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Abstract: This review describes different strategies of surface elaboration for a better 

control of biomolecule adsorption. After a brief description of the fundamental interactions 

between surfaces and biomolecules, various routes of surface elaboration are presented 

dealing with the attachment of functional groups mostly thanks to plasma techniques, with 

the grafting to and from methods, and with the adsorption of surfactants. The grafting of 

stimuli-responsive polymers is also pointed out. Then, the discussion is focused on the 

protein adsorption phenomena showing how their interactions with solid surfaces are 

complex. The adsorption mechanism is proved to be dependent on the solid surface 

physicochemical properties as well as on the surface and conformation properties of the 

proteins. Different behaviors are also reported for complex multiple protein solutions. 
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1. Introduction 

Biomaterials are defined as materials that constitute parts of medical implants, devices and 

disposables are used in medicine, surgery, dentistry and veterinary medicine, as well as in every aspect 

of patient health care. A material is defined as a biomaterial in respect of some technical and economic 

rules described in the European Council Resolution of May 1985. The core legal framework of the 

European law is divided into three directives: No. 90/385/EEC regarding the active implantable 

medical devices No. 93/42/EEC dealing with medical devices and No. 98/79/EC focused on in vitro 

diagnostic medical devices. A more academic definition of biomaterials is proposed by Williams in 

1987, modified in 2003 [1,2] and also by Dee et al. [3]. Most of these materials are chosen depending 

on the final characteristics, however their surfaces are often not compatible with the biological tissues 

and organisms to which they are exposed [4,5]. Major risks are immunological or inflammatory 

reactions; there should be no change of plasma enzymes and proteins when they are in contact with 

living material inside or outside the human body, there should be an absence of toxic and carcinogenic 

products, no deterioration of tissue and materials and an absence of immune factors responsible for 

thrombosis and obstructing the flow of blood through the circulatory system [6]. Materials taking into 

consideration the above mentioned statements can be referred to as “biocompatible” materials and 

many studies are dedicated to the research of new biocompatible materials due to the increasing 

number of artificial substitutes every year. Nevertheless, the biocompatibility stays a complex 

phenomenon, which is still not completely understood due to the lack of knowledge of in vivo 

conditions; and caution should be taken in defining a biomaterial as biocompatible, since the 

applications of these materials are specific. A biomaterial that is biocompatible or suitable for one 

application may not be biocompatible in another one [7]. Therefore, the composition and configuration 

of surfaces and biomolecules should be taken into account. 

2. Fundamental Interactions between Surfaces and Protein 

2.1. Protein Structure and Properties  

Proteins are linear polymers formed by linking the carboxyl group of one amino acid to the  

α-amino group of another acid with a peptide bond. This primary structure spontaneously folds to 

regular secondary structures, α helixes or β sheets. The coiled structure is stabilized by intra-chain 

hydrogen bonds between NH and CO groups, while sheets are stabilized by hydrogen bonding between 

polypeptide strands (Figure 1).  

Figure 1. Structure of protein: (a) primary structure (peptide bond); (b) tertiary structure 

(composed of secondary structure presenting α-helixes and β-sheets); (c) quaternary 

structure (aggregation of subunits formed in tertiary structure). 
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The folding of secondary structures into tertiary structures corresponding to spatial arrangement of 

amino acids [8] enables the formation of active sites able to perform biological functions. In general, 

proteins fold themselves into globular or fibrous forms. Globular proteins are compactly folded, while 

the filamentous proteins are elongated. This property will influence their stability and, consequently, 

the degree of conformational changes upon their adsorption onto the solid surfaces [9]. The folding 

into tertiary structures is governed by hydrophobic effects, where the interfacial free energy in aqueous 

solution is decreased by the turnover of non-polar groups inside the aggregate. For this reason, the 

hydrophobic part is representative of the core of the protein, while polar residues stay on the surface in 

