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ABSTRACTABSTRACTABSTRACTABSTRACT    
 

This paper presents an overview of surface intersection problems and focuses on the rational 
polynomial parametric/rational polynomial parametric surface intersection case including 
transversal and tangential intersections. Emphasis is placed on marching methods with a discussion 
of the problems with conventional tracing algorithms. An approach using a validated interval 
ordinary differential equation system solver is outlined and illustrated with examples, which offers 
significant advantages in robustness over conventional marching schemes. 
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1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION1. INTRODUCTION    

Intersections are fundamental in CAD, CAM, 
computational geometry, geometric modeling and 
design, analysis and manufacturing applications [11,29]. 
Examples of intersection problems include: (1) 
Contouring of surfaces through intersection with a series 
of parallel planes or coaxial cylinders for visualization. 
(2) Numerical control machining (milling) involving 
intersection of generalized offset surfaces with a series of 
parallel planes, to create machining paths. (3) 
Representation of complex geometries in the Boundary 
Representation (B-rep) scheme using a process called 
boundary evaluation, in which the Boundary 
Representation is created by evaluating a Constructive 
Solid Geometry (CSG) model of the object. In this 
process, intersections of the surfaces of primitives must 
be found during Boolean operations (union, intersection, 
difference) between primitives.  
When studying intersection problems, the type of curves 
and surfaces that we consider can be classified primarily 
into two types: (1) Rational polynomial parametric (RPP) 
and (2) Implicit algebraic (IA). Non-Uniform Rational B-
Spline (NURBS) curves and surfaces can be subdivided 
into RPP curves and surfaces, and analyzed in a similar 
manner. A detailed treatment of intersection problems 
including general procedural curves and surfaces can be 
found in [31,30].  
Among all types of intersections, the surface to surface 
(S/S) intersection is the most complicated problem. It can 

have various intersection components such as curve 
segments, points, loops and singular points. Therefore, 
any surface intersection algorithm should satisfy the 
robustness requirements imposed by solid and geometric 
modeling in (a) finding all the components of the 
intersection and (b) computing each component with 
high accuracy.  
In this paper we only deal with S/S intersection problems 
of RPP/RPP type with emphasis on tracing the 
intersection curve robustly. General intersection 
problems are analyzed in [31,30].  
This paper is structured as follows: Section 2 presents a 
classification of surface to surface intersection problems. 
In Section 3, a marching solution method is explained 
with formulation of transversal and tangential surface 
intersections. In Section 4, a robust marching method 
based on a validated ODE solver is introduced with 
examples illustrating the method. Section 5 concludes 
the paper.  
 

2. CLASSIFICATION OF SURFACE TO SURFACE 2. CLASSIFICATION OF SURFACE TO SURFACE 2. CLASSIFICATION OF SURFACE TO SURFACE 2. CLASSIFICATION OF SURFACE TO SURFACE 
INTERSECTION PROBLEMSINTERSECTION PROBLEMSINTERSECTION PROBLEMSINTERSECTION PROBLEMS 

An implicit algebraic surface is represented by a 
polynomial function defined as ( ) 0f =r , where r  is the 

position vector of a point on the surface. The rational 
polynomial parametric type includes Bézier, rational 
Bézier, B-spline and NURBS surface patches, which are 
represented with two parameters u and v as ( )u v= ,r r , 



 

 

0 1u v≤ , ≤ . These surfaces are popular in CAD/CAM 

and geometric design, and NURBS surfaces are chosen 
as the standard format in industry. Depending on the 
surfaces involved in intersection, we have three distinct 
classes: IA/IA, RPP/IA and RPP/RPP. They are the most 
frequent surface to surface intersection problems.  

