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Abstract

We address the limitation of low resolution depth cam-

eras in the context of face recognition. Considering a

face as a surface in 3-D, we reformulate the recently pro-

posed Upsampling for Precise Super–Resolution algorithm

as a new approach on three dimensional points. This re-

formulation allows an efficient implementation, and leads

to a largely enhanced 3-D face reconstruction. Moreover,

combined with a dedicated face detection and representa-

tion pipeline, the proposed method provides an improved

face recognition system using low resolution depth cameras.

We show experimentally that this system increases the face

recognition rate as compared to directly using the low res-

olution raw data. 1

1. Introduction

In the past ten to fifteen years, research on automatic face

recognition has actively moved from 2-D to 3-D data mostly

acquired using high resolution (HR) laser scanners. Multi-

ple approaches have been developed for this kind of data.

Until recently the race was about designing sensors to cap-

ture data with higher levels of details and higher resolu-

tions [1]. Today much more affordable and less bulky depth

cameras, with 3-D capabilities, have become accessible.

They are, however, of limited resolutions, and present a high

level of noise. Some examples are the 3D MLI by IEE S.A.

of resolution (56×64) [2], and the PMD camboard nano of

resolution (120× 165) [3]. Because of their low resolution

(LR) and the noisy nature of the acquired data, previously

defined 3-D face recognition algorithms are no longer en-

sured to be as effective [9].

The multi-frame super-resolution (SR) framework is an ap-

propriate solution where it becomes possible to recover a

higher resolution frame by fusing multiple LR ones. It has
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been successfully used in the case of 2-D face images [5, 6].

Similar efforts have been undertaken for 3-D facial data.

In [11], a learning–based method has been proposed to di-

rectly find the mapping between an LR image and its corre-

sponding HR image without using multiple frames. In [12],

Peng et al. proposed to use facial features in a Maximum A

Posteriori SR framework.

Depth facial data may also benefit from the SR framework.

Recently, Berretti et al. proposed to use SR on facial depth

images once back-projected in 3-D, and defined the super-

faces approach [9]. The SR algorithm they deployed is sim-

ilar in principle to the initial blurred estimate provided in

the enhanced Shift & Add algorithm proposed by Al Is-

maeil et al. in [7]. Later on, this work was extended to

the dynamic case where the considered multiple realizations

were ordered frames constituting a video sequence [8]. This

approach is referred to as Upsampling for Precise Super-

Resolution (UP-SR). Its key component is a prior upsam-

pling of the observed data which is proven to enhance the

registration of frames over time. In addition, it uses a bi-

lateral total variation framework as a smoothness condition.

In [16], a similar concept of temporal fusion was considered

for 3-D facial data enhancement. However, the increase

in resolution was induced from temporal data cumulation

without a real SR formulation or upsampling. Moreover,

smoothness was ensured by bilateral filtering as a post pro-

cessing operation and not included in the optimization ob-

jective function.

The contribution of this paper is twofold; first, we refor-

mulate UP-SR on 3-D point clouds constituting the facial

surface similarly to the work in [9]. However, by perform-

ing the deblurring phase of UP-SR, 3-D face reconstruction

results are maintained, if not enhanced. Second, we show

experimentally that using these results for 3-D face recog-

nition clearly improves the recognition rate as compared to

using raw LR acquisitions. This second contribution re-

quires a full dedicated pipeline for automatic face acqui-

sition from depth cameras. Moreover, level curves equidis-

tant from the nose tip and radially sampled are considered



as facial features for matching and comparison.

The remainder of the paper is organized as follows: Sec-

tion 2 reviews the UP-SR algorithm. Its adaptation to facial

depth data on a surface is given in Section 3. Our proposed

face recognition pipeline is detailed in Section 4 which in-

cludes a description of the considered level curves. The ex-

perimental setup and results are summarized in Section 5.

Finally, we conclude with Section 6.