contact with the solvent. However, in most cases the protein surface is amphiphilic where hydrophobic 

patches represent one third of the surface coverage. Furthermore, within the same protein, the side 

chains can be acidic and/or basic, making the polypeptide amphoteric. The overall surface charge of 

the protein will depend on the pH of the solution [10]. The favored bonding of certain types of residues 

will also influence the orientation of the biomolecules, which is important for immunological 

reactions [11,12]. Protein aggregation can occur at all steps in the manufacturing process (cell culture, 

purification and formulation), storage, distribution and handling of products and results from various 

factors such as stirring, pH, temperature, ionic strength variations or various interfaces (e.g., air-liquid 

interface). High protein concentrations can further increase the aggregation. The protein folding and 

unfolding is an overall process resulting from a cooperative transition. If one part of the protein 

becomes unstable under exposed conditions, the interaction between this disrupted part and the rest of 

the protein will be destabilized. Inappropriate protein conformation can result in pathology, as various 

proteins are related neurodegenerative diseases such as Alzheimer, Huntington and Parkinson disease. 

The appearance of these diseases is assigned to multimerization of misfolded proteins into insoluble, 

extra-cellular aggregates and/or intra-cellular inclusions [13]. 

2.2. Proteins and Surfaces 

The study of protein-surface interactions gained a lot of interest in the past few decades because 

these interactions are fundamentally responsible for biocompatibility of the materials. For example, the 

biological cascade of undesirable reactions like bacterial adhesion or thrombosis can be triggered by 

protein deposition on the material surface and spontaneous adsorption occurring in order of seconds or 

minutes after contact. Hence, it is rarely a problem of how to achieve the adsorption of proteins to a 

surface, but rather how to prevent it. Although the mechanisms of adsorption are not fully understood, 

there are a few physicochemical characteristics known that influence these phenomena [14,15]: 

characteristics of the protein (size, stability, concentration, functionalities and protein-protein 

interactions); the support’s surface free energy (hydrophilic/hydrophobic balance and polarity); the 

surface charge and related electrostatic interactions; chemical nature, thickness, density and mobility 

of surface functional groups; micro and nano topography features and roughness; time dependant 

unfolding; Vroman’s effect; biological surrounding (pH, salts, temperature, etc.). 

The thermodynamic principles governing the adsorption involve enthalpy and entropic terms that 

either favor or resist adsorption: 

ΔadsG = Δ ads H − TΔadsS < 0 (1) 
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G, H, S and T stand for the Gibbs energy, enthalpy, entropy and temperature of the system, while Δads 

indicates the change in thermodynamic functions of state resulting from the adsorption process. Enthalpy 

involves intermolecular forces such as van der Waals forces, Coulomb forces, Lewis acid-base forces 

whereas entropy is based on hydrophobic interactions, conformational entropy and restricted mobility. 

Adsorption will occur when the change in Gibbs (G) energy becomes negative and there is a net result 

between attracting and repulsive interactions between material surface, protein molecules and solvent. In 

general, protein adsorption is believed to occur through several equilibrium states. 

First, the proteins are transported to the surface, then they form an energetic boundary layer with 

attachment and some structural rearrangements. Furthermore, they can be detached and transported away 

from the surface. During the adsorption step, a protein may rapidly unfold on the surface in order to 

adapt its energy to the new environment. The adsorption itself happens in microseconds to milliseconds, 

while relaxation demands much longer periods, ranging from hours to days. In the case of very strong 

surface-protein affinity, non-equilibrium states can be retained or in other words they irreversibly adsorb 

to the surface [16]. The first layer of proteins can be adsorbed reversibly or irreversibly, while the second 

layer tends to adsorb reversibly due to little or no affinity among the molecules themselves caused by 

water retention [17] or due to their highly regular compact state and uncompleted unfolding caused by 

their weak flexibility [16]. The adsorption of proteins will also be influenced by surface heterogeneities 

and the presence of pre-adsorbed molecules [18]. Other important factors that influence bioadhesion are 

the protein conformational stability in native state, the relative amounts of α helixes and β sheets, and the 

overall hydrophobicity and electrical charge under the conditions.  

