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Surface terms as counterterms in the AdS-CFT correspondence
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We examine the recently proposed technique of adding boundary counterterms to the gravitational action for
spacetimes which are locally asymptotic to anti–de Sitter spacetimes. In particular, we explicitly identify
higher order counterterms, which allow us to consider spacetimes of dimensionsd<7. As the counterterms
eliminate the need of ‘‘background subtraction’’ in calculating the action, we apply this technique to study
examples where the appropriate background was ambiguous or unknown: topological black holes, Taub-NUT-
AdS and Taub-Bolt-AdS. We also identify certain cases where the covariant counterterms fail to render the
action finite, and we comment on the dual field theory interpretation of this result. In some examples, the case
of a vanishing cosmological constant may be recovered in a limit, which allows us to check results and resolve
ambiguities in certain asymptotically flat spacetime computations in the literature.@S0556-2821~99!07318-X#
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I. INTRODUCTION

The anti–de Sitter~AdS!–conformal field theory~CFT!
correspondence asserts that there is an equivalence betw
gravitational theory ind-dimensional anti–de Sitter spac
time and a conformal field theory residing in
(d21)-dimensional ‘‘boundary’’ spacetime@1#. This
equivalence or duality is best understood in the contex
string theory withd55, where the duality relates type IIB
superstring theory on AdS53S5, andN54 supersymmetric
Yang-Mills theory with gauge groupSU(N) in four dimen-
sions@2,3#. The precise formulation of the AdS-CFT corr
spondence is made by equating the partition functions of
two theories:

ZAdS~f0,i !5ZCFT~f0,i !. ~1!

Here the fieldsf0,i have two interpretations: On the gravi
side, these fields correspond to the boundary data or bo
ary values~up to a certain rescaling@1#! for the bulk fieldsf i
which propagate in the AdS space. On the field theory s
these fields correspond to external source currents couple
various CFT operators. Thus correlation functions of the
erators in the CFT can be determined through a calcula
using the dynamics of gravity in AdS spacetime@1,3#. In
certain instances, one can consider evaluating the AdS p
tion function in a saddle-point approximation:

e2I AdS(f i )5^e*f0,iO i
&CFT ~2!
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whereI AdS(f i) is the classical gravitational action as a fun
tional of the~super!gravity fields, andO i are the dual CFT
operators. Hence in this approximation, the AdS action
comes the generating function of the connected correla
functions in the CFT@1,3#. This framework is also naturally
extended to considering CFT states for which certain ope
tors acquire expectation values by considering solutions
the gravitational equations which are only asymptotica
AdS @4,5#.

One aspect of the duality which will be interesting for th
present investigation is the choice of the background me
g i j required to define the field theory. This metric is relat
by an infinite conformal transformation to the induced met
hi j on the boundary of the AdS spacetime@1#. Since the
boundary conformal transformation is divergent, one regu
izes the calculation by considering the induced metric fo
family of surfaces which approach the boundary in a lim
This regularization procedure then will depend on t
choices of coordinates in the asymptotic AdS region; i.e.
depends on the precise family of surfaces chosen. With
ferent choices, the background geometry inherited by
CFT takes a completely different form. For example, d
pending on the choice of radial slicing for AdSn11, the
boundary geometry can beS13Sn,Sn11,S13Rn. We will
discuss these and other possibilities in Sec. II. This pro
dure therefore allows one to study the CFT with differe
background geometries. From the point of view of the gra
ity theory, this procedure is interesting because naively
expressions on the left-hand side of Eqs.~1! and ~2! are
coordinate invariant. However, the asymptotic regularizat
explicitly breaks this covariance.

Returning to Eq.~2!, considering the gravitational pat
integral in the saddle-point approximation has a long hist
in the quantum gravity literature, in particular in context
©1999 The American Physical Society01-1
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EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D60 104001
black hole thermodynamics@6# — see Refs.@7# and @8# for
discussions relevant for AdS. There is a problem that m
be faced with this approach in that typically the gravity a
tion diverges. Ford5n11 spacetime dimensions, the fam
iar ~Euclidean! action has two contributions

I bulk1I surf52
1

16pGE
M

dn11xAgS R1
n~n21!

l 2 D
2

1

8pGE
]M

dnxAhK. ~3!

The first term is just the Einstein–Hilbert-anti–de Sitter a
tion with cosmological constantL52n(n21)/2l 2. The sec-
ond integral is the Gibbons-Hawking boundary term which
required so that upon variation with metric fixed at t
boundary, the action yields the Einstein equations@6#. Here,
K is the trace of the extrinsic curvature of the boundary]M
as embedded inM. In the AdS context, both of these ex
pressions are divergent because the volumes of bothM and
]M are infinite~and the integrands are nonzero!. The tradi-
tional approach to circumventing this problem is to perfo
a ‘‘background subtraction.’’ That is, one produces a fin
result by subtracting from Eq.~3! the contribution of a back-
ground reference spacetime, so that one can compare
properties of the solution of interest relative to those of
reference state. Note, however, that this subtraction requ
that the asymptotic boundary geometries of the two soluti
can be matched in order to render the surface contribu
finite.1 Aside from being a technical nuisance, there are c
tain cases where an appropriate reference solution is amb
ous or unknown, e.g., topological black holes@9–13# and
Taub-NUT ~-Newman-Unit-Tamburino-!-AdS and Taub-
bolt-AdS @14,15# — see discussion below.

In the context of the AdS-CFT correspondence, there d
not seem to be room for a background subtraction in,
example, Eq.~2!. Remarkably AdS spacetime offers an a
ternative approach. The divergences that arise in Eq.~3! are
all proportional to local integrals of the background CF
metric g i j @1,16#. Thus these divergences can be elimina
by extending the regularization procedure for the action w
a ‘‘counterterm subtraction.’’ That is Eq.~3! is modified to
include the subtraction of a finite set of boundary integr
~with divergent coefficients! involving curvature scalars con
structed from the background metricg i j @17#. Recently a
remarkable insight was provided by Ref.@18# ~see also Ref.
@19#!: If the counterterms are expressed in terms of the
duced metrichi j , rather thang i j , then they naturally appea
with the appropriate divergences, as the volume of the re
lator surface grows as it approaches the boundary of A
spacetime. Thus in the counterterm subtraction appro
one may produce a finite gravitational action by suppleme
ing the contributions in Eq.~3! with an extra surface integra

1Again, there is the implicit need for a regularization procedu
with regards to the asymptotic boundary.
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1

8pGE
]M

dnxAhF~ l ,R,¹R!, ~4!

where the counterterms depend only on the curvatureR ~and
its derivatives! of the induced boundary metrichi j — see
Sec. III for explicit expressions. That this construction
unique to asymptotically AdS spaces is apparent because
AdS curvature scale l is essential in defining the
counterterms.2 Note that these expressions are universal
pending only onl and the spacetime dimension. Once the
are fixed, one may use the same counterterms to regulat
action for any choice of coordinates on any asymptotica
AdS solution.3

Even outside of the AdS-CFT correspondence, coun
term subtraction provides a remarkable new theoretical
with which to investigate gravitational physics. Togeth
Eqs. ~3! and ~4! provide a finite covariant definition of the
gravitational action for asymptotically AdS spaces. As
simple example, one might consider the energy of a gravi
ing system in AdS space. Traditionally the definition of e
ergy in gravity required a background reference solution
asymptotically AdS spaces@8,21#, just as in asymptotically
flat spaces@22#. Combined with the quasilocal formulation o
Brown and York@23#, the AdS action with counterterms pro
vides a definition of energy that is independent of any ref
ence solution@18#. Using this technique, one discovers
finite energy for AdS5 with an R3S3 boundary. In the con-
text of the AdS-CFT correspondence, one can interpret
energy as the Casimir energy of the dual field theory in
latter background geometry@18#. A similar Casimir energy
arises in AdS3 @18#, where there is a well-known differenc
between the energyM521/(8G) of global AdS3 and that of
the M50 state~which is only locally AdS3).