2. Background

In what follows, we review the UP-SR algorithm. We rep-

resent all images in lexicographic vector form. Let us con-

sider an HR depth image x of size n, and N observed

LR images yk, k = 0, ..., (N − 1), of size m, such that

n = r · m, where r is the SR factor. Every frame yk is an

LR noisy and deformed realization of x modeled as follows:

yk = DHWkx+ nk, k = 0, ..., (N − 1), (1)

where Wk is an (n × n) invertible matrix corresponding

to the geometric motion between x and yk. We assume

that y0 is the reference frame for which W0 = In. The

point spread function of the depth camera is modeled by the

(n × n) space and time invariant blurring matrix H. The

matrix D of dimension (m × n) represents the downsam-

pling operator, and the vector nk is an additive noise at k

which follows a white multivariate Laplace distribution of

mean zero and covariance Σ = σ2Im, with Im being the

identity matrix of size (m×m).
One of the key components of UP-SR is to upsample the

observed LR images prior to any operation. We define the

resulting r-times upsampled image as:

yk ↑= U · yk, (2)

where U is an (n ×m) upsampling matrix. This allows to

directly solve the problem of undefined pixels in the SR ini-

tialization phase. It also leads to a more accurate and robust

estimation of the motion Ŵk as it is now computed between

yk ↑ and y0 ↑. The following registration of frames to the

reference is consequently enhanced:

yk ↑= Ŵ−1

k yk ↑ . (3)

Without loss of generality, both H and Wk are assumed

to be block circulant matrices. Choosing the upsampling

matrix U to be the transpose of D, the product UD = A

defines a new block circulant blurring matrix B = AH. We

have, therefore, BWk = WkB. As a result, the estimation

of x may be decomposed into two steps; estimation of a

blurred HR image z = Bx, followed by a deblurring step.

The data model in (1) becomes

yk ↑= z+ νk, k = 0, ..., (N − 1), (4)

Algorithm 1: UP-SR

1. Choose the reference frame y0.

for k, s.t., k = 1, · · · , N ,

do

2. Compute yk ↑ using (2).

3. Find Ŵk by optical flow estimation.

4. Compute yk ↑ using (3).

end do

end for

5. Find ẑ by applying a median estimator (5).

6. Deduce x̂ by deblurring using (6).

end for

Table 1. Classical Upsampling for Precise Super-Resolution

where νk = Ŵ−1

k U · nk is an additive noise vector of

length n. Using an L1–norm ‖ · ‖1, the estimate of z using

the corresponding Maximum Likelihood is

ẑ = argmin
z

N−1
∑

k=0

‖z− yk ↑ ‖1. (5)

The result in (5) is, by definition, the pixel-wise temporal

median estimator ẑ = medk{yk ↑}.

To recover x̂ from ẑ, an iterative optimization is performed

as a deblurring step. Considering a regularization term

Γ(x), chosen to be the bilateral total variation (Bilateral

TV) given in [13], we find

x̂ = argmin
x

(

‖Bx− ẑ‖1 + λΓ(x)
)

, (6)

where λ is the regularization parameter. The UP-SR algo-

rithm is given in Table 1, and summarized in Figure 1.

3. Surface Upsampling for Precise Super-

Resolution

The different steps in UP-SR as described in Section 2 may

be directly applied on LR depth images yk of faces as those

illustrated in Figure 2 (a). The resulting reconstructed face

x is shown in Figure 2 (c). While it is of higher resolution,

it presents artifacts that we argue are caused by applying

UP-SR on gridded depth data. To remedy these artifacts,

we propose in what follows to back–project the yk frames,

k = 1, · · · , N, to R
3 using the intrinsic parameters of the

camera used for the acquisition. We end up with N corre-

sponding point clouds Yk = {pk
i = (xk

i , y
k
i , z

k
i ) ∈ R

3, i =
1, · · · ,m} as shown in Figure 2 (b). The objective is now to

reconstruct an HR point cloud X = {qk
i = (xk

i , y
k
i , z

k
i ) ∈

R
3, i = 1, · · · , n} belonging to the surface S of the orig-

inal face, i.e., X ⊂ S . We adapt the algorithm in Table 1

to point clouds, and define a modified version of the UP-

SR algorithm that we refer to as SurfUP-SR. The two main



Figure 1. UP-SR steps on depth data and on a surface in 3-D.

Figure 2. Face reconstruction with UP-SR using (a) depth images,

(b) point clouds. The corresponding results are shown in (c) and

(d), respectively.

phases are maintained: 1) estimation of Z , a blurred version

of X ; 2) deblurring by optimization as in (6). The steps of

upsamling and registration need to be adapted as described

in the following sections. An illustration of differences be-

tween UP-SR and SurfUP-SR is given in Figure 1.

