

Surface to Surface IntersectionsSurface to Surface IntersectionsSurface to Surface IntersectionsSurface to Surface Intersections

N. M. Patrikalakis1, T. Maekawa2, K. H. Ko3 and H. Mukundan4

1Massachusetts Institute of Technology, nmp@mit.edu
2Yokohama National University, maekawa@ynu.ac.jp
3Massachusetts Institute of Technology, khko@mit.edu

4Massachusetts Institute of Technology, harishm@mit.edu

ABSTRACTABSTRACTABSTRACTABSTRACT

This paper presents an overview of surface intersection problems and focuses on the rational
polynomial parametric/rational polynomial parametric surface intersection case including
transversal and tangential intersections. Emphasis is placed on marching methods with a discussion
of the problems with conventional tracing algorithms. An approach using a validated interval
ordinary differential equation system solver is outlined and illustrated with examples, which offers
significant advantages in robustness over conventional marching schemes.

Keywords:Keywords:Keywords:Keywords: rounded interval arithmetic, boundary representation, parametric surfaces, singularity,
tangency.

1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION

Intersections are fundamental in CAD, CAM,
computational geometry, geometric modeling and
design, analysis and manufacturing applications [11,29].
Examples of intersection problems include: (1)
Contouring of surfaces through intersection with a series
of parallel planes or coaxial cylinders for visualization.
(2) Numerical control machining (milling) involving
intersection of generalized offset surfaces with a series of
parallel planes, to create machining paths. (3)
Representation of complex geometries in the Boundary
Representation (B-rep) scheme using a process called
boundary evaluation, in which the Boundary
Representation is created by evaluating a Constructive
Solid Geometry (CSG) model of the object. In this
process, intersections of the surfaces of primitives must
be found during Boolean operations (union, intersection,
difference) between primitives.
When studying intersection problems, the type of curves
and surfaces that we consider can be classified primarily
into two types: (1) Rational polynomial parametric (RPP)
and (2) Implicit algebraic (IA). Non-Uniform Rational B-
Spline (NURBS) curves and surfaces can be subdivided
into RPP curves and surfaces, and analyzed in a similar
manner. A detailed treatment of intersection problems
including general procedural curves and surfaces can be
found in [31,30].
Among all types of intersections, the surface to surface
(S/S) intersection is the most complicated problem. It can

have various intersection components such as curve
segments, points, loops and singular points. Therefore,
any surface intersection algorithm should satisfy the
robustness requirements imposed by solid and geometric
modeling in (a) finding all the components of the
intersection and (b) computing each component with
high accuracy.
In this paper we only deal with S/S intersection problems
of RPP/RPP type with emphasis on tracing the
intersection curve robustly. General intersection
problems are analyzed in [31,30].
This paper is structured as follows: Section 2 presents a
classification of surface to surface intersection problems.
In Section 3, a marching solution method is explained
with formulation of transversal and tangential surface
intersections. In Section 4, a robust marching method
based on a validated ODE solver is introduced with
examples illustrating the method. Section 5 concludes
the paper.

2. CLASSIFICATION OF SURFACE TO SURFACE 2. CLASSIFICATION OF SURFACE TO SURFACE 2. CLASSIFICATION OF SURFACE TO SURFACE 2. CLASSIFICATION OF SURFACE TO SURFACE
INTERSECTION PROBLEMSINTERSECTION PROBLEMSINTERSECTION PROBLEMSINTERSECTION PROBLEMS

An implicit algebraic surface is represented by a
polynomial function defined as () 0f =r , where r is the

position vector of a point on the surface. The rational
polynomial parametric type includes Bézier, rational
Bézier, B-spline and NURBS surface patches, which are
represented with two parameters u and v as ()u v= ,r r ,

0 1u v≤ , ≤ . These surfaces are popular in CAD/CAM

and geometric design, and NURBS surfaces are chosen
as the standard format in industry. Depending on the
surfaces involved in intersection, we have three distinct
classes: IA/IA, RPP/IA and RPP/RPP. They are the most
frequent surface to surface intersection problems.

2.1. IA/IA Surface Intersection2.1. IA/IA Surface Intersection2.1. IA/IA Surface Intersection2.1. IA/IA Surface Intersection

Implicit algebraic surface to implicit algebraic surface
intersection is defined as follows:

() 0 () 0f g= ∩ = ,r r (1)

where f g, are polynomial functions. Here we have two

equations in three unknowns r .
A method for low order f g, is to eliminate one variable

(e.g. z) to find projection of intersection curves on the
plane of other two variables (e.g. x , y), then trace the

algebraic curve and use the inversion algorithm to find
z . Intersections of low degree implicit algebraic surfaces
are of special interest in the boundary evaluation of the
Constructive Solid Geometry models. A more complete
analysis of the special intersections of two quadric
surfaces can be found in [25,37,42].