Thus one might revisit Euclidean quantum gravity wi
this new theoretical tool in hand. In particular, one can a
dress the cases where the background subtraction techn
was not possible or~due to ambiguities! the results were
disputed. This is one of the primary objectives of the curr
investigation.

The issue of the correct reference state has been disp
for ‘‘topological black holes’’ @9–13#, in particular for the
‘‘hyperbolic AdS black holes.’’ The latter are black hol
solutions where the horizon is a hyperbolic spaceHn instead
of a sphere. As it happens, there is among these solutions
which is locally ~though not globally! equal to AdS. How-
ever, in order for it to be regular, the Euclidean time has
take a fixed finite value — in other words, it is a finite tem
perature solution. As such, it is not an adequate refere
state for matching calculations, which would require a so
tion that admits arbitrary Euclidean period. In Sec. IV, w
apply the counterterm subtraction prescription to comp

2We are excluding non-polynomial terms, which could be intr
duced in the absence of a cosmological constant@20#.

3Actually this is not quite the complete story — see below a
Sec. VI.
1-2
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SURFACE TERMS AS COUNTERTERMS IN THE . . . PHYSICAL REVIEW D60 104001
the action, and discover some intriguing results. We are
to speculate on a connection to the ‘‘precusor’’ states
cently discussed in Ref.@33#.

The Taub-NUT solution is known to admit an extensi
to include a cosmological constant@24#, and as such, the
Taub–NUT–anti-de Sitter~TN-AdS! solution has been stud
ied recently in Refs.@14,15#. The boundary geometry canno
be matched to that of AdS space, and so there is no kn
reference solution with which to make a background subtr
tion. Instead, in Refs.@14,15#, the analog of the self-dual TN
solution~i.e., the one with a ‘‘nut,’’ a zero-dimensional fixe
point set, at its origin! was used as the reference state in
background subtraction calculation of the action of t
Taub–bolt–anti-de Sitter~TB-AdS! solution. In Sec. V, we
use the counterterm subtraction for a backgroundless ca
lation of the action of TN-AdS. This allows us to study th
thermodynamics of this solution in and of itself. In partic
lar, we can study its local intrinsic stability, and find i
entropy, as a function of the nut charge. This leads to so
surprises.

As mentioned above, the counterterm subtraction
proach cannot be extended in a straightforward way to
ymptotically flat ~AF! spacetimes~and for that matter, to
spacetimes which do not asymptote to AdS! because the AdS
scale is an essential ingredient in the definition of the co
terterms~4!. However, one can apply this technique in
case-by-case manner to the computation of the action
those asymptotically flat solutions which can be obtained
limits of AdS solutions. A simple example is the comput
tion of the action of the Schwarzschild solution by first e
bedding it in AdS spacetime. There exists a Schwarzsch
AdS solution@7# — discussed extensively in the context
the AdS-CFT correspondence recently@1,4# — which for
black holes that are much smaller than the cosmolog
length scalel;uLu21/2 approximates the asymptotically fla
Schwarzschild solution. We can compute the action of t
Schwarzschild-AdS black hole by using the counterterm p
scription, and then take the limitl→`. In this way we al-
most recover the standard result that is obtained by matc
the AF solution to Minkowski spacetime.

The preceding is a satisfying, but somewhat trivial e
ample. However, there are other cases of AF spaces w
the computation of the action, using the more traditio
background subtraction technique, has been the subjec
some controversy. One such case is that of the Taub-N
solutions, which are only asymptotically locally flat~ALF!.
In Ref. @25# the action of generic Euclidean Taub-NUT s
lutions ~of which only the self-dual Taub-NUT and Taub
bolt instantons are regular! was computed by trying to matc
the solutions to Minkowski space, in order to perform a reg
larizing subtraction~a similar matching was also attempte
in Ref. @26#!. However, since the large radius slices of E
clidean Taub-NUT space are squashed three-spheres, in
trast to the Minkowskian slicesS13S2, the matching is not
really well defined. Therefore, it was proposed in Ref.@27#
that the proper background to be subtracted is instead
self-dual Taub-NUT instanton, which has the lowest poss
energy among the regular Euclidean Taub-NUT solution
10400
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the only other regular solution is the Taub–bolt instanton.4 It
was noticed in Ref.@14# that there existed a branch of solu
tions which tends to the ALF Taub-NUT solution asl→`.
~These are the analogue of the ‘‘small’’ Schwarzschild bla
hole branch of solutions on Ref.@7#.! Therefore, after apply-
ing the counterterm subtraction procedure to compute
action of the asymptotically TN-AdS solution, we take th
limit l→`. This limit provides then a ‘‘background indepen
dent’’ result for the action of the ALF Taub-NUT solutions
Remarkably, we find that the result agrees precisely with
‘‘imperfect matching’’ one given in Ref.@25#. Furthermore,
we show that the counterterm prescription results are re
duced by performing an ‘‘imperfect matching’’ to AdS sim
lar to the one in the ALF case.

A simple application of the counterterm subtraction is
calculate the action of~Euclidean! AdSn11 for different
choices of coordinates, i.e., with different boundary geo
etries. In Sec. VI, we present an analysis of the multi-slic
phenomenon for~Euclidean! AdSn11 with n<4, showing
the results for the action in several different cases. It is
teresting to note the appearance of different Casimir ener
in the various cases. A more dramatic result is that for cer
boundary geometries, such asSn andHn, one finds that the
counterterm subtraction is insufficient. That is, a divergen
that is logarithmic in the asymptotic radius appears, and c
not be eliminated by the addition of a local counterterm as
Eq. ~4!. These divergences which can arise for evenn have
been noted previously in the context of the AdS-CFT cor
spondence@1,17#. There they may be related to a conform
anomaly for the dual CFT in certain background geometr
which is well known to be connected to the appearance
logarithmic divergences in the effective field theory acti
@28#. Of course, this presents a limitation on counterte
subtraction as a general tool to investigate asymptotic
AdS spaces in odd spacetime dimensions.

Certainly our results have many interesting implicatio
for the dual field theory via the AdS-CFT corresponden
We will only make limited comments on this aspect of t
work here, leaving a more general study of the field theore
interpretation for a future paper.

While this work was being completed, we were inform
that Mann @29# had also considered the application of t
AdS action with counterterms to the solutions considered
Sec. IV and V.

II. MANY FACES OF AdS SPACETIME

As described in the previous section, counterterm subt
tion works by subtracting the integral of various bounda
curvature invariants~4! from the standard action~3!. This
leaves unspecified the way in which the boundary of A
spacetime is approached, i.e., the choice of ‘‘radial’’ coor
nate defining the family of surfaces which approach

4Some care should be exercised, since often in the literature
name ‘‘Taub-NUT solution’’ is used to refer specifically to th
self-dual Taub-NUT instanton, instead of the full, two-parame
Taub-NUT solution.
1-3
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EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D60 104001
boundary as a limit. Depending on this choice, the slices
constant radius can have different geometry or even diffe
topology. Even if the spaces are locally equivalent to o
another, the computation of the action will in general lead
different results, since the boundary terms in the action w
take different values. In the end, since all different forms
a spacetime will be related by diffeomorphisms, with po
sible addition or subtraction of points, and possibly as w
identifications under discrete subgroups, the different res
for the action will bear a relation to one another, too. He
we will describe some of the many possible ‘‘faces’’ of th
boundary of AdS spacetime. In subsequent sections, we
consider these metrics as examples for the application of
counterterm subtraction technique, and compare the res
Clearly, such a comparison would have been impossible
we required a background for the calculation.

