For the 

In4Se3(001), the Se surface termination is predicted by DFT to be slightly more stable, in terms 

of binding energy per atom, than the In terminated surface (Table 1). If, however, the surface 

terminates in indium, this presents a problem from the point of view of making contacts with low 

or negligible contact potentials, as the resulting energy barrier would be largely Schottky type. In 

the case of the MX3 (M=Ti, Zr, Hf; X=S, Se, Te) class of metal trichalcogenides [32], 

specifically TiS3, the strong chemical interactions with the sulfur at the interface with Au and Pt 

are strong enough to suppress Schottky barrier formation. In the case of In4Se3(100) with an In 

surface termination, strong chemical interactions with the chalcogen (in this case selenium) are 

far less likely.  

 The XPS core level features for the In 3d5/2 core level contain two components at 

444.5+0.1 eV and 445.4+0.2 eV that may be attributed to a surface-to-bulk core level shift in 

binding energy [33–40] as seen in Figure 4 and Figure 5. As the emission angle increases with 

respect to the surface normal XPS becomes more sensitive to the surface region. Thus, if there is 

an increase in intensity, for one of the core level features, it is reasonable to assume that this 

feature has a stronger presence in the surface region. With increasing emission angle, with 

respect to the surface normal, the In 3d5/2 core level component, at 444.5+0.1 eV, decreases in 

intensity relative to the In 3d5/2 core level component at a binding energy of 445.4+0.1 eV, as 

seen in Figure 5. Thus, it is appropriate to assign the component at 445.4 eV as a surface feature 

and the component at 444.5 eV as a bulk feature. This surface-to-bulk core level shift at the In 

3d5/2 core level, for the In4Se3(001) surface, is nearly 1 eV, indicative of a very different 
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coordination of surface In compared to the bulk. This large surface-to-bulk core level shift 

suggests two distinct bonding environments for the In atom and the possibility of In surface 

termination. The bulk In 3d5/2 component of In4Se3(001), at 444.5+0.1 eV, is in the region of the 

444.7 eV binding energy of In2S3 [41] and the core level binding energy of 444.47 eV previously 

reported for In4Se3(001) [42]. Indeed, two In 3d5/2 core level components, similar to those 

reported here, were observed in prior X-ray photoemission measurements [42].  

 The ratio of the relative intensities of the X-ray photoemission spectra for In 3d and Se 3d 

core level features, with increasing take-off angle with respect to the surface normal, provides a 

good indication of the surface termination of the In4Se3(001) [33,43]. Figure 5 shows Se/In peak 

intensity ratios, for the Se 3d and In 3d core levels, with respect to the take-off angle. Here, the 

angle is measured (in degrees) from the normal with respect to the surface of the layered 

In4Se3(001) crystal. The Se/In core level peak intensity ratio drops as the photoelectron emission 

angle, with respect to the surface normal, increases. As previously mentioned, XPS becomes 

more surface sensitive as the emission angle with respect to the surface normal increases. As the 

presence of Se seems to be decreasing with increasing emission angle, it can be inferred that In is 

more present at the surface than Se. Thus, the variation in Se 3d to In 3d core level 

photoemission peak intensity ratios, extracted from the angle-resolved XPS (ARXPS) 

measurements, convincingly indicates that the layered In4Se3(001) system terminates in In (and 

not Se). 

 If the surface termination results in a polar surface, which cannot be excluded a priori, 

significant reconstructions are then likely, as the surface free energy would be high. Minor 

reconstructions of the surface are seen in theory, but we have, as yet, no evidence of major 

surface reconstructions in experiment, as is evident in low energy electron diffraction (LEED), as 
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seen in Figure 3. Although the crystal structure is nominally orthorhombic, LEED intensity 

versus voltage analysis of the diffraction beams (Figure 3) indicates that mirror plane symmetry 

is broken at the (001) surface, so spin-orbit coupling may play a role. The chemical formula is 

In4Se3, so an excess of In at the surface is possible without a net polarization through the crystal, 

just as a surface dipole occurs in many 2D layered materials (MoS2, WeS2, TiS3, etc.). 

   

5. Schottky Barrier Formation 

A potential barrier for flowing electrons forms at a metal-semiconductor interface, and 

the type of barrier can be somewhat predicted by the Schottky-Mott model [44,45], which 

suggests that for high work function metals, such as Au (with work functions of 5.1 eV [46] to 

5.4 eV [47]) a Schottky barrier will form when in contact with n-type semiconductors [48]. 

Although this rule is not always true in experiment, as the chemical reactions at the 

semiconductor surface tend to govern the resulting interface barrier rather than the work function 

difference. One example of an exception to the Schottky-Mott rule is another trichalcogenide 

TiS3 [32], where large work function metals such as Au and Pt form an Ohmic contact rather 

than a Schottky contact. Despite some exceptions, the Schottky barrier formation occurs as a 

result of upward band bending at the metal-semiconductor interface and has a signature in XPS 

measurements, as the Schottky barrier formation is accompanied by a shift in the 

semiconductor’s photoemission core level features toward lower binding energies. 