2.2. RPP/IA Surface Intersection2.2. RPP/IA Surface Intersection2.2. RPP/IA Surface Intersection2.2. RPP/IA Surface Intersection

Rational polynomial parametric surface to implicit
algebraic surface intersection is defined as follows:

() () 0 0 1u v f u v, ∩ = , ≤ , ≤ ,r r (2)

where ()() () ()
() () ()()

TX u v Y u v Z u v
W u v W u v W u vu v , , ,

, , ,, = , ,r . This leads

to four algebraic equations in five unknowns
()x y z u v= , , , ,r . For the usual low degree surfaces

()f r and low degree patches ()u v,r , we can
substitute ()u v,r into () 0f =r to obtain an
implicit algebraic curve in u v, , see [16,17,32,33] for
detailed treatment.

2.3. RPP/RPP Surface Intersection2.3. RPP/RPP Surface Intersection2.3. RPP/RPP Surface Intersection2.3. RPP/RPP Surface Intersection

Rational polynomial parametric surface to rational
polynomial parametric surface intersection is defined as
follows:

1 2() ()
(0 1 0 1)

t u v
t u v

σ
σ
, ∩ , ,

≤ , ≤ , ≤ , ≤
r r (3)

where ()1 1 1

1 1 1

() () ()
1 () () ()()

TX t Y t Z t
W t W t W tt σ σ σ

σ σ σσ , , ,
, , ,, = , ,r and

()2 2 2

2 2 2

() () ()
2 () () ()()

TX u v Y u v Z u v
W u v W u v W u vu v , , ,

, , ,, = , ,r . Formulation

involves setting 1 2() ()t u vσ , = ,r r which leads to three

nonlinear polynomial equations in four unknowns

t u vσ , , , . This is an underconstrained system. This

system can in principle be solved by the Interval
Projected Polyhedron (IPP) algorithm [38]. However, as
the solutions are typically not isolated points but curves,
such approach is inefficient when small tolerances are
used. Another method involves implicitization of 1()tσ,r

to the form () 0f =r and substitution of 2 ()u v= ,r r

into f to reduce the problem to RPP/IA case for a low

degree surface [17]. Heo et al. [10] developed an
intersection algorithm for two ruled surfaces which
performs more efficiently than those for general
parametric surfaces.
There are three major techniques for solving RPP/RPP
surface intersections: lattice methods, subdivision
methods and marching methods. Detailed reviews can
be found in [29,31,30]. In this paper, we focus on
marching methods which are efficient in most cases and
hence attractive if combined with other methods such as
adaptive subdivision methods to locate starting points.

3. MARCHING METHODS3. MARCHING METHODS3. MARCHING METHODS3. MARCHING METHODS

Marching methods involve generation of sequences of
points of an intersection curve branch by stepping from a
given point on the required curve in a direction
prescribed by the local differential geometry [1,2,15,43].
Marching method formulates the surface intersection as
an initial value problem (IVP) in the domain
0 1t u vσ≤ , , , ≤ . However, such methods are by

themselves incomplete in that they require starting points
(initial conditions) for every branch of the solution.

3.1. Computation of Starting Points3.1. Computation of Starting Points3.1. Computation of Starting Points3.1. Computation of Starting Points

In order to identify all connected components of an
intersection curve, a set of characteristic points on the
intersection curve can be defined. Such a set may
include border, turning and singular points of the
intersection and provides at least one point on any
connected intersection segment and identifies all
singularities. For RPP/RPP surface intersections a more
convenient set of such points sufficient to discover all
connected components of the intersection, includes
border and collinear normal points between the two
surfaces. Collinear normal points provide points inside all
intersection loops and all singular points [12]. Border
points are points of the intersection at which at least one
of the parametric variables t u vσ , , , takes a value

equal to the border of the σ - t or u - v parametric
domain. To compute border points, a piecewise rational
polynomial curve to piecewise rational polynomial
surface intersection capability is required, e.g.,

1 2(0) ()t u v, = ,r r , which can be robustly solved by

the IPP algorithm [31,38].
Sederberg et al. [35] first recognized the importance of
collinear normal points in detecting the existence of
closed intersection loops in intersection problems of two
distinct parametric surface patches. These are points on
the two parametric surfaces at which the normal vectors
are collinear. Collinear normal points are a subset of
parallel normal points first used by Sinha et al. [39] in
surface intersection loop detection methods.