Let us first present Euclidean AdSn11 in the following
three familiar metrics,

ds25S k1
r 2

l 2 Ddt21
dr2

~k1r 2/ l 2!
1

r 2

l 2 dSk,n21
2 , ~5!

where the (n21)-dimensional metricdSk,n21
2 is

dSk,n21
2 55

l 2dVn21
2 for k511,

(
i 51

n21

dxi
2 for k50,

l 2dJn21
2 for k521,

~6!

wheredVn21
2 is the unit metric onSn21. By Hn21 we mean

the (n21)-dimensional hyperbolic space, whose ‘‘unit me
ric’’ dJn21

2 can be obtained by analytic continuation of th
on Sn21. It is straightforward to see that all of the abov
solutions are locally equivalent to each other. In the ab
we are assuming thatn.2 for k521, since forn52 one
does not have a hyperbolic metricH1.

For later use in the paper, we will write the volume of t
spacedSk,n

2 as l nsk,n . In this way,sk511,n will be equal to
the volumevn of the unitn-sphere.

Next we consider Euclidean AdSn11 with metric

ds25
dr2

~k1r 2/ l 2!
1

r 2

l 2 dSk,n
2 , ~7!

where then-dimensional metricdSk,n
2 is defined precisely in

the same way as above in Eq.~6!. For k50, this simply
reproduces thek50 metric in Eq.~5!. One might note that a
transformation of the radial coordinate brings these met
into the form

ds25 l 2dr21 f k
2~r!dSk,n

2 , ~8!

where

f k~r!5H sinhr for k511,

er for k50,

coshr for k521.

~9!
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One final AdS metric which we will consider is

ds25
dr2

~k1r 2/ l 2!
1S k1

r 2

l 2 DdŜ
2k,m̂
2

1
r 2

l 2dS̃k,m̃
2 , ~10!

where again the metricsdŜ
2k,m̂
2 and dS̃k,m̃

2 are defined in
Eq. ~6!. For k50 we once again reproduce thek50 metric
in Eq. ~5!. For k561, we assume that bothm̂,m̃>2. For
k511, the boundary geometry isHm̂3Sm̃, while for k
521, we simply interchange the hyperbolic space and
sphere. However, in the latter case, the coordinate trans
mation r̃ 25r 22 l 2 puts the metric back in thek511 form
with m̂↔m̃.

Thus with the metrics in Eqs.~5!, ~7! and ~10!, we have
displayed AdSn11 with a wide variety of boundary geom
etries:

Rn, S13Sn21, S13Rn21, S13Hn21,

Sn, Hn, Sm3Hn2m. ~11!

All of these AdS metrics are maximally symmetric, i.e.,

Ri jkl 52
1

l 2 ~gik gjl 2gil gjk!, ~12!

which ensures that the geometry is conformally flat. T
condition also ensures the geometries are all locally AdS

It is interesting to notice the form of some of the boun
ary geometries we get here upon analytic continuation
Minkowski signature, since they are rather common:

Sn:Euclidean de Sitter space

Hn:~global! anti–de Sitter space ~13!

Rn:Minkowski space.

Furthermore, if we assume a specific analytic continuation
Lorentzian spacetime, e.g.,S13Sn→R(time)3Sn, then

R3Sn21:the Einstein static universe ~14!

R3Hn21:the static open universe.

The AdS-CFT correspondence implies then an equivale
between, on the one hand, quantum gravity in AdS and,
the other hand, a CFT on any of the above backgrounds.
find it particularly amusing that, when the boundary is tak
to beHn, quantum gravity in AdSn11 can be dual to a CFT
on an AdSn background. It should be kept in mind that th
geometry on the boundary is not dynamical, since there
no gravitational degrees of freedom in the dual CFT.

There is an important feature that distinguishes the so
tions withk521 from those withk50,11: there is a finite
minimum radiusr 5 l at which grr diverges. In Eq.~5!, the
Killing vector ]t also has fixed point set~a ‘‘bolt’’ ! at this
radius. In this case, the Euclidean solution will be regu
only if the coordinatet is identified with periodb52p l . In
1-4
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SURFACE TERMS AS COUNTERTERMS IN THE . . . PHYSICAL REVIEW D60 104001
the metric~7! with k521, the minimum radiusr 5r 1 sim-
ply denotes the boundary of a coordinate patch as is evi
from the form of the metric in Eq.~8! with the new radial
coordinater. In the case of Eq.~10! with k521, r 5r 1 is
the location of a ‘‘conical’’ singularity. Fork511, the
minimum radius isr 5r 150 and the geometry is smooth
this point in metrics~5! and ~7!, but it corresponds to a
‘‘conical singularity’’ in Eq. ~10!. For k50, the minimum
radius is againr 5r 150 which in this case is an infinite
proper distance away and so there is no problem with
curvature here. Note that the geometries with conical sin
larities or a bolt are only locally AdS; that is, they descri
AdS spacetime with additional discrete identifications
points.

Equation~12! is an extremely restrictive condition. If on
is simply interested in solving Einstein’s equations with
negative cosmological constant

Ri j 52
n22

l 2 gi j , ~15!

then the above metrics remain solutions when the bound
geometries are replaced by arbitrary Einstein spaces. In a
the metrics~5!, ~7!, ~10!, one may replace any of theSp

factors ~with p.1) by a space satisfyingR̃ab5(p

21)/l 2g̃ab . Similarly anyHp factors can be replaced by
space satisfyingR̂ab52(p21)/l 2ĝab , and Rp factors can
be replaced by any Ricci flat solution, i.e.,Rab50. For ex-
ample, thenSp can be replaced by a product of spheresSp1

3•••3Spq where( i 51
q pi5p with pi.2 and the radii of the

individual spheres is scaled sor i
25(p21)/(pi21)l 2. These

generalized solutions will no longer be conformally flat
locally AdS. Furthermore, generically a true curvature sin
larity is introduced at the minimum radius, e.g.,Ri jkl R

i jkl

grows without bound asr approachesr 1 .

III. COUNTERTERM ACTION

The detailed form of the boundary counterterms w
originally explored in Ref.@17#, where they were derived in
terms of the background~field theory! metric g i j . The in-
sight provided by Ref.@18# was that the counterterms shou
be written in terms of the induced metric on the bound
hi j . In this way, they naturally appear with the appropria
~infinite volume! divergences to cancel those arising fro
the classical gravitational action. The focus of Ref.@18# was
to construct a finite boundary stress tensor without usin
reference background. However, the proposed prescrip
naturally provides the construction of a finite action whi
can then be employed, for example, to calculate the actio
Euclidean gravitational instantons. This will be the prima
application which we consider in the following.

Hence the full~Euclidean! gravitational action ind5n
11 spacetime dimensions has three contributions

I AdS5I bulk~gi j !1I surf~gi j !1I ct~hi j !. ~16!

The first two terms, comprising the familiar classical actio
were given in Eq.~3!. Here,hi j is the induced metric on the
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boundary ]M which may be defined ashi j 5gi j 2ninj
wheren is an outward pointing unit normal vector to]M. In
the Gibbons-Hawking boundary termI surf, the trace of the
extrinsic curvature is defined byK5hi j ¹ inj .5

The counterterm actionI ct(hi j ) may be arranged as a
expansion in powers of the boundary curvature~and its de-
rivatives!. The number of terms that appears grows with t
dimension of the spacetime. The first few terms are explic

I ct5
1

8pGE
]M

dnxAhFn21

l
1

l

2~n22!
R

1
l 3

2~n24!~n22!2 S RabR ab2
n

4~n21!
R 2D1•••G ,

~17!

whereR and Rab are the Ricci scalar and Ricci tensor fo
the boundary metric, respectively. Combined these th
counterterms are sufficient6 to cancel divergences forn<6.
In this covariant form, the first term originally appeared
Ref. @19#,7 while the second term first appeared in Ref.@18#.
We derived the third term by demanding that the infin
volume divergences were cancelled when using the me
~10!. Any of these terms may be derived with the constru
tion provided by Ref.@17# for the appropriate curvature in
tegral in terms of the CFT metricg i j . One then simply sub-
stitutes the induced boundary metrichi j to produce the
covariant counterterms appearing inI ct . To go to higher di-
mensions, resorting to this construction seems inescapab
the ‘‘simple’’ asymptotically AdS metrics presented in Se
II cannot be used to distinguish all of the curvature invaria
that can appear in the higher order counterterms. It is imp
tant to note that the fact that we have counterterms for
mensions up tod57 means that we can now study a
~known! AdS applications which arise in string theory and
theory.