2.1. IA/IA Surface Intersection2.1. IA/IA Surface Intersection2.1. IA/IA Surface Intersection2.1. IA/IA Surface Intersection    

Implicit algebraic surface to implicit algebraic surface 
intersection is defined as follows:  

( ) 0 ( ) 0f g= ∩ = ,r r  (1) 

where f g, are polynomial functions. Here we have two 

equations in three unknowns r .  
A method for low order f g, is to eliminate one variable 

(e.g. z ) to find projection of intersection curves on the 
plane of other two variables (e.g. x , y ), then trace the 

algebraic curve and use the inversion algorithm to find 
z . Intersections of low degree implicit algebraic surfaces 
are of special interest in the boundary evaluation of the 
Constructive Solid Geometry models. A more complete 
analysis of the special intersections of two quadric 
surfaces can be found in [25,37,42].  

2.2. RPP/IA Surface Intersection2.2. RPP/IA Surface Intersection2.2. RPP/IA Surface Intersection2.2. RPP/IA Surface Intersection    

Rational polynomial parametric surface to implicit 
algebraic surface intersection is defined as follows: 

( ) ( ) 0 0 1u v f u v, ∩ = , ≤ , ≤ ,r r  (2) 

where ( )( ) ( ) ( )
( ) ( ) ( )( )

TX u v Y u v Z u v
W u v W u v W u vu v , , ,

, , ,, = , ,r . This leads 

to four algebraic equations in five unknowns 
( )x y z u v= , , , ,r . For the usual low degree surfaces 

( )f r  and low degree patches ( )u v,r , we can 
substitute ( )u v,r  into ( ) 0f =r  to obtain an 
implicit algebraic curve in u v, , see [16,17,32,33] for 
detailed treatment.  

2.3. RPP/RPP Surface Intersection2.3. RPP/RPP Surface Intersection2.3. RPP/RPP Surface Intersection2.3. RPP/RPP Surface Intersection    

Rational polynomial parametric surface to rational 
polynomial parametric surface intersection is defined as 
follows:  

1 2( ) ( )
(0 1 0 1)

t u v
t u v

σ
σ
, ∩ , ,

≤ , ≤ , ≤ , ≤
r r  (3) 

where ( )1 1 1

1 1 1

( ) ( ) ( )
1 ( ) ( ) ( )( )

TX t Y t Z t
W t W t W tt σ σ σ

σ σ σσ , , ,
, , ,, = , ,r  and 

( )2 2 2

2 2 2

( ) ( ) ( )
2 ( ) ( ) ( )( )

TX u v Y u v Z u v
W u v W u v W u vu v , , ,

, , ,, = , ,r . Formulation 

involves setting 1 2( ) ( )t u vσ , = ,r r  which leads to three 

nonlinear polynomial equations in four unknowns 

t u vσ , , , . This is an underconstrained system. This 

system can in principle be solved by the Interval 
Projected Polyhedron (IPP) algorithm [38]. However, as 
the solutions are typically not isolated points but curves, 
such approach is inefficient when small tolerances are 
used. Another method involves implicitization of 1( )tσ,r  

to the form ( ) 0f =r  and substitution of 2 ( )u v= ,r r  

into f  to reduce the problem to RPP/IA case for a low 

degree surface [17]. Heo et al. [10] developed an 
intersection algorithm for two ruled surfaces which 
performs more efficiently than those for general 
parametric surfaces.  
There are three major techniques for solving RPP/RPP 
surface intersections: lattice methods, subdivision 
methods and marching methods. Detailed reviews can 
be found in [29,31,30]. In this paper, we focus on 
marching methods which are efficient in most cases and 
hence attractive if combined with other methods such as 
adaptive subdivision methods to locate starting points.  

3. MARCHING METHODS3. MARCHING METHODS3. MARCHING METHODS3. MARCHING METHODS 

Marching methods involve generation of sequences of 
points of an intersection curve branch by stepping from a 
given point on the required curve in a direction 
prescribed by the local differential geometry [1,2,15,43]. 
Marching method formulates the surface intersection as 
an initial value problem (IVP) in the domain 
0 1t u vσ≤ , , , ≤ . However, such methods are by 

themselves incomplete in that they require starting points 
(initial conditions) for every branch of the solution.  