To simplify the notation, we replace 1()tσ ,r by

()tσ ,p and 2 ()u v,r by ()u v,q . Then the collinear

normal points satisfy the following equations [12]:
() 0 () 0

() 0 () 0
t u t v

t

σ σ

σ

× ⋅ = , × ⋅ = ,
− ⋅ = , − ⋅ = .

p p q p p q
p q p p q p

 (4)

Equations (4) form a system of four nonlinear
polynomial equations that can be solved using the IPP
algorithm (also refer to [12] for more details on interval
methods coupled with subdivision to solve the system
(4)). Now we split the patches in (at least) one
parametric direction at these collinear normal points.
Consequently, starting points are only border points on
the boundaries of all subdomains created. Grandine and
Klein [8] follow a systematic approach for topology
resolution of B-spline surface intersections. In this
process, they determine the structure of the intersection
curves including closed loops prior to numerical tracing
(followed by a marching method based on numerical
integration of a differential algebraic system of
equations). Topology resolution in this context relies on
an extension of the Projected Polyhedron (PP) algorithm
[38] to the B-spline case. An alternate way to detect
closed intersection loops is to use topological methods
[15,3,19,22,23,24,41,40]. Also bounding pyramids
[14,36] can be used effectively to assure the
nonexistence of closed surface to surface intersection
loops. These earlier methods need to be implemented in
exact or rounded interval arithmetic (RIA) for robustness
[31].

3.2. Formulation of the ODE System3.2. Formulation of the ODE System3.2. Formulation of the ODE System3.2. Formulation of the ODE System

The intersection curve can also be viewed as a curve on
the two intersecting surfaces. A curve ()sσ σ= , ()t t s=

in the tσ -plane defines a curve
() (() ())s s t sσ= = ,r c p on a parametric surface

()tσ ,p , as well as a curve ()u u s= , ()v v s= in

the uv -plane defines a curve () (() ())s u s v s= = ,r c q

on a parametric surface ()u v,q . We can derive the first

derivative of the intersection curve, ()s′c , from a curve

on the parametric surface using the chain rule:
() ()t u vs t s u vσσ′ ′ ′ ′ ′ ′= + , = + .c p p c q q (5)

After we find the unit tangent vector of the intersection
curve, we can find σ ′ , t′ , u′ and v′ by taking the
inner product on both sides of the first equation of (5)

with σp and tp and the second equation with uq and

vq , which leads to two linear systems [12]. The

solutions are obtained as
(()) (())
() () () ()
(()) (())
() () () ()

t

v u

det t det tt
t t t t

det u v det u vu v
u v u v u v u v

σσ σσ
σ σ σ σ

′ ′, , , , , ,′ ′= , = ,
, ⋅ , , ⋅ ,

′ ′, , , , , ,′ ′= , = ,
, ⋅ , , ⋅ ,

c p P p c P
P P P P
c q Q q c Q

Q Q Q Q

 (6)

where det denotes the determinant (see also [8]) and

() ()t u vt u vσσ , = × , , = × ,P p p Q q q (7)

are the normal vectors of p and q , respectively.

3.2.1. Transversal Intersection
When two surfaces intersect transversally, the tangential
direction ()s′c of the intersection curve ()sc is

perpendicular to the normal vectors of both surfaces. So,
the marching direction can be obtained as follows:

() ()()
() ()

t u vs
t u v

σ
σ

, × ,′ = ,
| , × , |
P Qc
P Q

 (8)

where the normalization forces ()sc to be arc length

parametrized.