Other matter field actions, for example an action for Ma
well fields, can be added to Eq.~16!. Although, at least for
black hole solutions, the addition of gauge fields does
seem to require new counterterms@32#, we must remain alert
to the possibility that extra matter fields may require t
addition of new, non-geometric surface counterterms to
action. This issue will not be considered further here.

As a simple example, we will consider calculating th
action ~16! with the metric ~5! for AdS spacetime with
boundaryS13Mk . Let us present the contributions of th
individual terms in the action:

5Our conventions differ by signs from Refs.@18,23#, but are cho-
sen to conform with standard practice in general relativity, as
e.g., Ref.@30#.

6Or almost, see Sec. IV.
7This term had also been considered to provide a~partial! regu-

larization of the action of AdS5 in Ref. @31#.
1-5
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I bulk5
bsk,n21

8pGl2
@2r 1

n 1r n#,

I surf5
bsk,n21

8pGl2
F r nS 2n2k~n21!

l 2

r 2D G ,
I ct

1 5
bsk,n21

8pGl2
F r n~n21!S 11k

l 2

r 2D 1/2G
5

bsk,n21

8pGl2
F r n~n21!S 11

k

2

l 2

r 2 2
k2

8

l 4

r 4

1
k3

16

l 6

r 6 1••• D G ,
I ct

2 5
b sk,n21

8pGl2
F r n~n21!

k

2

l 2

r 2 S 11k
l 2

r 2D 1/2G
5

b sk,n21

8pGl2
F r n~n21!S k

2

l 2

r 2 1
k2

4

l 4

r 4

2
k3

16

l 6

r 6 1••• D G ,
I ct

3 5
b sk,n21

8pGl2
F r n~n21!S 2

k2

8

l 4

r 4D S 11k
l 2

r 2D 1/2G
5

b sk,n21

8pGl2
F r n~n21!S 2

k2

8

l 4

r 42
k3

16

l 6

r 6 1••• D G ,
~18!

where sk,n21 is the ~dimensionless! volume of the space
with metric dSk,n21

2 / l 2, andb is the period oft. We have
also separated the contributions of the individual coun
terms in Eq.~17!, so I ct

i is the integral of thei th term in the
action. Now, for a particular boundary dimension only so
of the counterterms are included to cancel the divergen
So for n52i 21,2i , one keeps only up toI ct

i . For any odd
value ofn, one has then

I k,n1152
b sk,n21

8pGl2
@r 1

n 1O~ l n11/r !#. ~19!

For the even values ofn, an extra constant term makes a
appearance so that

I k,n115
b sk,n21

8pGl2
S 2r 1

n 2
k

2
l 2dn,21

3k2

8
l 4dn,42

5k

16
l 6dn,6

1•••1O~ l n11/r ! D . ~20!

As we have explained above, fork511,0, we haveb arbi-
trary andr 150, whereas fork521, r 15 l andb52p l .
10400
r-

e
s.

Note that for evenn, the coefficients of the higher coun
terterms are actually divergent, even though they forma
evaluate to a finite result. Further in either of these resu
Eqs.~19! and~20!, there are extra terms of order 1/r , which
vanish when the limitr→` is taken in order to approach th
AdS boundary. However, consider the case ofn odd, where
we have in fact the option of keeping all of the higher ord
counterterms in Eq.~17!, i.e., including the terms which ac
tually vanish in the boundary limit. This would give a resu
where in fact all of the inverse powersr 2p would be can-
celled so that not only would the action be finite, but it wou
be independent of the regulator radius.

Given the explicit counterterms in Eq.~17!, we can only
really evaluate the action forn<6. However, keeping in
mind that the higher order counterterms ensure the canc
tion of divergences order by order, it is clear that the form
las~19! and~20! will be unchanged forn.6. Further we can
show that the coefficient of the extra contributions forn even
will be

~2k!n/2
~n21!!! 2

n!
l n. ~21!

To derive this result, note that the bulk and surface contri
tions can be written as

I bulk1I surf5
b sk,n21

8pGl2
@2r 1

n 2~n21!r n~11x!#, ~22!

wherex5kl2/r 2, while the counterterms yield

I ct
p5

b sk,n21

8pGl2
~n21!r ncpxp21~11x!1/2 ~23!

wherecp are constants independent ofn. The key point is to
realize that the counterterm contributions will cancel thex
dependence in Eq.~22! to an arbitrarily large order, and
hence these coefficients are just the coefficients in the Ta
series

~11x!1/25 (
p51

`

cpxp21. ~24!

Now as stated above for a givenn52i , the action only in-
cludes the finite sum:I bulk1I surf1(p51

i I ct
p . Thus with some

elementary manipulations, one finds the residual finite te
in Eq. ~20! appears with the coefficient~21! above.

IV. AdS BLACK HOLES

In this section we turn to the study of black hole solution
using the counterterm subtraction scheme. In the presenc
a negative cosmological constant, the horizon of a black h
admits a much larger variety of geometries and topolog
than in asymptotically flat situations. This is consistent w
the variety of boundary topologies that we can obtain
AdS itself, depending upon how we choose to radially folia
it, as discussed in Sec. II. The case (k51, below! of spheri-
cal black holes has already been studied using this coun
1-6
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term subtraction scheme in Ref.@18#, but we compute and
list those results in what follows for completeness and
comparison with the flat and hyperbolic cases.

In Ref. @13#, it was shown that the Einstein–anti–de Sitt
system inn11 dimensions admits the following solutions

ds252Vk~r !dt21
dr2

Vk~r !
1

r 2

l 2 dSk,n21
2 , ~25!

with

Vk~r !5k2
m

r n22
1

r 2

l 2 , ~26!

where the (n21) dimensional metricdSk,n21
2 is defined as

in Eq. ~6!. Thus it representsSn21,Rn21 and Hn21 for k
511,0 and21, respectively. A spacetime that is locally th
same as anti–de Sitter is recovered whenm50 for which the
metric reduces to that in Eq.~5!.

By going to the Euclidean section one finds that the E
clidean time period~the inverse temperature! has to be

b5
4p l 2r 1

nr1
2 1k~n22!l 2 . ~27!

Here,r 1 is the largest positive root ofVk(r ), typically asso-
ciated with the outer horizon of a black hole. Fork51 and
m50 ~global AdS spacetime!, there is no such root, but th
correct results are obtained by settingr 150. Now, it is im-
portant to notice that, whereas fork5$1,0% the locally AdS
solution corresponds tor 150, this is not true fork521.
AdS spacetime with hyperbolic slicing has a bifurcate K
ing horizon atr 5 l and a fixed temperatureb52p l . By
contrast, there exists an extremalk521 solution, with a
degenerate horizon atr 5r e and parameterm5me , satisfy-
ing

r e5An22

n
l , me52

2

n22 S n22

n D n/2

l n22. ~28!

In particular,

me52
2l

3A3
, r e5

l

A3
, for n53, ~29!

me52
l 2

4
, r e5

l

A2
, for n54, ~30!

me52
4l 4

27
, r e5A2

3
l , for n56. ~31!