3.1. Computation of Starting Points3.1. Computation of Starting Points3.1. Computation of Starting Points3.1. Computation of Starting Points    

In order to identify all connected components of an 
intersection curve, a set of characteristic points on the 
intersection curve can be defined. Such a set may 
include border, turning and singular points of the 
intersection and provides at least one point on any 
connected intersection segment and identifies all 
singularities. For RPP/RPP surface intersections a more 
convenient set of such points sufficient to discover all 
connected components of the intersection, includes 
border and collinear normal points between the two 
surfaces. Collinear normal points provide points inside all 
intersection loops and all singular points [12].  Border 
points are points of the intersection at which at least one 
of the parametric variables t u vσ , , ,  takes a value 

equal to the border of the σ - t  or u - v  parametric 
domain. To compute border points, a piecewise rational 
polynomial curve to piecewise rational polynomial 
surface intersection capability is required, e.g., 



 

 

1 2(0 ) ( )t u v, = ,r r , which can be robustly solved by 

the IPP algorithm [31,38].  
Sederberg et al. [35] first recognized the importance of 
collinear normal points in detecting the existence of 
closed intersection loops in intersection problems of two 
distinct parametric surface patches. These are points on 
the two parametric surfaces at which the normal vectors 
are collinear. Collinear normal points are a subset of 
parallel normal points first used by Sinha et al. [39] in 
surface intersection loop detection methods.  

To simplify the notation, we replace 1( )tσ ,r  by 

( )tσ ,p  and 2 ( )u v,r  by ( )u v,q . Then the collinear 

normal points satisfy the following equations [12]:  
( ) 0 ( ) 0

( ) 0 ( ) 0
t u t v

t

σ σ

σ

× ⋅ = , × ⋅ = ,
− ⋅ = , − ⋅ = .

p p q p p q
p q p p q p

 (4) 

Equations (4) form a system of four nonlinear 
polynomial equations that can be solved using the IPP 
algorithm (also refer to [12] for more details on interval 
methods coupled with subdivision to solve the system 
(4)). Now we split the patches in (at least) one 
parametric direction at these collinear normal points. 
Consequently, starting points are only border points on 
the boundaries of all subdomains created. Grandine and 
Klein [8] follow a systematic approach for topology 
resolution of B-spline surface intersections. In this 
process, they determine the structure of the intersection 
curves including closed loops prior to numerical tracing 
(followed by a marching method based on numerical 
integration of a differential algebraic system of 
equations). Topology resolution in this context relies on 
an extension of the Projected Polyhedron (PP) algorithm 
[38] to the B-spline case. An alternate way to detect 
closed intersection loops is to use topological methods 
[15,3,19,22,23,24,41,40]. Also bounding pyramids 
[14,36] can be used effectively to assure the 
nonexistence of closed surface to surface intersection 
loops. These earlier methods need to be implemented in 
exact or rounded interval arithmetic (RIA) for robustness 
[31].  

3.2. Formulation of the ODE System3.2. Formulation of the ODE System3.2. Formulation of the ODE System3.2. Formulation of the ODE System    

The intersection curve can also be viewed as a curve on 
the two intersecting surfaces. A curve ( )sσ σ= , ( )t t s=  

in the tσ -plane defines a curve 
( ) ( ( ) ( ))s s t sσ= = ,r c p  on a parametric surface 

( )tσ ,p , as well as a curve ( )u u s= , ( )v v s=  in 

the uv -plane defines a curve ( ) ( ( ) ( ))s u s v s= = ,r c q  

on a parametric surface ( )u v,q . We can derive the first 

derivative of the intersection curve, ( )s′c , from a curve 

on the parametric surface using the chain rule:  
( ) ( )t u vs t s u vσσ′ ′ ′ ′ ′ ′= + , = + .c p p c q q  (5) 