3.2.2. Tangential Intersection
When the two surfaces intersect tangentially, we cannot
use Equation (8) since the denominator vanishes. In
such cases we must find the marching direction in an
alternate way [44].
The unit tangent vector ()s′c must lie on the common

tangent plane of ()tσ,p and ()u v,q . It can be defined

using the linear combination of the partial derivatives

σp , tp , uq and vq of each of the surfaces as follows:

() t u vs t u vσσ′ ′ ′ ′ ′= + = + .c p p q q (9)

Since the normal vectors of the surfaces at a point on the
intersection are the same, both surfaces have the same
normal curvature at that point in the direction ()s′c of

the intersection curve. This implies that the second
fundamental forms of both surfaces are equal, which can
be expressed as follows:

2 2

2 2

() 2 ()
() 2 ()

p p p

q q q

L M t N t
L u M u v N v

σ σ′ ′ ′ ′+ +
′ ′ ′ ′= + + ,

 (10)

where p p pL M N, , and q q qL M N, , are the second

fundamental form coefficients of both surfaces.
This is a quadratic equation in ()t u vσ ′ ′ ′ ′, , , . By taking

the cross product of both sides of equation (9) with uq

and vq , and projecting the resulting equations onto the

common surface normal vector N at a point on the

intersection, u′ and v′ can be represented as the

following linear combination of σ ′ and t′ :

11 12u a a tσ′ ′ ′= + , (11)

 21 22v a a tσ′ ′ ′= + , (12)

where the coefficients 11 12 21a a a, , and 22a are

2

2

2

2

() ()
11 () ()

() ()
12 () ()

() ()
21 () ()

() ()
22 () ()

v v
q q qu v

t v t v
q q qu v

u u
q q qu v

u t u t
q q qu v

det

E G F

det

E G F

det

E G F

det

E G F

a

a

a

a

σ σ

σ σ

× ⋅ , ,
× ⋅ −

× ⋅ , ,
× ⋅ −

× ⋅ , ,
× ⋅ −

× ⋅ , ,
× ⋅ −

= = ,

= = ,

= = ,

= = .

p q N p q N
q q N

p q N p q N
q q N

q p N q p N
q q N

q p N q p N
q q N

Here, q q qE G F, , are the first fundamental form
coefficients of the surface q .

Substituting (11) and (12) into (10), then we obtain a
quadratic equation of the form,

2 2
11 12 22() 2 ()() () 0b b t b tσ σ′ ′ ′ ′+ + = , (13)

where,
2 2

11 11 11 21 21

12 11 12 11 22 21 12 21 22
2 2

22 12 12 22 22

2

()

2

q q q p

q q q p

q q q p

b a L a a M a N L
b a a L a a a a M a a N M
b a L a a M a N N

= + + − ,

= + + + − ,

= + + − .

There are four distinct cases to the solution of (13)
depending upon the discriminant 2

12 11 22()d b b b= − .

• (0d <): The surfaces have an isolated tangential
contact point.

• (0d >): We have the phenomenon of

branching, i.e. ()s′c is not uniquely defined.

• (0d = and 11 12 22 0b b b, , =): The intersection

of surfaces p and q cannot be evaluated by this

method or they have a contact of at least second
order (i.e., curvature continuous).

• (0d = and 2 2 2
11 12 22 0b b b+ + ≠): The marching

direction vector is defined. Thus, p and q are

said to intersect tangentially at the neighborhood.

If 11 0b ≠ , 12

11

b
t b
σ ν′

′ = = − , and the marching direction

is given by,

() t

t

s σ

σ

ν
ν

+′ = .
| + |
p pc
p p

 (14)

If 11 0b = and 22 0b ≠ , 12

22

bt
bσ µ′

′ = = − , then the

marching direction is given by,

() t

t

s σ

σ

µ
µ

+′ = .
| + |
p pc
p p

 (15)

3.2.3. Conventional Solution Methods and Issues
The points of the intersection curves are computed
successively by integrating the initial value problem for a
system of nonlinear ordinary differential equations (6)
using standard numerical techniques such as the Runge-
Kutta method, Taylor series method or the Adams-
Bashforth method [7]. But when two intersection curves
are close to each other, then step size selection becomes
complex and incorrect step size may lead to a critical
problem, straying or looping [6], which is illustrated in
Figure 1 [27].

Fig. 1. Conceptual figures for straying and looping

Figure 2 shows the looping phenomenon when the
Runge-Kutta method is used to solve an initial value
problem corresponding to Figure 6 where we have two
intersecting surfaces. The intersection contains a singular
point at [] [0 5 0 5 0 5 0 5]T Tt u vσ , , , = . , . , . , . . With an

initial condition 31
3 4[0 0]T, , , , the system of equations

(6) is provided as input to a Matlab ODE solver, ode45,
which is based on the Runge-Kutta method and adopts
an adaptive step size control scheme. As Figure 2 shows,
the Matlab ODE solver breaks down near the singular
point.

