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Surface warming in global cities is substantially
more rapid than in rural background areas

Zihan Lid, Wenfeng Zhan!2® Benjamin Bechtel, James Voogt4, Jiameng Lai', Tirthankar Chakraborty5'6,
Zhi-Hua Wang® 7, Manchun Li"™, Fan Huang' & Xuhui Lee®™

Warming trends in cities are influenced both by large-scale climate processes and by local-
scale urbanization. However, little is known about how surface warming trends of global cities
differ from those characterized by weather observations in the rural background. Here,
through statistical analyses of satellite land surface temperatures (2002 to 2021), we find
that the mean surface warming trend is 0.50 £ 0.20 K-decade™! (mean = one S.D.) in the
urban core of 2000-plus city clusters worldwide, and is 29% greater than the trend for the
rural background. On average, background climate change is the largest contributor
explaining 0.30 + 0.11 K-decade™" of the urban surface warming. In city clusters in China and
India, however, more than 0.23 K-decade™! of the mean trend is attributed to urban expan-
sion. We also find evidence of urban greening in European cities, which offsets
0.13£0.034 K-decade " of background surface warming.
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ing heatwave events than the general population because

of the urban heat island (UHI)!2, the phenomenon of
higher temperatures over urban land than over the surrounding
rural land3. This problem will become more severe in the future
because of global climate change and urban population growth in
cities®®. Despite the prevalence of the UHI and the increasing
recognition of the need for climate monitoring in urban
environments?, a great majority of the assessments of heat-related
mortality® and loss of workplace productivity” in cities are still
based on temperature data collected by non-urban and peri-
urban weather stations®. Furthermore, although the urban effect
has been considered in projections of heat exposure in the
future’, many studies make an implicit assumption that urban
temperatures will increase at an equal-rate as rural
temperatures®10,

Some studies have examined the equal-rate assumption by
isolating the urban warming signal from surface air temperature
(SAT) data, i.e., by directly separating contributions of urbani-
zation from other forcing factors based on linear or non-linear
models' 12, This approach has been applied to China where
rapid urbanization has occurred in the past decades and where
the density of weather station network is high!3. It is estimated
that urbanization-induced warming accounts for 20% to 50% of
the overall observed warming in areas that have experienced fast
urbanization!314, However, these studies focused more on
urbanization contribution to regional warming rather than on
warming within cities. Urban stations used in previous urban
warming studies were mostly located in urban fringes (i.e., newly
urbanized areas) rather than located in urban cores. This is pri-
marily because most of these urban stations were initially
installed over rural surfaces, while they became ‘true’ urban ones
when they are gradually engulfed by built-up areas due to rapid
urbanization, especially in developing countries such as
Chinal4-16, For example, a previous investigation of urban
warming in China indicates stations that suffered from inho-
mogeneities (e.g., changes in observation instrument, site, and
time, as well as the urbanization effect) account for about a half of
the total stations'*. The inhomogeneities in SAT series could
directly affect urban-rural differences in SAT trend and thus bias
the estimation of urban warming trend!41¢. Furthermore, pre-
vious reports of urban warming derived from urban-rural tem-
perature differences typically represent the characteristics of the
stations located at a local scale!®. It is not known if the results of
these studies can be extended to other geographic regions.

Other studies have examined the urban warming signal by
comparing temperature observations in urban areas with those
observed in rural surroundings or those retrieved from reanalysis
datal”18. A non-zero UHI intensity trend would indicate that
urban and rural temperatures are changing at different rates. The
SAT-based UHI intensity trends have been reported for indivi-
dual cities and city clusters in single regions!®20 and for selected
cities across different regions of the world?1:?2. The largest SAT-
based nighttime UHI trends of around 0.40 K decade~! have been
observed for megacities such as London, Osaka, and Shanghai?2.
One concern here is that limited urban stations are difficult to
provide sufficient spatial details for complex urban
neighborhoods!423, Another complication is that in-situ paired
observations of SAT are unavailable for the majority of global
cities. Satellite LST can overcome these difficulties to some degree.
Studies indicate that the global mean LST-based UHI trends are
positive (0.29 +0.41 K decade™!) during the day and relatively
small (0.10 +0.23 K decade=!)?4 or near zero (0.00+0.010K
decade™!) at night?>. However, these LST-based studies have not
separated the warming signal of the urban core from the change
signal resulting from conversion of pixels from rural to urban

l ' rban residents can experience greater heat exposure dur-

during the study period, which is likely to cause overestimation of
the true warming trends of global cities.