After we find the unit tangent vector of the intersection 
curve, we can find σ ′ , t′ , u′  and v′  by taking the 
inner product on both sides of the first equation of (5) 

with σp  and tp  and the second equation with uq  and 

vq , which leads to two linear systems [12]. The 

solutions are obtained as  
( ( )) ( ( ))
( ) ( ) ( ) ( )
( ( )) ( ( ))
( ) ( ) ( ) ( )

t

v u

det t det tt
t t t t

det u v det u vu v
u v u v u v u v

σσ σσ
σ σ σ σ

′ ′, , , , , ,′ ′= , = ,
, ⋅ , , ⋅ ,

′ ′, , , , , ,′ ′= , = ,
, ⋅ , , ⋅ ,

c p P p c P
P P P P
c q Q q c Q

Q Q Q Q

 (6) 

where det  denotes the determinant (see also [8]) and  

( ) ( )t u vt u vσσ , = × , , = × ,P p p Q q q  (7) 

are the normal vectors of p  and q , respectively.  

3.2.1. Transversal Intersection 
When two surfaces intersect transversally, the tangential 
direction ( )s′c  of the intersection curve ( )sc  is 

perpendicular to the normal vectors of both surfaces. So, 
the marching direction can be obtained as follows:  

( ) ( )( )
( ) ( )

t u vs
t u v

σ
σ

, × ,′ = ,
| , × , |
P Qc
P Q

 (8) 

where the normalization forces ( )sc  to be arc length 

parametrized.  

3.2.2. Tangential Intersection 
When the two surfaces intersect tangentially, we cannot 
use Equation (8) since the denominator vanishes. In 
such cases we must find the marching direction in an 
alternate way [44].  
The unit tangent vector ( )s′c  must lie on the common 

tangent plane of ( )tσ,p  and ( )u v,q . It can be defined 

using the linear combination of the partial derivatives 

σp , tp , uq  and vq  of each of the surfaces as follows:  

( ) t u vs t u vσσ′ ′ ′ ′ ′= + = + .c p p q q  (9) 

Since the normal vectors of the surfaces at a point on the 
intersection are the same, both surfaces have the same 
normal curvature at that point in the direction ( )s′c  of 

the intersection curve. This implies that the second 
fundamental forms of both surfaces are equal, which can 
be expressed as follows:  

2 2

2 2

( ) 2 ( )
( ) 2 ( )

p p p

q q q

L M t N t
L u M u v N v

σ σ′ ′ ′ ′+ +
′ ′ ′ ′= + + ,

  (10) 



 

 

where p p pL M N, ,  and q q qL M N, ,  are the second 

fundamental form coefficients of both surfaces.  
This is a quadratic equation in ( )t u vσ ′ ′ ′ ′, , , . By taking 

the cross product of both sides of equation (9) with uq  

and vq , and projecting the resulting equations onto the 

common surface normal vector N  at a point on the 

intersection, u′  and v′  can be represented as the 

following linear combination of σ ′  and t′ :  

11 12u a a tσ′ ′ ′= + ,  (11) 

 21 22v a a tσ′ ′ ′= + ,  (12) 

where the coefficients 11 12 21a a a, ,  and 22a  are  

2

2

2

2

( ) ( )
11 ( ) ( )

( ) ( )
12 ( ) ( )

( ) ( )
21 ( ) ( )

( ) ( )
22 ( ) ( )

v v
q q qu v

t v t v
q q qu v

u u
q q qu v

u t u t
q q qu v

det

E G F

det

E G F

det

E G F

det

E G F

a

a

a

a

σ σ

σ σ

× ⋅ , ,
× ⋅ −

× ⋅ , ,
× ⋅ −

× ⋅ , ,
× ⋅ −

× ⋅ , ,
× ⋅ −

= = ,

= = ,

= = ,

= = .

p q N p q N
q q N

p q N p q N
q q N

q p N q p N
q q N

q p N q p N
q q N

                            

Here, q q qE G F, ,  are the first fundamental form 
coefficients of the surface q .  