Ohmic metallization versus Schottky rectifying behavior of metal contacts at the surface 

of semiconductors is complicated and depends on many factors such as the type of contact 

material, the pre- and post-annealing procedures, the number of layers of the contacts (single, 

bilayer, multilayer), and even the thickness of the layer(s) [49–52]. Au is a widely used materials 
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for device contacts and Figure 4 shows the evolution of the In 3d5/2 core level components, for 

In4Se3, with increasing Au adlayer thickness. In the case of the In 3d5/2 surface core level 

component, there is a clear shift in the observed core level binding energy, with increasing Au 

coverage on In4Se3(001). The binding energy shift of the In 3d5/2 surface core level component is 

~0.58 eV (Figures 4 and 7). The bulk In4Se3 In 3d component may also shift to smaller binding 

energies but not well outside the margin of error. This shift to lower binding energies, in an n-

type semiconductor, is very typical of Schottky barrier formation, and indeed is expected [53-

58]. The Schottky barrier height, with gold, cannot be less than 0.58 eV, based on the observed 

In 3d core level shift. 

Figure 8a shows the AFM image of the fabricated 4-terminal FET, with an In4Se3 

channel. The parallel lines visible in the device channel are consistent with the quasi-1D chains 

in the crystal structure of In4Se3; similar observations were previously made in the AFM studies 

of other quasi-1D materials, such as TiS3 [2]. The V1 and V2 electrodes were used either as 

voltage probes in the 4-terminal measurements or as drain and source electrodes in the 2-terminal 

measurements.  According to the AFM image, the channel’s length between the V1 and V2 

electrodes was about 1.9 µm while its width was about 9.8 µm. The height of In4Se3 varied 

significantly from 5 nm at the thinner parts of the flake to up to 40 nm in the center.   

Figure 8b presents the results of electric field-effect measurements of the In4Se3 device in 

the 2- and 4-terminal configurations. The transistors, with In4Se3 as the semiconductor channel, 

show increasing currents with positive gate voltage and increasing resistance with negative gate 

voltage, as seen in Figure 8b. This is characteristic of an n-type semiconductor and consistent 

with the observation that the binding energy of the top of the valence band, as seen in 

photoemission [16–18,59], is very similar to the band gap. This places the conduction band 
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minimum close to the Fermi level [18,59]. The mobilities of the majority carriers in In4Se3 

transistors fabricated and tested in this study were very low. The mobility measured for the best 

device was about 1.5 cm2V-1s-1, suggesting phonon scattering, as has been seen for TiS3 [60], a 

large effective carrier mass, or contact issues such as Schottky barrier contacts. The electron 

effective mass cannot be excessively large, judging from the calculated band structure, as plotted 

in Figure 9 for both the In and Se surface termination. Furthermore, the measured effective 

electron carrier mass is 0.16+0.03 me, as determined from an experimental band mapping [59]. 

Such a small measured effective mass suggests this is not the origin of the low measured 

mobility. We note in passing that the band structure calculations indicate that the effective mass, 

at the conduction band minimum of the In4Se3(001) surface, is either 0.42 or 0.06 that of the free 

electron mass, with In and Se surface termination respectively. 

In the 4-terminal measurements, the channel resistance at VG = 0 was R4T = 33.4 MΩ, 

which translates into the sheet resistance of In4Se3 along the direction of the quasi-1D chains of 

172 MΩ/. The difference between the values of 2- and 4-terminal resistances allows an 

estimation of the contact resistance between In4Se3 and the Cr/Au contacts. The difference was 

found to be 6.7 MΩ at VG = 0. This value, multiplied by the channel’s width and divided by two 

(for each electrode), translates into a contact resistance of Rc = 32.8 MΩ·µm. The large contact 

resistance in this device also manifests in the nonlinear I-V curves measured for the central 

segment of the device in the 2-terminal configuration (Figure 8c and Figure 10). The nonlinear 

current versus voltage behavior was observed at all gate voltages, which ranged from -80 to 80 

V, and is consistent with Schottky barriers at the device contacts. Because of the Cr (in the 

Cr/Au) these contacts are not directly comparable to Au alone. As Cr has a work function far 
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lower than Au, as the work function of Cr = 4.5 eV [46], this means that Cr/Au contacts should 

be far more ohmic than Au alone.  

This nonlinear I(V) behavior, seen at the smaller biases in the two terminal devices, is 

also present under illumination at photon energies well above the band gap (2.5 eV versus 1.1 

eV), as seen in Figure 10, suggesting that hot electron transport does not completely overcome 

the Schottky barrier. The increased current versus voltage, under 2.5 eV photon energy 

illumination (Figure 10), suggests a significant on/off ratio for In4Se3 as a phototransistor. 