Fig. 2. An example of looping by Runge-Kutta (ode45) method

4. ROBUST MARCHING METHOD4. ROBUST MARCHING METHOD4. ROBUST MARCHING METHOD4. ROBUST MARCHING METHOD

In order to avoid the problems inherent to the
conventional numerical methods, we have to rely on a
different concept to solve the initial value problem of an
ODE system. To ensure robustness in finding roots of the
ODE system, researchers have focused on validated
schemes using interval arithmetic [26]. The validated
ODE solution scheme traces a solution after verifying the
existence and uniqueness of the solution at every step.
This idea is formulated and implemented in various
forms by Moore [26], Krückeberg [9], Eijgenraam [5],
Löhner [20] and Nedialkov [28]. After validation, a
bound is computed which encloses errors in initial
values, truncation errors and round off errors [4].

4.1. Concept of Validated ODE Solver4.1. Concept of Validated ODE Solver4.1. Concept of Validated ODE Solver4.1. Concept of Validated ODE Solver

A validated ODE solving scheme consists of two phases
[28]: Algorithm I and Algorithm II. Algorithm I finds an a
priori enclosure and a step size (based on validation)
such that the existence and uniqueness within the a
priori enclosure for the step size is verified. This
validation is achieved by applying Picard-Lindelöf
operator and Banach’s fixed point theorem [28]. A few
methods for validation have been proposed such as the
constant enclosure method [5], the polynomial enclosure
method [21] or the Taylor series method [4].
Algorithm II deals with the propagation of the solution,
reduction of wrapping and further prediction of a new
step size for the next step. Wrapping is defined as
undesirable overestimation of a solution set of an
iteration or recurrence which occurs if this solution set is
replaced by a superset of some simpler structure and this
super set is then used to compute the enclosures for the
next step which may eventually lead to an exponential
growth of overestimation [18]. The control of the
wrapping effect is a critical issue in this phase and several

methods such as a local coordinate transformation
method [26], a parallelepiped method and a QR
factorization method [20] have been proposed.

4.2. Application to Surface Intersection Problem4.2. Application to Surface Intersection Problem4.2. Application to Surface Intersection Problem4.2. Application to Surface Intersection Problem

Since the marching scheme requires to solve a system of
equations (6), we can use a validated ODE solver by
formulating the equations presented in Section 3.2 in
interval arithmetic with interval initial conditions [27].
The solver produces an a priori enclosure at a step and a
corresponding step size, which form a region, called a
priori box, where the existence and uniqueness of the
solution is verified. The union of such a priori boxes
constructs a continuous bound enclosing the exact
solution curve in the parametric space, which can be
mapped into the model space to provide a gap-free
bound in 3D model space [27]. The intersection of
bounds in the model space mapped from each surface
may further reduce the bound containing the intersection
curve [27]. The result of this process can serve as one of
the basic building blocks of interval solids introduced in
[13,34].
One prominent advantage of the application of the
validated ODE solver to the surface to surface
intersection problem is the capability of coping with
singular points, straying and looping [27]. When the
solver approaches singular points or points where two
intersection curves get close to each other, a validation
condition in Algorithm I of the validated ODE solver gets
violated so that the a priori enclosure as well as the step
size is adjusted. This adjustment is repeated iteratively
until the validation condition is satisfied, which leads the
solver to trace the correct solution [27]. This iteration will
resolve straying or looping in tracing an intersection
curve. If this iteration continues to make the step size less
than a certain minimum value, then the iteration stops
and the solver reports a singular point, see [27].

4.3. Examples4.3. Examples4.3. Examples4.3. Examples

Figure 3 shows a torus and a cylinder intersecting. We
trace one of the four loops of the curves of intersection.
We apply the validated ODE solver and map the error
bounds in parametric space to obtain strict bounds in the
3D model space. The maximum relative model space
error = 0.0187.

Fig. 3. Transversal intersection of a torus and a cylinder.

Transversal intersection of two tensor product Bézier
patches is depicted in Figure 4. Like the previous
example we solve the IVP for ODEs using a validated
ODE solver and subsequently obtain the model space
error bounds. The Figure 4 shows how the 3D model
space error bound converges to the true intersection for
small values of the error.

Fig. 4. Transversal intersection of tensor product Bézier surface
patches, and the convergence of error bounds.

Figure 5 represents the intersection of two tensor product
Bézier patches. The patches are positioned in such a way
that they are tangential to each other and their curve of
intersection is a 3D curve. The surface control points are
represented as degenerate intervals and are provided as

input to a validated ODE solver. The enclosure
containing the curve of intersection is mapped from the
parameter space to the 3D model space and we obtain
rigorous bounds in the 3D model space, which
guarantee to contain the true curve of intersection with a

maximum relative model space error of 0.002.