2.3. Relationship between Surface Hydrophobicity/Hydrophilicity and Protein Charge 

A weak stable conformation enhances the adsorption on a support by increasing the entropy  

(Figure 2). Several routes are possible. In contact with hydrophobic surface, the protein adsorbs 

through its different surface hydrophobic patches. After this, the protein will unfold onto this surface 

by spreading its hydrophobic core in order to reduce the net hydrophobic surface area of the system in 

the solvent [19]. The unfolding of the protein is accompanied by the release of water molecules from 

the interface leading to an entropy gain of the system (Figure 3) [20].  

Figure 2. Adsorption of protein on a material surface: various possibilities of physico-chemical adsorption. 

 
 

On the other hand, hydrophilic surfaces interact with the polar and charged functional groups of the 

protein surface. However in this case, proteins have a much lower tendency to irreversibly unfold on 

the surface [21]. In both cases, the changes of the hydration state have a large impact. Namely, the 

water molecules are strongly bonded to proteins and surfaces through electrostatic interactions 

including hydrogen bonding, rendering the polar groups solvable in water. If the surfaces of the protein 
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and the support are both polar, their hydration is favorable and the retained water molecules at the 

interface will prevent or diminish adsorption (Figure 3) [22,23]. With polar surfaces, the “hard” 

proteins will adsorb only if they are electrostatically attracted, while “soft” unstable proteins go 

through abrupt changes resulting in the increase of conformational entropy large enough to cause their 

adsorption to otherwise electrostatically repellent surfaces [24]. As the adsorption of proteins on 

hydrophilic surfaces is mainly due to the Coulomb forces, the design of non-fouling material is often 

based on polar and uncharged coatings [25] and also on the configuration of the polymeric surface: for 

example on polyelectrolytes layers [26] or on brushes (Figure 4). In the case of low brush density, 

proteinic molecules can be intercalated between macromolecular segments of the brushes (Figure 4c). 

The presence of non-polar patches on the protein surface leads first to the dehydration and 

consequently to the protein adsorption that is accompanied by the release of bound water molecules 

from the interface [27]. On hydrophilic surfaces they can adsorb in higher amounts than on 

hydrophobic surfaces [28]. 

Figure 3. Adsorption of protein on a polymer surface; the diffusion of hydrated protein, 

adsorption and dehydration possibilities [20]. 

 
 

Figure 4. Modes of protein adsorption on polymer brushes on a surface: (a) adsorption on the 

brush; (b) attraction and compressive mechanism and (c) inclusion into the network brushes. 

 
(a)                    (b)       (c) 

 

Generally, both the molecular surface and the protein are electrically charged and surrounded by 

counter ions that neutralize the surface charge. The formed electrical double layers will enhance the 

electrostatic attraction if the protein and the surface have opposite charges or the repulsion if the 

charges are the same. Maximal adsorption occurs when the charge density of the protein matches 

exactly the one of the surface, which results in a zero net charge at the contact region. The adsorption 

(to a lower extent) can also be observed on the surfaces that contain the same charge as protein. This 

indicates that global electrostatic forces affect adsorption but do not necessarily dominate it [29]. The 
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electrostatic interactions are strongly influenced by pH and ionic strength of the solution and, 

therefore, at low ionic strength, cationic proteins bind to anionic surfaces reversibly. For most proteins, 

the adsorption on a surface is maximal at their isoelectric points, because the protein-solvent 

interactions become less favorable and the protein-protein interactions more favorable, due to the zero 

net charge between them. At the pH far from pI of proteins, the formation of double layers is very 

likely to be retained due to the electrostatic repulsions, as the charge on protein surfaces becomes more 

important. On the other hand, proteins are most stable at their pI [30]. 