Substituting (11) and (12) into (10), then we obtain a 
quadratic equation of the form,  

2 2
11 12 22( ) 2 ( )( ) ( ) 0b b t b tσ σ′ ′ ′ ′+ + = ,  (13) 

where,  
2 2

11 11 11 21 21

12 11 12 11 22 21 12 21 22
2 2

22 12 12 22 22

2

( )

2

q q q p

q q q p

q q q p

b a L a a M a N L
b a a L a a a a M a a N M
b a L a a M a N N

= + + − ,

= + + + − ,

= + + − .
 
There are four distinct cases to the solution of (13) 
depending upon the discriminant 2

12 11 22( )d b b b= − .  

• ( 0d < ): The surfaces have an isolated tangential 
contact point.  

• ( 0d > ): We have the phenomenon of 

branching, i.e. ( )s′c  is not uniquely defined.  

• ( 0d =  and 11 12 22 0b b b, , = ): The intersection 

of surfaces p  and q  cannot be evaluated by this 

method or they have a contact of at least second 
order (i.e., curvature continuous).  

• ( 0d =  and 2 2 2
11 12 22 0b b b+ + ≠ ): The marching 

direction vector is defined. Thus, p  and q  are 

said to intersect tangentially at the neighborhood.  

If 11 0b ≠  , 12

11

b
t b
σ ν′

′ = = − , and the marching direction 

is given by,  

( ) t

t

s σ

σ

ν
ν

+′ = .
| + |
p pc
p p

 (14) 

If 11 0b =  and 22 0b ≠ , 12

22

bt
bσ µ′

′ = = − , then the 

marching direction is given by,  

( ) t

t

s σ

σ

µ
µ

+′ = .
| + |
p pc
p p

 (15) 

 
3.2.3. Conventional Solution Methods and Issues 
The points of the intersection curves are computed 
successively by integrating the initial value problem for a 
system of nonlinear ordinary differential equations (6) 
using standard numerical techniques such as the Runge-
Kutta method, Taylor series method or the Adams-
Bashforth method [7]. But when two intersection curves 
are close to each other, then step size selection becomes 
complex and incorrect step size may lead to a critical 
problem, straying or looping [6], which is illustrated in 
Figure 1 [27].   

    

Fig. 1. Conceptual figures for straying and looping 

Figure 2 shows the looping phenomenon when the 
Runge-Kutta method is used to solve an initial value 
problem corresponding to Figure 6 where we have two 
intersecting surfaces. The intersection contains a singular 
point at [ ] [0 5 0 5 0 5 0 5]T Tt u vσ , , , = . , . , . , . . With an 

initial condition 31
3 4[ 0 0 ]T, , , , the system of equations 

(6) is provided as input to a Matlab ODE solver, ode45, 
which is based on the Runge-Kutta method and adopts 
an adaptive step size control scheme. As Figure 2 shows, 
the Matlab ODE solver breaks down near the singular 
point.   



 

 

 

Fig. 2. An example of looping by Runge-Kutta (ode45) method    

4. ROBUST MARCHING METHOD4. ROBUST MARCHING METHOD4. ROBUST MARCHING METHOD4. ROBUST MARCHING METHOD    

In order to avoid the problems inherent to the 
conventional numerical methods, we have to rely on a 
different concept to solve the initial value problem of an 
ODE system. To ensure robustness in finding roots of the 
ODE system, researchers have focused on validated 
schemes using interval arithmetic [26]. The validated 
ODE solution scheme traces a solution after verifying the 
existence and uniqueness of the solution at every step. 
This idea is formulated and implemented in various 
forms by Moore [26], Krückeberg [9], Eijgenraam [5], 
Löhner [20] and Nedialkov [28]. After validation, a 
bound is computed which encloses errors in initial 
values, truncation errors and round off errors [4].  