3.1. Surface Upsampling

Assuming that the point cloud Yk is a sampling of a surface

Sk, the upsampling of Yk may be reformulated as a problem

of interpolating the surface Sk from scattered points. The

surface Sk may be defined implicitly by a function f as:

f(x, y, z) = 0, ∀ p = (x, y, z) ∈ Sk, or equivalently by

using the interpolant Pf as:

Pf (x, y) = z, ∀ p = (x, y, z) ∈ Sk. (7)

The m points in Yk verify (7), hence they form a system

of m equations, from which Pf may be defined. A solu-

tion using kernel regression has been proposed in [14]. An

efficient GPU implementation has been given in [15]. We

used the Matlab scatteredInterpolant function in

our implementation. Once Pf is found, it is used to define

(r − 1) · m additional points belonging to Sk for chosen

(x, y)-positions. As a result, a denser point cloud Yk ↑ con-

taining a total of n points is found such that

Yk ↑= Yk ∪ {pk
i = (xk

i , y
k
i , z

k
i ) ∈ R

3, i = m+1, · · · , n},
(8)

and (xk
i , y

k
i ) ∈ [−1, 1]× [−1, 1].

3.2. Surface Registration

The motion estimation and registration steps in UP-SR are

replaced by directly using classical 3-D point cloud regis-

tration techniques. We use iterative closest points (ICP)

to rigidly register each point cloud Yk ↑ to the reference

Y0 ↑. This is done by estimating the optimal transformation

parameters, namely, 3-D rotation R̂k, translation t̂k, and

global scaling factor α̂k that minimize the distance Err(·)
between the transformed and the reference point clouds

such that

[R̂k, t̂k, α̂k] = argmin
R,t,α

Err (αRYk ↑ +t,Y0 ↑) . (9)

The registered point cloud Yk ↑ is then computed as:

Yk ↑= α̂kR̂kYk ↑ +t̂k. (10)

With these modifications, the new SurfUP-SR algorithm is

given in Table 2. Its visual impact is shown in the example

of Figure 2 (d).

4. Proposed Face Recognition Pipeline

Our proposed pipeline is composed of three main stages:

preprocessing of raw data, feature extraction and matching.

4.1. Preprocessing

The preprocessing step is an essential step in the design of

a face recognition system as it affects the performance of



Figure 3. Preprocessing step of the facial acquisition pipeline using a depth camera.

Algorithm 2: SurfUP-SR

1. Choose the reference frame Y0.

for k, s.t., k = 1, · · · , N ,

do

2. Compute Yk ↑ using (8).

3. Estimate R̂k, t̂k, and α̂k using ICP as in (9).

4. Compute Yk ↑ using (10).

end do

end for

5. Find Ẑ by applying a median estimator (5).

6. Deduce X̂ by deblurring using (6).

end for

Table 2. Surface Upsampling for Precise Super-Resolution

the system significantly. We implement fast and efficient

techniques to detect the face region and the nose tip for an

effective segmentation and alignment. We apply a face de-

tection algorithm on the amplitude or 2-D image only, then

we map the face region with the corresponding depth image

to obtain the corresponding 3-D facial region. In this work,

the Viola-Jones [19] face detection algorithm is used for its

computational efficiency and high detection rate. Once we

detect the depth face region, we detect the nose tip repre-

sented by the point with the smallest depth value. The nose

tip is used as a basic feature for our segmentation and align-

ment. Using a spherical cropping centered at the nose tip,

we discard the ear, hair and part of the neck areas. Finally,

the ICP registration is used for alignment.

4.2. Feature extraction

We use spherical curves and their radial discretization as

features to represent each face. A spherical curve is ob-

tained by intersecting the facial surface with a sphere. In

order to have smoother and continuous curves, we apply the

(a) (b)
Figure 4. Feature extraction step using: (a) Observed LR 3-D face

with texture from amplitude or 2-D images. (b) Extracted level

curves.

interpolation technique proposed in [18]. Spherical curves

are discretized radially by slicing the spherical intersection

curves using a plane that is parallel to the face normal and

that intersects the spherical curves radially at uniform an-

gles. Each face is represented by an indexed collection of

M × L points in 3-D, where M denotes the number of

curves per sample face and L is the number of points in each

curve. We end up with a feature vector of size M × L × 3
for each face. An example of the extracted feature curves is

shown in Figure 4.

4.3. Matching

The matching step aims to associate each probe 3-D face

to the the closest 3-D face in the database by comparing

their extracted features. The comparison is carried out by an

appropriate distance measure on the space of the extracted

feature curves. We choose the cosine distance in our exper-

iments as we found it to be the best performing one. This is

confirmed by the survey of Smeets et al. [20].