2.4. Influence of Surface Topography and Roughness on Protein Adsorption 

Current trends in research of biomaterials include the study of surfaces with topological features at 

nano-scale up to 100 nm. The effects of micro scale topography on biomolecule responses are well 

explored in vitro from physicochemical and biological aspects [31,32]. Recently, a few studies 

revealed the influence of nano-topography on protein adhesion and consequently on cellular 

responses [33]. The characteristics of topographic features include roughness, curvature and specific 

geometrical features. Local wettability of the surface is also modulated and induces different degrees 

of geometrical packaging of the proteins [34]. The overall effect of surface roughness is not clear at 

this point in time. Some reports suggest that the amount of protein adsorbed is not or very moderately 

affected by the surface roughness without conformational changes of protein [35]; while other reports 

reveal high augmentation of the proteins adsorbed and abrupt changes in their conformation upon 

adsorption [36]. It was stated as well that proteins with dimensions in the same order as the surface 

roughness are not conformationally altered by the surface, and proteins with dimensions much smaller 

or much larger change upon adsorption [37]. However, Fournier [38] found no linear relationship 

between the surface roughness and protein adsorption. Another study [39] also shows dependence of 

the adsorption not only on substrate topography but also on protein morphology (strand or globules). 

2.5. Protein Adsorption from Multi-Component Solutions 

In complex biological mediums like blood, plasma, cerebrospinal fluid (CSF) or other body liquids, 

there exist a wide variety of different proteins. As a consequence, these proteins compete among 

themselves for the adsorption to the exposed surface. An important factor is a mass transfer towards 

the surface (Vroman effect), which depends on the concentration of individual protein in the solution 

and is inversely related to its molar molecular weight. Namely, the more concentrated and smaller 

proteins arrive at the surface first and can be later replaced by larger proteins under the condition that 

they are able to form stronger interactions with the surfaces [40].  

3. Elaboration of New Biomaterial Surfaces 

The adsorption of proteins can be modified by either thermodynamic or kinetic control. 

Thermodynamic control refers to the alteration of the interaction potential between a protein and the 

surface by eliminating the attractive interactions between them. Kinetic control can be achieved by 

slowing down the rate of protein adsorption by high potential barriers for the interaction, for example, 

by introduction of long range repulsive forces through polymer grafting [40–43]. Three possible 
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situations of attachment must be avoided: adsorption of protein to the outer edge of the brush due to 

the protein-brush interaction via van der Waals or electrical double layer attraction; adsorption of 

proteins upon compression of polymer film for large proteins; adsorption to the surface due to the 

diffusion of proteins through the brushes to the substrate. 

For these reasons, most of the non-fouling surfaces are based on the synthesis of grafted surfaces 

with highly hydrophilic functional groups. These are in most cases neutral polymers like  

poly(ethylene glycol) (PEG), polysaccharides, poly(acide methacrylic) (PAAm), poly(2-hydroxyethyl 

methacrylate) (PHEMA), poly(N-vinyl pyrrolidone) (PVP) and poly(2-methyl-2-oxazoline) (PMOXA) 

or zwitterionic polymers like phosphoryl chlorine [43,44].  

Elaboration based on physical sorption of macromolecules can be achieved with the same type of 

characteristics but presents a deficiency since the added upper layers are solely bonded through 

relatively weak forces, like electrostatic, hydrogen and van der Walls bonds. For many biomedical 

applications, materials with a long-term survival and stable coatings with no depletion are necessary. 

The further discussion of the different elaboration modes, surface functionalization or grafting, will 

focus on more eco-friendly techniques trying to avoid wet chemistry. 