Fig. 5. Tangential intersection of tensor product Bézier surface
patches.

Figure 6 shows an example constructed in such a way
that there is a singular point in the surface intersection
curve segment. Tracing the surface intersection in this
example would involve separately tracing the four
intersection curve segments, given appropriate starting
points.

Fig. 6. An example of surface intersection with a singular point
involving tracing four separate intersection curve segments.

Application of a conventional ODE system solver, such
as the Runge-Kutta or Adams-Bashforth methods would
involve the following pathologies:
1. Specifying a starting point which is approximate
would mean that the curve traced would not have the
singularity or bifurcation. The B-rep model generated
would lose topological information and the result may
further cause failure in CAD model processing.

2. Straying or looping near the singular region, which
are essentially related to the uncertainty of the solver in
taking a specific step.
Ideally given a starting point

31
0 0 0 0 3 4[] [0 0]T Tt u vσ , , , = , , , , we expect a solver to

notify us as it approaches a region close to the
singularity. The use of the recommended solvers in
Matlab such as ode45 (an implementation of Runge-
Kutta method) and ode113 (implementation of Adam’s
method) would result in behavior as erratic as shown in
Figures 2 and 7. We show in Figure 8 the behavior of a
validated ODE solver which does not march across the
singularity. Thus the intersection is traced by separately
tracing all the four intersection curve segments.

Fig. 7. Integration using ode113 in Matlab. Straying and looping
is seen at the region close to the singularity in the

tσ , parameter space.

Fig. 8. Integration using a validated ODE solver, not crossing
the singular region in tσ , parameter space.

Now consider the case when one of the surfaces in
Figure 6 is perturbed by a small amount in z-direction
such that the intersection curves have different
topological configuration. The intersection is now just
two separate curve segments, even though they lie very
close to each other near the previously singular region.
Conventional methods shows poor behavior near the
region where two intersection curves are very close to
each other. This is shown by Figure 9 obtained using the
Adams-Bashforth method. Note the inconsistency in
topology of the intersection curves obtained from
conventional methods. The validated ODE solver uses
an adaptive step size strategy, easily resolves this case,
and behaves well locally close to the near-singular region
as shown by Figure 10.

Fig. 9. Result from ode113 in Matlab.

Fig. 10. Result from a validated ODE solver

5. CONCLUSIONS5. CONCLUSIONS5. CONCLUSIONS5. CONCLUSIONS

Investigating the effects of floating point arithmetic on
the implementation of intersection algorithms has been

an important area for basic research during the last
decade [31]. Methods to enhance the precision of
intersection computation, to monitor numerical error
contamination and alternate means of performing
arithmetic, not relying on imprecise floating point
computation alone, have been explored in some detail.
Researchers in surface intersection problems during the
last decade have already obtained a good understanding
of robustness problems when employing floating point
arithmetic and of methods to mitigate these problems
based on rounded interval arithmetic [12].
As a result of the deficiencies of the conventional
numerical methods, recent research tends to focus on
exact methods involving rational arithmetic. Much
research remains to be done in bringing such methods to
the CAD practice, generalizing the arithmetic to go
beyond rational and algebraic numbers (eg. involving
transcendental numbers of trigonometric form), and to
explore more efficient alternatives that are generally
applicable in low and high degree problems alike. A
different direction of research involves the use of non-
conventional interval methods like a validated ODE
solver [27], which considers errors arising in the
computation as well as initial conditions. It provides a
guaranteed bound which encloses the exact solution,
and fits well with the concept of robust interval solid
modeling [13,34].
Extension of current intersection methods applied on
rational B-spline surfaces to more general and complex
surfaces requires further study. Such surfaces include
offset, generalized cylinder, blending and medial
surfaces, and surfaces arising from the solution of partial
differential equations or via recursion techniques.

ACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTSACKNOWLEDGEMENTS

This work was funded in part by the NSF (grants No.
DMS-0138098 and CCR-0231511).

6. REFERENCES6. REFERENCES6. REFERENCES6. REFERENCES

[1] C. L. Bajaj, C. M. Hoffmann, J. E. Hopcroft, and

R. E. Lynch. Tracing surface intersections.
Computer Aided Geometric Design, 5(4):285–307,
November 1988.

[2] R. E. Barnhill and S. N. Kersey. A marching method
for parametric surface / surface intersection.
Computer Aided Geometric Design, 7(1-4):257–
280, June 1990.