Therefore, in a calculation fork521 of the action, with
background matching, the question arises concerning w
is the correct background to subtract: On the one hand,
locally AdS solution—which has the higher symmetry
might be physically appealing. However, since its periodb is
fixed, matching it to a solution with a different value ofb
would introduce a conical singularity at the horizon@11#. On
10400
r

r

-

ch
he

the other hand, the extremal solution, with a lower value
m ~and as we will see, of the energy!, has arbitraryb and
therefore can be matched to any other solution. Hence,
extremal solution was the preferred background for
matching calculations in Refs.@11–13#.

It is clear from this discussion that the method of cou
terterm subtraction can be of help here. For the soluti
described above we obtain

I k,n115
bsk,n21

8pGl2
S 2r 1

n 1
m l 2

2
2

k

2
l 2dn,2

1
3k2

8
l 4dn,42

5k

16
l 6dn,61••• D

5
bsk,n21

16pGl2
S kr1

n22l 22r 1
n 2kl2dn,21

3k2

4
l 4dn,4

2
5k

8
l 6dn,61••• D , ~32!

where againsk,n21 is the~dimensionless! volume associated
with the unit metricdSk,n21

2 / l 2. Using Eq.~32! we can com-
pute the energy and entropy of the solutions by applicat
of standard thermodynamical formulas. One finds

E5
~n21!sk,n21

16pG
m1Ek

0 , ~33!

where we denote by

Ek
05

sk,n21

16pG S 2kdn,21
3k2

4
l 2dn,42

5k

8
l 4dn,61••• D

~34!

the terms that are independent of the black hole parame
~e.g., of the temperature!. Their contribution to the action is
therefore of the formbEk

0 . Note that one can extrapolate th
Casimir energy to

Ek
05

sk,n21

8pG
~2k!n/2

~n21!!! 2

n!
l n22, ~35!

for arbitrary evenn using Eq.~21!.
The entropy

S5
sk,n21r 1

n21

4G
~36!

satisfies the area law, and is independent of the extra te
bEk

0 . Not surprisingly, the result is therefore the same as
a background calculation.

Curiously, the results forn53 andn54 show different
qualitative features. Forn53 the result that we obtain is th
same as one would obtain by performing a background s
traction from the locally AdS4 solutionneglecting the coni-
cal singularity that would appear for k521. This is rather
similar to what we will find for TN-AdS in the next section
the method of counterterm subtraction appears to reprod
the results of an ‘‘imperfect matching’’ calculation. As
1-7
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EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D60 104001
result, the extremal solution~29! has negative energy
whereas the locally AdS solution, withm50, has vanishing
action and energy.

By contrast, the result for the hyperbolicn54 black holes
supports the opposite scenario. The action~32! in this case
reproduces precisely that obtained by taking the extre
state~30! as the reference state, and not the locally AdS s
@notice thatI 50 for the values in Eq.~30!#. For n54 and
k521, the energy~33! of the extremal state vanishes,
confirmation that this is to be taken as the ground state of
theory. The termEk

0 is independent of the black hole param
eters~e.g. the temperature!, and its contribution to the action
is therefore simply of the formbEk

0 .
For k51 this term has been identified in Ref.@18# as

precisely the Casimir energy associated toN54 super-
Yang-Mills theory on the static Einstein spacetimeR3S3,
which is the spacetime obtained as the boundary of A
spacetime in this case. This agreement is a striking outc
of the counterterm subtraction method. Notice that the in
pretation as a Casimir energy is the only possible one, gi
that the AdS solution is the one with the lowest action a
energy among that family— i.e., it is the ground state.

We would like to see whether a similar corresponden
holds fork521. In this case it is crucial to notice that th
ground state isnot the locally AdS solution. The latter shoul
be regarded as an excited state of the system. The gro
state is the extremal solution, which has zero energy.
translating this into the AdS-CFT correspondence we wo
not expect to find a Casimir energy for the field theory c
culations on the open static universeR3H3. Indeed, the ef-
fective action and renormalized stress-energy tensor for c
formal fields vanish on that space~see, e.g., Ref.@28#!. This
is in perfect agreement with the zero energy results that
find for the ground state~30! of the theory.

There are, however, some aspects that are in need of
ther exploration. In particular, from the entropy formula w
see that fork521, not only does the locally AdS solutio
have non-zero entropy, but so does the extremal gro
state. In particular, forn54,

Sext5
sk521,3l

3

27/2G
. ~37!

In this respect, this ground state bears resemblance to
extremal black hole ground state discussed in@32#, which
had non-vanishing entropy as well. It is of great interest
understand this result~37! from a field-theoretical point of
view. The ‘‘precursor’’ states of Ref.@33#—constructed in
standard field theory—might be extremely relevant to suc
discussion. As proposed in Ref.@33#, these are degrees o
freedom that do not contribute to the energy density,
though they store information. This looks precisely like wh
is needed to account for an entropy like we have found in
~37!. Perhaps the entropy of this ground state and the
presented in Ref.@32# represents the count of the number
precursor degrees of freedom in the field theory.

For black holes in AdS6 ~i.e., n55, and in fact, all odd
values ofn) the conclusions are essentially the same as
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AdS4. However, the situation for AdS7 is somewhat enig-
matic. In this case, the action does not vanish either for
extremal black hole or for the locally AdS solution. Also, th
energy is non-zero for both. Perhaps this is consistent w
yet to be understood properties of the (2,0) superconfor
field theory that resides on the world volume of the M
brane@37#.

Finally, it is of interest to note that because the ‘‘smal
Schwarzschild black holes~in the sense of Ref.@7#! survive
the l→` limit, ~i.e., the cosmological constant goes to zer!,
the surface counterterm subtraction method supplies res
for the action, energy and entropy for ordinary Schwar
child black holes. For oddn, these results coincide precise
with those obtained by the background subtraction meth
using Minkowski spacetime as a reference. For evenn, the
results would again coincide with the standard results in
ymptotically flat space, except for the constant contribut
of the Casimir energy~35! ~and the analogous term in th
action!. In this case because forn>4 this energy is propor-
tional to l n22, it becomes an infinite constant in the limitl
→`. We will see that this ability to take the flat spacetim
limit occurs for other interesting solutions in the next se
tion, and allows us to address and resolve certain situat
which were fraught with uncertainties and/or ambiguities
the literature.

V. ANTI –de SITTER NUTCRACKER

As we mentioned in the Introduction, the issue of choo
ing a correct reference state for background subtraction
been a matter of some controversy for Taub-NUT and Ta
bolt solutions, in the asymptotically locally flat situatio
@25,27# as well as in the asymptotically locally AdS cas
@14,15#.

Note that in this sectionn will be used to denote the ‘‘nu
charge,’’ not the number of dimensions—we will only de
with four-dimensional solutions.

A. Spherical nuts and bolts

The Taub–NUT–anti-de Sitter~TN-AdS! solution is

ds25V~r !~dt12ncosudw!21
dr2

V~r !

1~r 22n2!~du21sin2udw2!, ~38!

where

V5
~r 21n2!22mr1 l 22~r 426n2r 223n4!

r 22n2
. ~39!

Here we will simply sketch some of the features of the s
lution. For a detailed analysis we refer the reader to R
@14#. If n50, we recover the Schwarzschild-AdS solutio
with m as a mass parameter. The analytically continued ti
t, parametrizes a circle,S1, which is fibered over the two
sphereS2, with coordinatesu and w. The non-trivial fibra-
tion is a result of a non-vanishing ‘‘nut charge’’n. As a
1-8



’’

o

th

’
o
-

-

ed

u
re

ru
a

s
ion

i
to
is
b

co
ld
o

w
r

nds

first
tain

.
-
eral.
totic
nce

nd-
the

-
ct

ect-
k-

the
er
nd-

SURFACE TERMS AS COUNTERTERMS IN THE . . . PHYSICAL REVIEW D60 104001
result, the boundary asr→` is described as a ‘‘squashed
three-sphere, where 4n2/ l 2 parametrizes the squashing.