 

6. Conclusion 

In summary, experiment provides clear indications that In4Se3(001) is indium surface 

terminated, defying the expectations of some ground state density functional theory. Future 

density functional theory should perhaps include an investigation of the dependence of the band 

structure and the surface free energy versus thickness of slab, with and without spin-orbit 

coupling. The In4Se3(001) to Au interface appears to result in Schottky barrier formation, 

suggesting that for better device performance lower work function metals will need to be sought 

as metal contacts, with the challenge of ensuring that the metal contacts do not form delta doping 

layers within the In4Se3(001). The measured low carrier mobilities could be the result of the 

contacts, and the low mobilities observed are consistent with Schottky barrier formation, but a 

reduction of carrier mobility due to phonon scattering cannot be excluded from the data. We 

have good reason the believe that a phototransistor from In4Se3 is possible, so sensing and logic 

could potentially be integrated. This could be important for robotics applications, if the device 

physics issues are addressed. 
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Figure 1. The experimental powder X-ray diffraction (rings, red), theoretical fit (solid line, 
black) and difference (bottom, blue) for In4Se3. The Bragg angles (vertical bars) for In4Se3 of 
spatial group Pnnm a = 15.2902 (4), b = 12.3069 (3), c = 4.08065 (10) Å, are indicated by the 
vertical bars. 
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Figure 2. The optimized structures of In4Se3 surface slabs. (a) In4Se3(100), (b) In4Se3(010), (c) 
In4Se3(001) with an In surface termination, (d) In4Se3(001) with a Se surface termination. 
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Figure 3. The surface crystallography for cleaved In4Se3(001) surface, from low energy electron 
diffraction (LEED, at left). The electron beam energy for LEED is 60 eV. The intensity versus 
electron kinetic energy, I(V), have been plotted, for the 0,-2 (blue) and 0,2 (red) LEED 
diffraction beams at the right, as indexed in the LEED image (left).  
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Figure 4: The X-ray photoemission spectra of the In 3d5/2 core level feature of In4Se3 (001) 
crystal, with increasing Au coverage: a) 0 nm Au, b) 1.2 nm of Au, c) 1.6 nm of Au, d) 2.0 nm of 
Au and e) 2.4 nm of Au. The dashed lines denote binding energies of the surface (S) and bulk 
(B) In 3d5/2 core level components. 
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Figure 5: The angle-resolved X-ray photoemission spectroscopy (ARXPS) data for In 3d5/2 core 

levels with different take-off angles (0 and 40). Solid lines represent raw data, whereas solid 
markers represent In2 3d5/2 core level component with bulk (B) weight while hollow markers 
represent the In1 3d5/2 core level component with surface (S) weight. 
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Figure 6: The angle-resolved X-ray photoemission spectroscopy (ARXPS) data for 
photoemission Se/In peak intensity ratios, for core level Se 3d5/2 versus In 3d5/2 intensities (blue 
(diamonds)) and Se 3d3/2 and In 3d3/2 (red (circles)), as a function of the photoemission take-off 
angle, with respect to the surface normal. 
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Figure 7: The change in (a) In 3d5/2 and (b) In 3d3/2 core level binding energies, as measured in 
XPS, for In4Se3 (001) surface with increasing Au coverage. Circles depict surface In1 component 
(indium nearest to the interface), whereas triangles represent the bulk In2 component (indium 
away from the interface). 
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Figure 8: Transport properties of In4Se3 devices. (a) AFM image of a 4-terminal In4Se3 device 
with Cr/Au electrodes. The measurements in panels b and c were performed on the central 
segment of the device between the V1 and V2 voltage probes. (b) The dependencies of the 
resistance of the central device segment on the gate voltage (VG) measured in both 2-terminal 
(blue) and 4-terminal (red) configurations. (c) I-V curves obtained by 2-terminal measurements 
of the central device segment at VG ranging from -80 to 80 V. 
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Figure 9: The band structure of the In4Se3 (001) surface with (a) In and (b) Se surface 

termination. F represents (0.0, 0.5), B represents (0.5, 0.0), and  represents (0.0, 0.0) in the two-
dimensional Brillouin zone of the surface slabs. 
  

(a)                                (b) 
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Figure 10: Transport properties of a 2 terminal In4Se3 devices, 20 to 40 nm thick on SiO2, 
showing nonlinear behavior under no illumination, and retention of some non-linear behavior 
under 10 µW illumination at 488 nm (roughly 2.5 eV).  
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Table 1 

Calculated binding energies of the In4Se3 surface slabs. 

Slab n m 
Binding 

energy (eV) 

Binding energy per atom 

(eV) 

In4Se3(100) 88 66 -58.34 -0.379 

In4Se3(010) 30 24 -22.22 -0.412 

In4Se3(001) In 
capped 

28 20 -18.61 -0.388 

In4Se3(001) Se 
capped 

24 20 -17.32 -0.394 
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