[3] K.-P. Cheng. Using plane vector fields to obtain all
the intersection curves of two general surfaces. In
W. Strasser and H. Seidel, editors, Theory and
Practice of Geometric Modeling, pages 187–204.
Springer-Verlag, New York, 1989.

[4] G. F. Corliss and R. Rihm. Validating an a priori
enclosure using high-order Taylor series. In
G. Alefeld, A. Frommer, and B. Lang, editors,
Scientific Computing and Validated Numerics:
Proceedings of the International Symposium on
Scientific Computing, Computer Arithmetic and
Validated Numerics - SCAN ’95, pages 228–238.
Akademie Verlag, Berlin, 1996.

[5] P. Eijgenraam. The Solution of Initial Value
Problems Using Interval Arithmetic. Mathematical
Centre Tracts No. 144., Stichting Mathematisch
Centrum, Amsterdam, 1981.

[6] A. Geisow. Surface Interrogations. PhD thesis,
School of Computing Studies and Accountancy,
University of East Anglia, Norwich NR47TJ, U. K.,
July 1983.

[7] C. F. Gerald and P. O. Wheatley. Applied Numerical
Analysis. Addison-Wesley, Reading, MA, 4th
edition, 1990.

[8] T. A. Grandine and F. W. Klein. A new approach to
the surface intersection problem. Computer Aided
Geometric Design, 14(2):111–134, 1997.

[9] E. Hansen, editor. Topics in Interval Analysis.
Oxford University Press, 1969.

[10] H.-S. Heo, M.-S. Kim, and G. Elber. The
intersection of two ruled surfaces. Computer-Aided
Design, 31(1):33–50, January 1999.

[11] J. Hoschek and D. Lasser. Fundamentals of
Computer Aided Geometric Design. A. K. Peters,
Wellesley, MA, 1993. Translated by L.
L. Schumaker.

[12] C. Y. Hu, T. Maekawa, N. M. Patrikalakis, and
X. Ye. Robust interval algorithm for surface
intersections. Computer-Aided Design, 29(9):617–
627, September 1997.

[13] C. Y. Hu, N. M. Patrikalakis, and X. Ye. Robust
interval solid modeling: Part I, Representations.
Computer-Aided Design, 28(10):807–817, October
1996.

[14] G. A. Kriezis and N. M. Patrikalakis. Rational
polynomial surface intersections. In G. A. Gabriele,
editor, Proceedings of the 17th ASME Design
Automation Conference, Vol. II, pages 43–53,
Miami, September 1991. ASME, New York, 1991.

[15] G. A. Kriezis, N. M. Patrikalakis, and F.-E. Wolter.
Topological and differential-equation methods for
surface intersections. Computer-Aided Design,
24(1):41–55, January 1992.

[16] G. A. Kriezis, P. V. Prakash, and N. M. Patrikalakis.
Method for intersecting algebraic surfaces with
rational polynomial patches. Computer-Aided
Design, 22(10):645–654, December 1990.

[17] S. Krishnan and D. Manocha. Efficient surface
intersection algorithm based on lower-dimensional

formulation. ACM Transactions on Graphics,
16(1):74–106, January 1997.

[18] U. Kulisch, R. J. Lohner, and A. Facius.
Prespectives on Enclosure Methods. Springer, New
York, 2001.

[19] N. G. Lloyd. Degree Theory. Cambridge University
Press, Cambridge, 1978.

[20] R. J. Lohner. Computation of guaranteed
enclosures for the solutions of ordinary initial and
boundary value problems. In J.R. Cash and
I. Gladwell, editors, Computational Ordinary
Differential Equations, pages 425–435. Clarendon
Press, Oxford, 1992.

[21] R. J. Lohner. Step size and order control in the
verified solution of IVP with ODEs. In SciCADE’95
International conference on scientific computation
and differential equations, Stanford, C.A., March
1995.

[22] Y. Ma and Y.-S. Lee. Detection of loops and
singularities of surface intersections. Computer-
Aided Design, 30(14):1059–1067, December 1998.

[23] Y. Ma and R. C. Luo. Topological method for loop
detection of surface intersection problems.
Computer-Aided Design, 27(11):811–820,
November 1995.

[24] R. P. Markot and R. L. Magedson. Solutions of
tangential surface and curve intersections.
Computer-Aided Design, 21(7):421–429,
September 1989.