Euclidean regularity of the solution restricts the period
t to be

b58pn. ~40!

In addition, the mass parameter has to be restricted so
the fixed point set of the Killing vector]t at radial position
r 5r 1 is a regular one. Hence one finds ‘‘nut’’ or ‘‘bolt’
solutions, depending on whether the fixed point set is zer
two dimensional, respectively. In particular, for ‘‘nut’’ solu
tions

r 15n, mn5n2
4n3

l 2 . ~41!

In what follows, by TN-AdS we will mean the Taub-NUT
AdS solutions with this particular value ofm. Notice thatmn
vanishes for the valuen5 l /2. It was shown in Ref.@14# that
for this particular value the solution is precisely AdS4, with
the slicing in which the sections at constantr are round
three-spheres. In contrast, the solution withn5m50 corre-
sponds to AdS4 with slices of geometryS13S2. For Taub-
bolt-AdS ~TB–AdS! the expressions are more complicat
@14#:

mb5
r b

21n2

2r b
1

1

2l 2 S r b
326n2r b23

n4

r b
D , ~42!

r 15r b65
l 2

12n S 16A1248
n2

l 2 1144
n4

l 4 D . ~43!

For r b to be real the discriminant must be non-negative. F
thermore, we must take the part of the solution which cor
sponds tor b.n. This gives

n<S 1

6
2A 3

12D
1/2

l . ~44!

It is only for this range of parameters that one can const
real Euclidean TB-AdS solutions. Notice, in particular, th
the AdS valuel 52n lies outside this range.

In Refs.@14,15#, the action of the TB-AdS solutions wa
computed by matching the solutions to a TN-AdS solut
with the same value of the nut charge. The thermodynam
of TB-AdS solutions were then found to be rather similar
that of Schwarzschild-AdS black holes. However, th
method precluded an analysis of the TN-AdS solutions
themselves, since they acted as reference states. A
pletely rigorous calculation of the action of TN-AdS cou
not be performed using the reference background meth
simply because it is not possible to match pure AdS~the
intuitively obvious candidate background! to TN-AdS, as
they have incompatible slices for alln except n5 l /2.
Equipped with the counterterm subtraction procedure,
can now compute the action for TN-AdS, without any refe
ence to a background.

With
10400
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Ah5AV~r !~r 22n2!sinu, R5
2

r 22n22
2n2

~r 22n2!2 V~r !,

~45!

we find, for a solution with generic values ofm andn,

I 5
4pn

Gl2
~ l 2m13n2r 12r 1

3 !, ~46!

where, as we said above,r 1 is the minimum possible value
of r, where there is a fixed point of the Killing vector]t . Of
course, as explained above, Euclidean regularity dema
eitherm5mn or m5mb .

There are several things to note about this result. The
is a consistency check: if we subtract the values we ob
for the TB-AdS and TN-AdS solutions,I bolt2I nut, we re-
cover ~after some algebra! the result obtained in Refs
@14,15# for the action of TB-AdS with TN-AdS as a refer
ence. Of course this consistency is to be expected in gen
The standard background subtraction requires the asymp
geometry of the solution and its reference state match. He
the counterterms which depend only on the intrinsic bou
ary geometry must be equal, and will cancel if one takes
difference of the counterterm subtracted actions.

Next, in the flat space limitl→` we obtain

I→ 4pnm

G
. ~47!

In particular, in this limit we find

I nut→
4pn2

G
, I bolt→

5pn2

G
. ~48!

These are precisely the results that were obtained in Ref.@25#
by an ‘‘imperfect match’’ of the Taub-NUT solution to Eu
clidean Minkowski space. Indeed, the same ‘‘imperfe
match’’ to AdS can be seen to reproduce the result~46!
above. Even if it is not possible to match the squashedS3 at
the boundary to the boundary of AdS4 with the slicingS1

3S2, a finite result can nevertheless be obtained by negl
ing the non-trivial fibering and performing a standard bac
ground subtraction. Proceeding this way the bulk~volume!
term yields, at larger,

I bulk5
4pn

Gl2
~ l 2m13n2r 12r 1

3 !1
pn3r

Gl2
1O~1/r !. ~49!

In contrast to other action calculations in AdS spacetime,
bulk term, even after subtraction, is not finite by itself; rath
one needs to take into account the Gibbons-Hawking bou
ary term:

I surf52
1

8pGE
]M

d3xAh~K2K0!52
pn3r

Gl2
1O~1/r !.

~50!
1-9
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By adding Eq.~49! and ~50! and takingr→` we therefore
recover Eq.~46!.

We therefore conclude that the fact that the match to
background is an imperfect one does not appear to be as
as it looks at first sight.Certainly, the result~47! of Ref. @25#
in the ALF limit is on a better standing after having reco
ered it from a counterterm calculation.

Now we return to the result~46!, and specialize to nu
solutions using Eq.~41!:

I TN-AdS5
4pn2

G S 12
2n2

l 2 D . ~51!

For n5 l /2 we recover the value for AdS4 with boundaryS3,
which will be obtained and discussed in Sec. VI, whereas
n50 we recover the value~zero! for AdS4 with boundary
S13S2. Again, these special cases may be regarded as
sistency checks on the internal consistency of our implem
tation of the procedure.

Notice that the action becomes negative forn.n0

5 l /A2. More interestingly, being able to vary the value
the Euclidean periodb58pn we can compute the energy o
the solutions,

E5]bI 5
mn

G
, ~52!

which confirms the interpretation ofm as a mass paramete
We may go further and compute the entropy and spec
heat:

S5]bI 2I 5
4pn2

G S 12
6n2

l 2 D , ~53!

C52b]bS5
8pn2

G S 21112
n2

l 2 D . ~54!

As had been already noticed in Ref.@14#, the mass~energy!
becomes negative forn. l /2. More strikingly, the entropy
becomes negative forn. l /A6. In particular, the entropy o
AdS4 (n5 l /2) is negative~equal to minus its action, since
hasE50). Whereas a negative mass may not be too trou
some~one may shift the energy scale!, a negative entropy
certainly would appear to be a sign of pathological behav
One should keep in mind, however, that this negative
tropy appears because of a particular choice of~Euclidean!
time coordinate. Even if it may seem surprising at first sig
that AdS4 suffers from this pathology, we stress that this is
consequence of the particular choice of time slicing that
have made here, rather than an instrinsic property of
AdS4 solution itself.

In Ref. @34# it was pointed out that in spaces where E
clidean time is non-trivially fibered there appeared a con
bution to the entropy other than the usual one coming fr
the bolts~the latter yields the black hole area law!. This extra
entropy can be associated to ‘‘Misner strings’’@35# ~a geo-
metric analogue of Dirac strings!, and we would expect it to
contribute to the entropy of TN-AdS asSMS5AMS/(4G)
2bHMS, @36# whereAMS is the area of the string andHMS is
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the Hamiltonian on it. Indeed, in the absence of a bolt t
appears to be the only possible source of gravitational
tropy for the TN-AdS solution. A brief calculation confirm
thatSMS corresponds precisely to the expression we obtai
in Eq. ~53!.

The fact that the specific heat becomes negative fon
, l /A12 is an indication that the solutions become therma
unstable, making them unusable for equilibriu
thermodynamics8 ~in the canonical ensemble!. So if we de-
clare that the physically relevant solutions are those w
both positive entropy and positive specific heat, then
valid range for the nut charge is

l

A12
<n<

l

A6
. ~55!