3.1. Surface Engineering through One Step Plasma Functionalization 

The use of non-equilibrium plasmas for surface modifications is a good alternative to classical 

organic chemistry reactions [45]. These kinds of modifications are relatively easy and quick, without 

any toxic solvents, and under soft plasma conditions the ablation of material is negligible. The plasma 

can be used either to bear various functional groups onto the surface or to grow thin films through 

plasma polymerization of monomers. However, in the latter case, the coatings are not very strongly 

attached to the surface. With the former method, non-depositing gases like O2, N2, CO2, CF4, He, Ar 

plasmas induce the attachment of polar or non-polar functional groups like hydroxyl, carbonyl (with 

O2, CO2), amine (with N2) and fluorinated groups (with CF4) to the surface. The interactions of such 

surfaces with a specific surrounding environment are modified. For example, surfaces with grafted 

non-polar (fluorine) functional groups greatly alter the adhesion of several biomolecules [46]. In order 

to maintain their optical transmission, PMMA-based contact lenses were plasma-fluorinated and 

evidence of very low protein adhesion, inflammatory cell growth and cell debris formation were 

found [47]. On the contrary, polar and hydrophilic surfaces exhibit a higher tendency for the various 

molecules to adhere and play a significant role in cell adhesion and growth mechanisms [48]. 

However, this type of surface ages rapidly. 

3.2. Surface Engineering by a Two-Step Treatment: Surface Activation and Grafting 

The introduction of grafted chains can be achieved through various mechanisms: ionic mechanisms, 

coordination mechanisms and free radical mechanisms, chemical grafting or radiation induced grafting. 

Firstly, the long-term chemical stability of these layers is much higher due to the covalent bonding to the 

substrate, secondly there is no or minimal ageing effect of grafted materials, which is especially a 

problem for hydrophilic modified surfaces in biological environment (water, salts). Finally, the nano 

(micro)-sized layers have a controlled chemical composition, hydrophilic/hydrophobic balance, 

roughness and topography. Therefore, the covalent attachment of graft chains to the surface avoids their 
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depletion and by this long term chemical stability is gained [49]. The conformation, thickness and 

density of grafted polymer chains will depend on the used grafting technique, on the building blocks and 

the experimental conditions (solvent, pH, T and salt concentrations) [50]. The grafting methods are 

generally divided into “grafting to” and “grafting from” techniques.  

In the “grafting to” method, the polymer chains are attached by covalent bond to the given surface 

via chemical reaction between the surface functional groups of the material and the end functionalized 

group of the polymer backbone [51]. Effective anchoring of polymers can be performed only if 

appropriate reactive groups are located on the surface of the substrate. First, surfaces are functionalized 

by different chemical or physical treatments like UV, flame, ion beam treatment, γ irradiation, plasma 

treatment or by strong oxidizing acids. These kinds of treatment usually lead to formation of oxygen, 

nitrogen or sulfur containing functional groups on the material surface. In the next step, the functional 

molecules containing the desired properties are attached to the activated substrate. The advantage of 

such functionalization is that the molecular weight and chain length of the polymer are well defined. 

Its negative point is the lower grafting density of the surface due to the steric hindrance and 

overlapping of the pre-adsorbed polymer molecules on the surface. Additionally, the chain thickness is 

pre-defined with the length of grafted molecules and cannot be freely adjusted [52].  

For these reasons, an alternative “grafting from” method is often employed. “grafting from” or  

so-called surface initiated polymerization (SIP) is based on the formation of thin films through 

polymerization of monomers from surface bound polymerization initiators [53]. The choice of initiator 

must be appropriate for the method of polymerization that will be used afterwards. In the case of 

conventional radical polymerizations (RAFT, ATRP), initiators like peroxide, azo initiators or photo 

initiators are used. As the chains grow from the surface, the initiators are easily accessible and therefore, 

high-density polymer brushes can be formed [54]. Many factors can influence the conformation of the 

anchored chains on the substrate, like the solvent (pH, T °C and salt concentration), type of (co)polymers 

(monomers), identity and quantity of the functional groups, etc. [55,56]. In a good solvent, single 

reactive side chain groups form brushes, while multiple reactive sites form loops and tails at the 

surface of a grafted material. In a diluted regime, the polymer chains adopt one of the extreme 

conformations: Either they appear as a mushroom-like structures in a good solvent or as a pancake-like 

structure in a bad solvent. The adaptive polymer brushes are able to change their conformation with 

small changes in the surrounding biological environment, such as light, T (°C), pH and salt 

concentration [57,58]. The photo responsive-layers are based on the incorporation of  

photo-active groups like azo-benzene chromophores on the surface that are able to react with UV light. 