4.1. Concept of Validated ODE Solver4.1. Concept of Validated ODE Solver4.1. Concept of Validated ODE Solver4.1. Concept of Validated ODE Solver    

A validated ODE solving scheme consists of two phases 
[28]: Algorithm I and Algorithm II. Algorithm I finds an a 
priori enclosure and a step size (based on validation) 
such that the existence and uniqueness within the a 
priori enclosure for the step size is verified. This 
validation is achieved by applying Picard-Lindelöf 
operator and Banach’s fixed point theorem [28]. A few 
methods for validation have been proposed such as the 
constant enclosure method [5], the polynomial enclosure 
method [21] or the Taylor series method [4].  
Algorithm II deals with the propagation of the solution, 
reduction of wrapping and further prediction of a new 
step size for the next step. Wrapping is defined as 
undesirable overestimation of a solution set of an 
iteration or recurrence which occurs if this solution set is 
replaced by a superset of some simpler structure and this 
super set is then used to compute the enclosures for the 
next step which may eventually lead to an exponential 
growth of overestimation [18]. The control of the 
wrapping effect is a critical issue in this phase and several 

methods such as a local coordinate transformation 
method [26], a parallelepiped method and a QR 
factorization method [20] have been proposed.  

4.2. Application to Surface Intersection Problem4.2. Application to Surface Intersection Problem4.2. Application to Surface Intersection Problem4.2. Application to Surface Intersection Problem    

Since the marching scheme requires to solve a system of 
equations (6), we can use a validated ODE solver by 
formulating the equations presented in Section 3.2 in 
interval arithmetic with interval initial conditions [27]. 
The solver produces an a priori enclosure at a step and a 
corresponding step size, which form a region, called a 
priori box, where the existence and uniqueness of the 
solution is verified. The union of such a priori boxes 
constructs a continuous bound enclosing the exact 
solution curve in the parametric space, which can be 
mapped into the model space to provide a gap-free 
bound in 3D model space [27]. The intersection of 
bounds in the model space mapped from each surface 
may further reduce the bound containing the intersection 
curve [27]. The result of this process can serve as one of 
the basic building blocks of interval solids introduced in 
[13,34].  
One prominent advantage of the application of the 
validated ODE solver to the surface to surface 
intersection problem is the capability of coping with 
singular points, straying and looping [27]. When the 
solver approaches singular points or points where two 
intersection curves get close to each other, a validation 
condition in Algorithm I of the validated ODE solver gets 
violated so that the a priori enclosure as well as the step 
size is adjusted. This adjustment is repeated iteratively 
until the validation condition is satisfied, which leads the 
solver to trace the correct solution [27]. This iteration will 
resolve straying or looping in tracing an intersection 
curve. If this iteration continues to make the step size less 
than a certain minimum value, then the iteration stops 
and the solver reports a singular point, see [27].  

4.3. Examples4.3. Examples4.3. Examples4.3. Examples    

Figure 3 shows a torus and a cylinder intersecting. We 
trace one of the four loops of the curves of intersection. 
We apply the validated ODE solver and map the error 
bounds in parametric space to obtain strict bounds in the 
3D model space. The maximum relative model space 
error = 0.0187.  



 

 

 

Fig. 3. Transversal intersection of a torus and a cylinder. 

Transversal intersection of two tensor product Bézier 
patches is depicted in Figure 4. Like the previous 
example we solve the IVP for ODEs using a validated 
ODE solver and subsequently obtain the model space 
error bounds. The Figure 4 shows how the 3D model 
space error bound converges to the true intersection for 
small values of the error.   

 

Fig. 4. Transversal intersection of tensor product Bézier surface 
patches, and the convergence of error bounds. 

Figure 5 represents the intersection of two tensor product 
Bézier patches. The patches are positioned in such a way 
that they are tangential to each other and their curve of 
intersection is a 3D curve. The surface control points are 
represented as degenerate intervals and are provided as 

input to a validated ODE solver. The enclosure 
containing the curve of intersection is mapped from the 
parameter space to the 3D model space and we obtain 
rigorous bounds in the 3D model space, which 
guarantee to contain the true curve of intersection with a 

maximum relative model space error of 0.002. 

 

Fig. 5. Tangential intersection of tensor product Bézier surface 
patches. 