Solutions in this range have positive action and positive
ergy.

Finally, we note that the results for the energy, entro
and specific heat of TB-AdS can be recovered by combin
those for TN-AdS above, and those for TB-AdS with th
TN-AdS subtraction in Ref.@14#.

B. Remarks upon field theory on squashed three-spheres

As discussed in Ref.@14,15#, the study of solutions with
nut charge which are locally asymptotically AdS is releva
to the 211 dimensional ‘‘exotic’’@38# conformal field theo-
ries which reside on the world volume of M2-branes~and
closely related theories9!, after placing them on squashe
three-spheres. Following that work, in Ref.@39# the effective
actions of various fields on squashed three-spheres have
computed.

We do not expect to see in those particular field the
results any signal of the apparently pathological behav
~e.g., negative entropy! which we have found, and indeed w
do not. The difficulty essentially lies in the fact that the fie
theory results can only be used at weak coupling, wher
supergravity is describing a strongly coupled regime of
field theory. The unusual behavior belongs only to the l
temperature phase of the field theory, and strong coup
effects change the picture drastically. Recall the phase st
ture described in Ref.@14#:

~i! At high T ~small n) we have both TN-AdS and TB
AdS as possible solutions, but the latter has the lower f
energy, and is therefore preferred. It was shown in Ref.@14#
that at highT, TB-AdS gives the expected behaviorF;T3

which, not surprisingly, is the result found in Ref.@39#. This
is a deconfined phase.

8Nevertheless, a negative specific heat is not so bad as a neg
entropy; as a matter of fact, as is well known, the Schwarzsc
black hole in asymptotically flat spacetime has negative spec
heat—and so does the ALF Taub-NUT solution.

9Recall there is a problem with the spin structure of TB-AdS, a
so the M-theory interpretation is unclear@14#, although there is
almost certainly a dual CFT nonetheless.
1-10
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~ii ! At low T ~largen), however, the only existing phas
is TN-AdS. There is a phase transition separating this reg
from the deconfined phase mentioned above. This ph
transition prevents us from obtaining information from t
results in Ref.@39#, since at weak coupling, where thos
results were obtained, one does not get the confined ph

It is in this largen region that the entropy becomes neg
tive. In fact, all of the negative entropy regime is within th
region where the only regular solution is TN-AdS: TB-Ad
is absent there. One might speculate whether the Lorent
version of the field theory~in this confined phase! contains
ghosts that do not decouple. Such ghosts would yield a n
tive contribution to the entropy.

So we discover that the supergravity studies give us n
information on the strongly coupled phases of the theory
the world volume of the M2-brane and related theories a
compactification on squashed three-spheres.

C. Flat and hyperbolic Taub-NUT-AdS

A solution where the nuts and bolts are flat planes inst
of spheres can be found as well, and was analyzed in
@14#,

ds25V~r !S dt1
n

l 2 ~xdy2ydx! D 2

1
dr2

V~r !
1

r 22n2

l 2

3~dx21dy2!, ~56!

where, now,

V5
22mr1 l 22~r 426n2r 223n4!

r 22n2
. ~57!

The fibration is in this case a trivial one, and as a result
Euclidean periodb is independent ofn. Zero dimensional
fixed point sets of]t ~‘‘nuts’’ ! exist for mn524n3/ l 2. So-
lutions with bolts have a higher value ofm. The result for the
counterterm calculation of the action for a solution with g
neric m andn is

I 5
bL2

8pGl2
~ml22r 1

3 13n2r 1!, ~58!

where, as usual,r 1 is the radial position of the fixed point se
(r 15n for a nut!, andL2 accounts for the area of the (x,y)
plane,2L/2<$x,y%<L/2. It can be easily checked that th
action of Ref.@14#, where the nut solution was taken as
reference background, can be recovered from Eq.~58! as
I (bolt)2I (nut). Moreover, Eq.~58! is the same result we
would obtain had we performed a background subtrac
calculation with ‘‘imperfect matching’’ to AdS4 @the latter in
its flat incarnation asn5m50 in Eq.~56!#. We note that for
the nut values the action is negative, which reflects the
that its energy is negative—its entropy vanishes, as co
have been expected in the absence of bolts or Misner stri
so in fact we findI nut5bEnut.

The last possibility is that of having hyperbolic fixe
point sets of]t . The explicit solution is
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ds25V~r !@dt12n~coshu21!dw#21
dr2

V~r !
1~r 22n2!

3~du21sinh2udw2!, ~59!

with

V5
2~r 21n2!22mr1 l 22~r 426n2r 223n4!

r 22n2
. ~60!

The fibration is trivial, and again, there are no Misner strin
However, it was found in Ref.@14# that there are no hyper
bolic nuts: i.e., it is not possible to maker 5n into a regular
fixed point of ]t . Nevertheless, bolt solutions can be co
structed. This is rather analogous to the situation we enco
ter for hyperbolic black holes in Sec. IV. The result for th
action is again formally very similar to Eqs.~46! and ~58!,

I 5
bs

8pGl2
~ l 2m13n2r 12r 1

3 !, ~61!

wheres is the area of the hyperbolic space@if quotients of
H2 are taken to yield surfaces of genusg.1 ~this is not
essential! thens54p(g21)#.

VI. AdS REVISITED

Many of the quantities we have been computing can
translated into field theory results by using the dictiona
provided by the AdS-CFT correspondence@2,40#, namely,

c5
3l

2G
for AdS3 , N3/2'

l 2

G
for AdS4 ,

N25
p l 3

2G
for AdS5 , N3'

l 5

G
for AdS7 ,

~62!

wherec is the central charge of the dual CFT in two dime
sions. The powers ofN displayed above are measures of t
number of ‘‘unconfined’’ degrees of freedom: for AdS5 , N is
the rank of the gauge group of the dualN54 supersymmet-
ric four dimensionalSU(N) Yang-Mills theory. Meanwhile,
for AdS4 and AdS7, the dual field theories are the one
@37,38# that describe the world-volume dynamics ofN par-
allel M2-branes, and M5-branes, respectively. The details
these latter two theories are still rather indirectly and poo
understood, and the precise numerical relationship betw
factors @missing in Eq. ~62! for these cases# will not be
needed here, as we will make no precise numerical comp
son. While there is almost certainly a dual conformal fie
theory for the case of AdS6, we will not comment upon it
further. Note again that AdS for all of the dimensions list
are cases that can be handled with the counterterms tha
now have.

In Sec. III, we considered the counterterm action for A
with the boundary geometriesS13Mk

n21 . In those cases, the
action is finite and interestingly for evenn, an extra contri-
bution appears of the formbEk

0 whereEk
0 is a constant en-

ergy — see Eq.~35! in Sec. IV. This constant energy i
1-11
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readily interpreted in the dual field theory as a Casimir
ergy of the conformal field theory onS13Mk

n21 — see Ref.
@42# for another discussion of Casimir energies in the Ad
CFT correspondence. We can consider these results fn
52,4 in more detail: the well known Casimir energy of (
11) dimensional CFT when going from the infinite plane
the cylinderR3S1 is reproduced by the termn52 in Eq.
~35!. Similarly, the Casimir energy of four dimension
Yang-Mills theory onR3S3 is precisely the value ofEk511

0

for n54 @18#.
We found there as well that for the theory onR3H3, even

if Ek521
0 Þ0, the result is consistent with the absence o

Casimir energy after identifying correctly the ground state
the theory. We remarked as well upon the striking appe
ance of a non-zero entropy for this ground state, wh
strongly suggests the presence of degrees of freedom w
can contribute to the entropy but not to the energy dens
just like the ‘‘precursor’’ states identified in Ref.@33#. ~This
also reminds us of the non-zero entropy extremal gro
state studied in Ref.@32#.!