[25] J. R. Miller and R. N. Goldman. Geometric
algorithms for detecting and calculating all conic
sections in the intersection of any two natural
quadratic surfaces. Graphical Models and Image
Processing, 57(1):55–66, January 1995.

[26] R. E. Moore. Interval Analysis. Prentice-Hall,
Englewood Cliffs, NJ, 1966.

[27] H. Mukundan, K. H. Ko, T. Maekawa, T. Sakkalis,
and N. M. Patrikalakis. Surface intersections with
validated error bounds. Technical Report 2003-6,
Design Laboratory, MIT, 2003.

[28] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss.
Validated solutions of initial value problems for
ordinary differential equations. Applied Mathematics
and Computation, 105(1):21–68, 1999.

[29] N. M. Patrikalakis. Surface-to-surface intersections.
IEEE Computer Graphics and Applications,
13(1):89–95, January 1993.

[30] N. M. Patrikalakis and T. Maekawa. Intersection
problems. In G. Farin, J. Hoschek, and M. S. Kim,
editors, Handbook of Computer Aided Geometric
Design, Chapter 25, pages 623–650, Amsterdam,
July 2002. Elsevier.

[31] N. M. Patrikalakis and T. Maekawa. Shape
Interrogation for Computer Aided Design and

Manufacturing. Springer-Verlag, Heidelberg,
February 2002.

[32] N. M. Patrikalakis and P. V. Prakash. Surface
intersections for geometric modeling. Journal of
Mechanical Design, Transactions of the ASME,
112(1):100–107, March 1990.

[33] M. J. Pratt and A. D. Geisow. Surface/surface
intersection problems. In J. A. Gregory, editor, The
Mathematics of Surfaces, pages 117–142.
Clarendon Press, 1986.

[34] T. Sakkalis, G. Shen, and N. M. Patrikalakis.
Topological and geometric properties of interval
solid models. Graphical Models, 63(3):163–175,
2001.

[35] T. W. Sederberg, H. N. Christiansen, and S. Katz.
Improved test for closed loops in surface
intersections. Computer-Aided Design, 21(8):505–
508, October 1989.

[36] T. W. Sederberg and A. K. Zundel. Pyramids that
bound surface patches. Graphical Models and
Image Processing, 58(1):75–81, January 1996.

[37] C.-K. Shene and J. K. Johnstone. On the lower
degree intersections of two natural quadrics. ACM
Transactions on Graphics, 13(4):400–424, October
1994.

[38] E. C. Sherbrooke and N. M. Patrikalakis.
Computation of the solutions of nonlinear
polynomial systems. Computer Aided Geometric
Design, 10(5):379–405, October 1993.

[39] P. Sinha, E. Klassen, and K. K. Wang. Exploiting
topological and geometric properties for selective
subdivision. In Proceedings of the ACM Symposium
on Computational Geometry, pages 39–45. New
York: ACM, 1985.

[40] M. N. Vrahatis. CHABIS: A mathematical software
package for locating and evaluating roots of systems
of nonlinear equations. ACM Transactions on
Mathematical Software, 14(4):330–336, December
1988.

[41] M. N. Vrahatis. Solving systems of nonlinear
equations using the nonzero value of the topological
degree. ACM Transactions on Mathematical
Software, 14(4):312–329, December 1988.

[42] I. Wilf and Y. Manor. Quadric-surface intersection
curves: shape and structure. Computer-Aided
Design, 25(10):633–643, October 1993.

[43] S.-T. Wu and L. N. Andrade. Marching along a
regular surface/surface intersection with circular steps.
Computer Aided Geometric Design, 16(4):249–268,
May 1999.

[44] X. Ye and T. Maekawa. Differential geometry of
intersection curves of two surfaces. Computer Aided
Geometric Design, 16(8):767–788, September 1999.

	1
	1. INTRODUCTION
	2. CLASSIFICATION OF SURFACE TO SURFACE INTERSECTION PROBLEMS
	2.1. IA/IA Surface Intersection
	2.2. RPP/IA Surface Intersection
	2.3. RPP/RPP Surface Intersection

	3. MARCHING METHODS
	3.1. Computation of Starting Points
	3.2. Formulation of the ODE System
	3.2.1. Transversal Intersection
	3.2.2. Tangential Intersection

	4. ROBUST MARCHING METHOD
	4.1. Concept of Validated ODE Solver
	4.2. Application to Surface Intersection Problem
	4.3. Examples

	5. CONCLUSIONS
	ACKNOWLEDGEMENTS