Here, we investigate the urban surface warming trends with
satellite LST data collected over 2000-plus city clusters worldwide
and compare them with the trends observed in rural land parcels.
We divide the pixels in each cluster and its adjacent buffer into
three categories: (1) urban core, where land use remains urban
throughout the detection period (2002 to 2021), (2) rural back-
ground, where land use remains rural, and (3) transitional land,
where the land use was initially rural and became urban during
the study period. Our focus is the urban core temperature trends.
A statistical attribution method is used to separate the trends into
contributions from urban expansion (URB), background climate
change (BCC), and landscape greening (LSG) within urban cores.
We find that urban core temperatures increase at a faster rate
than rural background temperatures. In spite of the different
representation between LST and SAT (refer to Supplementary
Note 1), our results highlight the necessity to consider the surface
warming rate difference between urban core and rural back-
ground towards the assessments of heat-related morbidity and
mortality as well as the projection of heat exposure in the future.

Results

Urban surface warming trends. We observe faster surface
warming trends at the urban core than in the adjacent rural area.
The global mean surface warming trend within the urban core is
0.56 +0.21 K decade™! (mean + one standard deviation) during
the day and 0.43 +0.16 K decade™! at night (Fig. 1a, b; Supple-
mentary Table 1). Both of these trends are statistically significant
(p <0.05). For comparison, the surface warming trend at the
rural pixels is 0.40 £0.23 Kdecade™! during the day and
0.37 +0.21 K decade™! at night (p < 0.05) (Supplementary Fig. 1a,
b). The daily mean surface warming trend (ie., mean daily
conditions averaged over daytime and nighttime) is 0.50
0.20 K decade™! at the urban core, which is 29% greater than the
trend for the rural background (0.38 +0.21 K decade™!). These
two LST trends are both greater than the daily mean SAT trend
(0.32+0.083 Kdecade™!) (p<0.05) calculated with reanalysis
SAT data for the same city clusters (Supplementary Fig. 2). We
further observe that these trends calculated by annual mean LSTs
are generally higher than the trends measured by mean LSTs of
summer (Supplementary Table 1). The reason for the discrepancy
could be related to a higher EVI trend in summer (Supplementary
Table 1).

The urban surface warming trend (i.e., warming trends at the
urban core) varies among cities of different sizes and in different
continents (Fig. 2). The surface warming trend generally increases
with city size (Fig. 2a, b). During the day, the mean trend
increases from 0.41+0.25K decade~! for small cities (area
<65 km?, total number 520; see Methods for city classification)
to 0.69 +0.24 K decade™! for megacities (area >450 km?2, total
number 520); at night, the trend increases from 0.37 £0.21 K
decade™! for small cities to 0.50 + 0.20 K decade™! for megacities.
Nevertheless, it should be noted that such relations between
surface warming trend and city sizes might be affected by regional
surface warming patterns. For example, there are a considerable
amount of large megacities distributed in Asia. By continent, the
Asian urban surface warming trends are most pronounced, at a
mean rate of 0.71+0.34Kdecade™! during the day and
0.53 +0.25 K decade™! at night (Fig. 2c, d). The lowest daytime
trend occurs in Europe (0.44 + 0.24 K decade™!) and the lowest
nighttime trend occurs in Oceania (0.37 +0.11 K decade™1). We
find that ratios of surface warming trend between urban core and
rural background show a similar pattern with a surface warming
trend over urban core (Supplementary Fig. 3). This is mostly
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Fig. 1 Surface warming trends at the urban core across the world. Map of daytime trend (a), map of nighttime trend (c), and global mean trend in daytime
(b), and nighttime surface UHI intensity (d). The two boxed regions in a, ¢ are enlarged as e, f for daytime and g, h for nighttime. Note that the error bars

represent 10%-~90% percentiles.

because there are small deviations in the surface warming trends
over rural background for cities of different sizes and for cities
across various continents (Supplementary Fig. 4).

Unsurprisingly, of the three land use types, the transitional land
experiences the strongest surface warming, at an average rate of
1.06 + 0.41 K decade~! during the day and 0.84 + 0.39 K decade~!
at night (Supplementary Fig. 1c, d). The main cause is the loss of
evaporative cooling power from the conversion of the pixels from
natural land to impervious surfaces (Supplementary Fig. 5).
Building construction over the transitional land that is more
biased towards either small or large low rise (e.g., warehouse type)
buildings may also contribute to the larger daytime surface
warming trend when viewed as LST?C.