We can translate some of our results for the cases of A4
and AdS7 as well, finding that the Casimir energies deriv
by using Eq.~62! are correctly proportional to the number
degrees of freedom in the theory, as can be deduced from
power ofN which appears in each case: The scaling withN is
precisely the same as had been obtained from computa
of black brane entropies@41#.

Let us now consider AdSn11 with boundary geometries
Sn andHn as described by the metrics in Eq.~7!. In order to
notationally distinguish them from the familyS13Mk , we
will denote them with ak

d . The results for the action ar
somewhat more complicated to express for genericn in an
explicit form. For the three contributions~the bulk term, the
Gibbons-Hawking surface term, and the counterterm act!
we find

I bulk
d 5

nsk,n

8pGl
E

r 1

r

dr̄
r̄ n

Ar̄ 21kl2
, ~63!

which can be expressed in terms of hypergeometric fu
tions, but we will only need its expansion for larger. The
lower integration limit isr 150 for k511,0, andr 15 l for
k521:

I surf
d 52

nsk,n

8pGl
r nA11k

l 2

r 2, ~64!

I ct
d15

~n21!sk,n

8pGl
r n,

I ct
d25

~n21!sk,n

8pGl
r nS n

2~n22!

kl2

r 2 D ,

I ct
d35

~n21!sk,n

8pGl
r nS 2

n

8~n24!

k2l 4

r 4 D , ~65!
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where we have separated the contributions of the individ
terms in the counterterm action~17!, as was done in Eq.~18!.
Again the limit r→` remains to be taken. Our counterterm
allow us to deal withn52, . . . ,6. Wetherefore find for
I k,n11

d

I k,3
d 52k

lsk,2

16pG S 112log
2r

l D ,

I k,5
d 5k2

3l 3sk,4

64pG S 2114log
2r

l D ,

I k,7
d 5k

5l 5sk,6

64pG S 5

4
23log

2r

l D , ~66!

I k,4
d 5

l 2sk,3

4pG
dk,11 , I k,6

d 50, ~67!

where we have omitted contributions which vanish in t
limit r→`. Here the most striking result is that for evenn,
Eqs. ~66!, there remain logarithmically divergent contribu
tions from the bulk terms that are not cancelled by t
boundary counterterms. Furthermore, given their logarithm
nature, there is no way that they can be cancelled by a co
terterm which is a local integral over the boundary of
~polynomial! curvature invariant. The appearance of the
divergences then presents a limitation for the utility of t
counterterm subtraction technique for investigations of
ymptotically AdS solutions in odd dimensions.10

However, these divergences do not signal a problem
the AdS-CFT correspondence, but rather provide a rem
able consistency check. The possible existence of loga
mic divergences for odd spacetime dimensions was note
Refs. @4,17#, where the coefficients of the divergent term
were related to the conformal anomaly in the dual fie
theory. It is a standard result of field theory in curved spa
time @28,43# that the appearance of a conformal anomaly i
classically conformally invariant theory is due to logarithm
UV divergences~at least at the one-loop level! appearing in
the quantum field theory. Thus we have the UV-IR relati
@45# of the AdS-CFT correspondence at work here: the
pearance of an infinite volume singularity in the AdS calc
lation is a reflection of the existence of a UV divergence
the CFT.

Further, if we make the association of the AdS radius w
an energy scale, we see that the divergence is logarithm
required by the field theory. Forn54, it is straightforward to
verify that in fact theN54 Super-Yang-Mills~SYM! theory
has a conformal anomaly onS4 or H4, and further a pertur-
bative weak coupling calculation reveals a logarithmic s

10One could consider the addition of nonpolynomial counterter
to resolve this problem. A suitable counterterm would have
form an/2(R)logf(R) wherean/2(R) is the conformal anomaly term
~see below! and f (R) is an arbitrary curvature scalar. While such
counterterm would render the action finite, it may produce proble
atic results in calculating the boundary stress energy@18,23#. We
would like to thank Sergey Solodukhin for this suggestion.
1-12
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gularity in the effective action for the background metric
oneloop @43,44#. That is, despite the remarkable finitene
properties ofN54 SYM theory to higher loops in flat spac
@46#, in curved spacetimes theN54 supersymmetry is only
enough to protect against potential quadratic and linear
vergences. In general though, there is the possibility of o
loop logarithmic divergences. One can show though that
the N54 SYM theory, the coefficient of these diverge
terms will always vanish on product space geometries@44#.
This is consistent with the fact that no logarithmic singula
ties were found in the actions~20! for the boundary geom
etriesS13Mk .

Let us make this connection somewhat more precise
the presence of a trace anomaly termTc

c the action picks a
divergent contribution of the form

I log5S log
r

l D E dnxAhTc
c ~68!

@see, e.g.,@17#. The cutoffe in that paper is related to ours a
e5( l /r )2#. Therefore we would expect, and we will actual
verify it below, that the logarithmic terms we have foun
follow directly from the value of the anomaly.

Let us now write some of the results~66! in terms of field
theory parameters, in order to make a comparison with
field-theoretical expression~68!. The result forn54 should
be related toN54 supersymmetric four-dimensional Yan
Mills theory on de Sitter (S4) or anti–de Sitter spacetim
(H4). We find a pleasingly simple result,

I k,5
d 52k2

N2

4 S 124log
2r

l D . ~69!

Note the fact that the action does not change sign when
ing from S4 to H4 ~i.e.,k511→k521) has its counterpar
in the field theory in the fact that the divergent term in t
effective action is given by curvature squared terms. In fa
this result generalizes to no sign change forn54p, where
the conformal anomaly is proportional to the 2p power of
curvatures, and a change of sign forn54p12, where the
relevant power is 2p11 @43#.

Explicitly, for N54 SYM theory onS4 the trace anomaly
is @28#

Tc
c5

(
s

q~s!

240p2l 4 5
3N2

8p2l 4 ~70!

where q(s) measures the contribution of spins fields: for
N54 SYM theory the result, for largeN, is (sq(s)590N2.
. B
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Plugging this expression in Eq.~68! we recover the exac
logarithmic term in Eq.~69!.

The finite part of the action would be expected to follo
from field-theoretical calculations as well. The scalingN2 is
just expected from the number of degrees of freedom of
theory, and the absence of any other factors follows fr
dimensional arguments. Related to this is the fact that
trace anomalŷTc

c& can be computed exactly within the AdS
CFT correspondence@17#. Having that, the full stress tenso
follows in this case since the symmetry of the geometry w
dictate that̂ Tab&5hab^Tc

c&/n. Therefore, it is not surprising
that a calculation of the stress tensor in the manner descr
in Ref. @18# reproduces this result.

For AdS3 we can write the result as

I k,3
d 52k

c

6
ug21uS 112log

2r

l D , ~71!

whereg is the genus of the two-dimensional boundary s
face; i.e., for the hyperbolic case we have taken quotients
discrete groups in order to find genusg surfaces~this is not
essential!. Again, the logarithmic term is precisely the resu
for a (111) dimensional conformal field theory on a surfa
of genus g, area 4p l 2ug21u, as follows from the trace
anomaly on such a surface,Tb

b52kc/(12p l 2).
In the same vein, we would expect that the presence

logarithmically divergent factor for AdS7 can be interpreted
in terms of the effective field theory for the M5-brane wh
defined on six dimensional de Sitter space. The anomaly
this theory has not been computed by independent fi
theory methods; rather it has been deduced in Ref.@17# using
the AdS-CFT correspondence. Using that result, the logar
mic term comes out precisely as expected.

It is clear that in the present paper we have only scratc
the surface of the full subject, and more detailed and ext
sive comparisons between the results of Euclidean quan
gravity and the dual field theories are possible. We hope
report progress on this in the future.
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