This light source changes the conformation of –N=N– group from trans to cis isomers which, as a 

consequence, causes collapse of the chains towards the surface. The response of polymers to 

temperature is frequently caused by hydrogen bonding groups in the polymer backbone. Below the 

lower critical solution temperature (LCST), the polymer is usually completely soluble in water; but 

when the temperature is increased, phase separation occurs and compact globules are formed. One of 

the most used polymers in thermo-adaptive studies is poly (N-isopropylacrylamide) (PNIPAM), due to 

the fact that its LCST is close to the human body temperature [56–59]. At temperatures below the 

LCST, PNIPAM forms extended structures with a random coil conformation. The hydration of chains 

is enabled by the hydrogen bond formation between secondary amide hydrogen N–H and carbonyl 

C=O groups with surrounding water molecules. Nonetheless, when the temperature is increased the 
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hydrophobic interactions predominate and the polymer collapses into globular structures, leading to its 

precipitation out of water. This transition effect is the result of a temperature induced entropy gain from 

the dehydration of amide moieties and is completely reversible. This behavior may be associated with the 

phenomena of undesired protein folding known to cause various fatal disorders, like the accumulation of 

amyloïd plaques and consequent development of Alzheimer disease [60]. Wu et al. [61] observed for the 

first time a stable single chain to single globule transition in extremely diluted PNIPAM solutions by 

DLS measurements. The chain density in the globule state was slightly lower than predicted on the 

basis of a space-filling model, meaning that there was still some water present in the fully collapsed 

state; the roughness decreased from 127 to 17.9 nm with decreasing temperatures. The measurement 

with a small increase of temperature displayed two intermediate (crumpled coil and the molten 

globule) states between the formations of collapsed globules from extended random coils. Upon the 

adsorption of PNIPAM to the surface, new properties and a new behavior could be induced based on 

the model of phase behavior of end-grafted polymers exhibiting LCST [62]. The transition was shown 

to depend on the grafting density and on the molar mass of the chains. In some cases, the transition 

was negligible or could not even be observed [63]. Introduction of additives to the PNIPAM backbone 

can also change the polymer LCST. By these modifications, better control of parameters can be 

achieved that are especially important for in vivo applications like temperature responsive membranes, 

temperature responsive chromatography, immuno-tests, control of drug and growth factor release, 

tissue engineering, control of the attachment and detachment of the cells, recovery of cultured cells and 

bio-fouling releasing coating [64]. PNIPAM can also be coupled with various biological molecules 

(DNA, protein, antibodies) and can be used for the purification of proteins and enzymes. The antibody 

reacts specifically with the searched antigen and, in the next step the labeled detection antibody is 

coupled. When the temperature is increased, they precipitate and interact with each other and by this 

increase the signal. As the signal is multiplied, lower levels of proteins can be detected [65]. The 

growth of cells on PNIPAM is enhanced above the LCST temperature, where the polymer possesses 

hydrophobic properties. The cells attach to the surface and proliferate. As the growth support is cooled 

down, the cells are reversibly released from the surface, without any conformational or functional 

changes [66]. The same can be applied for reversible attachment and purification of proteins like 

avidin, BSA, HSA, myoglobin, cyt-C and lysozyme [67,68]. Another class of stimuli-responsive 

polymers corresponds to the polyelectrolyte. Their structure is almost exclusively dominated by 

electrostatic reactions. They can change under abrupt alterations of pH, salt concentrations or electric 

field. Frequently, polyacrylic acid based polymers are selected for this purpose [69].  