Figure 5. 3-D face reconstruction results. (a) 3-D laser scan ground truth. (b) One of the LR 3D faces. (c) Results of the superfaces

algorithm. (d) Results of the proposed SurfUP-SR algorithm. (e) 3-D error map corresponding to the 3-D LR face. (f) 3-D error map

corresponding to the superfaces results. (g) 3-D error map corresponding to the proposed SurfUP-SR.

.

5. Experimental Part

We evaluate the performance of the proposed system for

both 3-D face reconstruction and recognition. First, to eval-

uate the quality of the reconstructed 3D faces, we use the

publicly available superfaces dataset [17]. It has been ac-

quired using the well known Kinect camera [4]. A sequence

of 2-D and depth images for 20 different subjects are pro-

vided. Moreover, an HR scanned version for each subject

is available as ground truth. The dataset has only one real-

ization for each subject which makes it not appropriate for

recognition purposes. Thus, we built our real dataset using

10 subjects with two different realizations for each subject.

The dataset is acquired using the PMD camboard nano time

of flight camera with a resolution of (120× 165) pixels [3].

5.1. Reconstruction

In order to evaluate the quality of the reconstructed faces,

we use the above mentioned real dataset [17]. The faces in

the depth frames are of low resolution due to the object dis-

tance from the camera. To improve its quality, we conduct

the following test. We apply SurfUP-SR, and show the re-

sults for two subjects (01 and 19) using 5 LR frames. An

LR frame for each subject is shown in Figure 5.(b), first and

second rows, respectively. Obtained results show that the

proposed algorithm provides a visually improved HR 3-D

faces as seen in Fig. 5.(d) as compared to the LR captured

data Figure 5.(b). Moreover, our algorithm provides better

visual results than the recently proposed superfaces algo-

rithm [9], Figure 5. (c). This is due to the fact that SurfUP-

SR includes an additional deblurring step. Our results are

of sufficient quality for many applications such as 3-D face

recognition. In order to provide a quantitative evaluation,

Figure 6. Extracted level curves from 3-D faces for: (a) Ground

truth. (b) LR. (c) superfaces. (d) SurfUP-SR.

we measure the reconstruction error of SurfUP-SR and su-

perfaces against the laser scanned ground truth. In Figure 5.

(f) and (g), we may see the color-coded reconstruction error

of the superfaces method [9] and SurfUP-SR, respectively.

As expected, obtained results show that SurfUP-SR is at

least as good as superfaces and sometimes better. More-

over, by taking a look to the error range bar in Figure 5, we

note that in most areas the errors are below 0.5 cm.

5.2. Recognition

In order to test the impact of SurfUP-SR on a face recogni-

tion algorithm, we evaluate the performance of the pipeline

presented in Section 4 on the raw LR faces in our database.

We then run the same pipeline on the superresolved faces

of our database. We may see in Figure 6 the enhancement

incurred by SurfUP-SR on the quality of the extracted fea-

ture curves. Indeed, their extraction from LR faces leads to

noisy curves. For the same subject, these curves become



(a) (b)
Figure 7. Confusion matrices. (a) Using the LR 3-D observed

faces. (b) Using the super-resolved 3-D faces by the proposed

SurfUP-SR.

smoother and less noisy if extracted from superresolved

data. The quality of these curves directly affects the final

result of the face recognition algorithm. The correspond-

ing confusion matrices are given in Figure 7(a) and in Fig-

ure 7(b). We notice an improved recognition rate from 50%

to 80% when super-resolving. This confirms the importance

of having a higher resolution for an increased recognition

rate and the effectiveness of the proposed SurfaceUP-SR.

6. Conclusion

In this paper we proposed a new multi-frame super-
resolution algorithm SurfUP-SR which improves 3-D face
recognition rate using low resolution, and cost-effective
depth cameras. We reformulated the UP-SR algorithm on
a 3-D point cloud instead of its original formulation on a
depth image. In addition, we provided a full automatic 3-D
face acquisition from depth cameras. Experimental eval-
uation of SurfUP-SR using a real low resolution 3-D face
dataset has been carried out. Obtained results show an ef-
ficient enhancement in the resolution and the quality of the
captured low resolution 3-D faces. Moreover, we showed
the impact of the proposed algorithm in decreasing the 3-D
reconstruction error, and most importantly in increasing the
3-D face recognition rate.
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