Figure 6 shows an example constructed in such a way 
that there is a singular point in the surface intersection 
curve segment. Tracing the surface intersection in this 
example would involve separately tracing the four 
intersection curve segments, given appropriate starting 
points.   

Fig. 6. An example of surface intersection with a singular point 
involving tracing four separate intersection curve segments. 

Application of a conventional ODE system solver, such 
as the Runge-Kutta or Adams-Bashforth methods would 
involve the following pathologies:  
1. Specifying a starting point which is approximate 
would mean that the curve traced would not have the 
singularity or bifurcation. The B-rep model generated 
would lose topological information and the result may 
further cause failure in CAD model processing.  



 

 

2. Straying or looping near the singular region, which 
are essentially related to the uncertainty of the solver in 
taking a specific step.  
Ideally given a starting point 

31
0 0 0 0 3 4[ ] [ 0 0 ]T Tt u vσ , , , = , , , , we expect a solver to 

notify us as it approaches a region close to the 
singularity. The use of the recommended solvers in 
Matlab such as ode45 (an implementation of Runge-
Kutta method) and ode113 (implementation of Adam’s 
method) would result in behavior as erratic as shown in 
Figures 2 and 7. We show in Figure 8 the behavior of a 
validated ODE solver which does not march across the 
singularity. Thus the intersection is traced by separately 
tracing all the four intersection curve segments.  

 

Fig. 7. Integration using ode113 in Matlab. Straying and looping 
is seen at the region close to the singularity in the 

tσ , parameter space. 

 

Fig. 8. Integration using a validated ODE solver, not crossing 
the singular region in tσ ,  parameter space. 

Now consider the case when one of the surfaces in 
Figure 6 is perturbed by a small amount in z-direction 
such that the intersection curves have different 
topological configuration. The intersection is now just 
two separate curve segments, even though they lie very 
close to each other near the previously singular region.  
Conventional methods shows poor behavior near the 
region where two intersection curves are very close to 
each other. This is shown by Figure 9 obtained using the 
Adams-Bashforth method. Note the inconsistency in 
topology of the intersection curves obtained from 
conventional methods. The validated ODE solver uses 
an adaptive step size strategy, easily resolves this case, 
and behaves well locally close to the near-singular region 
as shown by Figure 10.   

Fig. 9. Result from ode113 in Matlab. 

Fig. 10. Result from a validated ODE solver 

 

5. CONCLUSIONS5. CONCLUSIONS5. CONCLUSIONS5. CONCLUSIONS 

Investigating the effects of floating point arithmetic on 
the implementation of intersection algorithms has been 



 

 

an important area for basic research during the last 
decade [31]. Methods to enhance the precision of 
intersection computation, to monitor numerical error 
contamination and alternate means of performing 
arithmetic, not relying on imprecise floating point 
computation alone, have been explored in some detail. 
Researchers in surface intersection problems during the 
last decade have already obtained a good understanding 
of robustness problems when employing floating point 
arithmetic and of methods to mitigate these problems 
based on rounded interval arithmetic [12].  
As a result of the deficiencies of the conventional 
numerical methods, recent research tends to focus on 
exact methods involving rational arithmetic. Much 
research remains to be done in bringing such methods to 
the CAD practice, generalizing the arithmetic to go 
beyond rational and algebraic numbers (eg. involving 
transcendental numbers of trigonometric form), and to 
explore more efficient alternatives that are generally 
applicable in low and high degree problems alike. A 
different direction of research involves the use of non-
conventional interval methods like a validated ODE 
solver [27], which considers errors arising in the 
computation as well as initial conditions. It provides a 
guaranteed bound which encloses the exact solution, 
and fits well with the concept of robust interval solid 
modeling [13,34].  
Extension of current intersection methods applied on 
rational B-spline surfaces to more general and complex 
surfaces requires further study. Such surfaces include 
offset, generalized cylinder, blending and medial 
surfaces, and surfaces arising from the solution of partial 
differential equations or via recursion techniques.  
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