Further development of adaptive surfaces was achieved through grafting of mixed polymer brushes. 

Besides the importance of functional groups for the specific behavior and the morphology of the 

surface can be influenced by various ratios of functionalities and solvent properties [70]. The ratio of 

components is controlled by the time of grafting reaction for each of the components. A similar 

behavior as for mixed brushes can be observed for block-copolymer brushes grafted on the surface. 

The great interest in this kind of materials is raised from the fact that the building blocks of di- or  

tri-copolymers are usually immiscible functional groups, which as a consequence allows them to  

self-assemble in well organized nanoscale periodic structures. Typically these are spherical, cylindrical 

or lamellar forms, depending on the composition of the copolymers [71,72]. 
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3.3. Surface Engineering through Surfactant Adsorption 

The adsorption of surfactants on a substrate is mainly determined by two factors: The first one is the 

interaction of the surfactant with the surface and the second one is the hydrophilicity/hydrophobicity 

balance. In other words, the hydrophobic chains are not soluble in water and therefore they prefer to 

adsorb to the surface. The adsorption level is also increased with the augmentation of critical packing 

parameter (CPP). The CPP demonstrates how tightly surfactants are able to pack at the surface. In 

aqueous solutions, the high packaging is rather unfavorable and can be artificially increased in several 

ways. In order to benefit from the fact that hydrophobic interactions lead to higher adsorption, longer 

and branched or multiple hydrocarbon chains can be used. Additionally, the presence of salts reduces 

the repulsive electrostatic forces between surface and surfactant, leading to a smaller effective  

cross-sectional area per surfactant. For this reason, neutral surfactants adsorb much stronger than for 

example anionic surfactants (Figure 5). 

Figure 5. Influence of surfactant concentration on self-assembly of protein and surfactant 

and formation of mixed micelles. 

 
 

On non-polar surfaces, the hydrophobic chains of the surfactant interact with the surface, while its 

hydrophilic moieties stay in contact with the solution. The adsorption free energy of surfactants at the 

hydrophobic surfaces is similar to the micellization free energy of surfactants, and hence the structures 

on the surface appear like micelles. Contrarily, on polar surfaces surfactants adsorb with their polar 

component while the non-polar tail stays in the solution. This is only possible with a very low 

surfactant concentration due to the fact that it is energetically unfavorable to have insoluble chains in 

the solution. Therefore, with the increase of surfactant concentration, the hydrophobic parts of 

surfactants in the solution will further adsorb and form bilayers with pre-adsorbed surfactants. The 

bilayers are formed when there is an extremely strong interaction between surfactant head groups and 

surface chemical sites. If the interaction strength is moderate, micelles or similar aggregates will be 

formed. In the case of surfactant adsorption to polar surfaces, micellization occurs considerably below 

the critical micelle concentration (CMC) of surfactants (ionic and non-ionic) due to surface induced 

self-assembly [73]. 

These new surfaces can be used for separation membranes [74], capillary electrophoresis, as 

blocking agents in ELISA tests or for different surface chemistries where non-specific adsorption of 

molecules needs to be inhibited and at the same time the immobilization of specific agents (antibodies, 

drugs, cells) has to be enhanced [75]. Surfactants can be basically divided into anionic (SDS: sodium 

dodecyl sulfate, PFOS: perfluorooctanesulfonate), cationic (DODAB: dioctadecyldimethylammonium 
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bromide, CTAB: hexadecyl trimethyl ammonium bromide) and zwitterionic or amphoteric(betains, 

sulfobetains, CHAPS(3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate)) and non-ionic 

surfactants (Triton, Polysorbats). Non-ionic surfactants possess non-dissociable head groups, such as 

alcohol, phenol, ether, ester or amide. A majority of these surfactants are made hydrophilic by the 

presence of a polyethylene glycol chain and are referred to as polymeric surfactants or surface-active 

polymers. There exist two main types of polymeric surfactants in so-called “block” or “graft” 

configurations. The most used block polymer surfactants are copolymers of ethylene oxide and 

propylene oxide. Poly (ethylene oxide) (PEO) is known and one of the most used surfactants for the 

creation of non-fouling surfaces. There exist many different studies on attachment of PEO to various 

surfaces (PP, PE, PET, PTFE, Silica). The simple physical adsorption results in the formation of 

unstable layers with a high tendency to desorb from the surface. The effect has been especially 

described for layer molecular weight PEO surfactants [76].  

4. Some Specific Illustrations Applied to Protein Storage 

Coating of surfaces with non-charged hydrophilic polymers like polyethylene glycol (PEG) and 

poly(methyl methacrylate) (PMMA) have been found to reduce the protein adsorption due to the 

reduction of electrostatic forces and the hydrophobic interactions between the surface and the proteins 

in solutions [77–80].  

New storage polypropylene tubes were designed with inner an surface either bearing hydrophilic or 

hydrophobic pendant groups and being either flat or nanostructured. These surfaces were elaborated 

from plasma treatment, grafting of polymers or mixtures of polymers (poly(N-isopropylacrylamide)) 

and surfactants (neutral PEO (20) sorbitan monolaurate (Tween 20), positively charged 

hexadecyltrimethylammonium bromide), called MIX I and MIX II, respectively. Their bioadhesion 

property (Figure 6) was checked with recombinant human prion protein (PrPrechum) in PBS buffer 

solution, a biomarker of Creutzfeld Jacob disease [81,82]. 

Figure 6. Relative concentration of PrPrechum stored for 24 h at 4 °C in supernatant 

solution (“sandwich” ELISA test) depending on surface chemistry of storage tubes. 
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Around 55% of the initial protein is lost due to the adsorption on untreated polypropylene tubes 
after 24 hours of storage. In the case of fluorinated tubes, the amount of protein adsorbed is even 
higher and reaches almost 70%. On the other hand, the storage of PrPrechum in hydrophilic Eppendorf 
tubes leads to an enhancement of the recovery (60%). The hydrophobic-hydrophobic interactions are 
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strong enough to induce an irreversible proteinic adhesion while the protein deposition is somehow 
lower in the case of hydrophilic surfaces. Moreover, the other types of interactions such as electrostatic 
and surface texturation play an important role. Slightly better recovery of PrPrechum was observed from  
so-called MIX II tubes, nevertheless the loss of protein was still considerably high (40%). Opposed to 
this, so-called MIX I tubes disclosed low protein adhesion and high recovery. Only around 5% of the 
PrPrechum was adsorbed and 95% of protein remained in the solution. The efficiency of the  
non-adhesion property of the MIX I surfaces probably is associated to their relatively high hydrophilic, 
basic character and most importantly to an electrostatic repulsion between the protein and the surface, 
both positively charged in PBS. Structuration could also alter the deposition of proteins, since MIX I 
was shown to be more organized. 

Another approach often used for implant devices is the immobilization of biological molecules like 
collagen or fibronectin. Therefore the modification of synthetic materials is directed in the 
development of surfaces having similar compositions to the extra cellular matrix (ECM), which 
comprises different proteins and polysaccharides [26,83]. 

5. Conclusions 

For the future many materials can be used for different biomedical applications. Nevertheless, in 
order to satisfy the conditions of biocompatibility, their surface needs to be modified. The final 
prospect of the material will determine the properties of the surface and the strategy chosen for its 
modification. The modification routes have been shown to be strongly dependent on the biologic fluid 
nature and composition. Depending on the type of the biomolecule(s) and its (their) physicochemical 
properties, one specific surface modification must be chosen and in our knowledge, no universal 
surface elaboration has been applied up to this point. 
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