Both the urban core and rural land show increasing trends of
vegetation greenness. The mean EVI (Enhanced Vegetation
Index) trend is 0.0039 +0.0017 decade~! at the urban core
(p<0.05) and 0.0083+0.0026 decade™! at the rural land
(p<0.05). The mean EVI trend at the rural land pixels is
essentially the same as that reported for the global land surface
obtained from the previous study by Zhang et al.?’. The largest
regional urban mean urban EVI trend occurs in Europe
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(0.012 £0.0032 decade™!), while decreasing trends occur in
Africa (—0.0088 +0.0031 decade™!) and South America
(—0.0091 + 0.0037 decade™!; Supplementary Fig. 5). This regional
pattern is similar to the pattern reported for urban vegetation
cover?8 and it differs from the greening trend of forest landscapes
where substantial greening has been observed in tropical forests
in Africa, South America, and Southeast Asia?®. The faster urban
greening trend in Europe may be due to the combination of
elevated urban warming, CO, fertilization, and expansion of
green space?®30. Such an increase of urban greening trend is
consistent with the observed advance in spring phenology over
time across Europe3l. On the other hand, the declining EVI
trends in Africa and South America indicate reduction of green
spaces in cities?8. Positive greening trends in cities such as Beijing
(Supplementary Fig. 5) may be attributable to the combination of
urban warming and CO, fertilization? and expansion of green
space3233,

Substantial increasing trends of the daytime and nighttime
satellite LST-derived surface UHI (SUHI) intensity are detected
for 87% and 72% of the city clusters, respectively (p <0.05;
Supplementary Fig. 6). A small portion (12%) of the clusters,

3


www.nature.com/commsenv
www.nature.com/commsenv

ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00539-x

15
2 a Bl day| 2
g g
2810 2
ES E
cQ ®
o
2 205 =
® 3
= =
)
? ool ®
\\é\“\ o ) ™
@ \\e&\) \:&Q e
1.0
z b B gt | 2
2 2
23 2
£ 3 £
8§ 809 &
3 & =
L o}
8 (&)
< €
=3 =
ool 2
& & o R
& \\eé‘“‘(\ N- RN

Fig. 2 Surface warming trend at the urban core by city size and continent.

mostly located in northern Asia, has experienced a significant
declining trend in the daytime SUHI (p < 0.05). A larger portion
(28%), mostly located in the Middle and Near East, shows
significant declining trends in the nighttime SUHI (p < 0.05). The
global mean SUHI trend is 0.16 + 0.093 K decade™! during the
day and 0.060 +0.033 Kdecade™! at night (Supplementary
Table 1 and Supplementary Fig. 6). These global mean trends
are much higher than those trends obtained from the previous
study by Chakraborty and Lee?> (0.030 + 0.020 and 0.00 + 0.01 K
decade~! for the day and night, respectively), but are much lower
than those trends obtained from previous study by Yao et al.?4
(0.29£0.41 and 0.10+0.23 Kdecade™! for the day and night,
respectively) for global cities. These two studies have used the
same satellite LST data but they differ from our study in how the
transitional land is handled. The gradual incorporation of
transitional land year by year in the previous study by
Chakraborty and Lee?> may have caused underestimation of the
SUHI trend, because the temperature is usually lower in
transitional land than in urban core. On the other hand, in the
previous study by Yao et al.?4 the urban land remains constant
during the study period and includes the urban core and all the
transitional pixels; this approach may overestimate the SUHI
trend due to the high surface warming trend of transitional land
(Supplementary Table 1). Additionally, the sample sizes for the
three studies also differ, with Chakraborty and Lee?* considering
the most number of cities and Yao et al.2> considering the lowest
cities, which would impact bulk trends. Regardless of the sample
size and how the SUHI is calculated, these two studies and the
present investigation all show the stronger SUHI trend during the
daytime than nighttime.

Attribution of urban surface warming. On average, the con-
tributions from BCC and URB to the daytime urban surface
warming trend are 0.34+0.13Kdecade™! and 0.27+0.13K
decade™!, respectively (Fig. 3a and Supplementary Table 2).
About the same magnitude contributions of BCC (0.25+
0.078 K decade™!) and URB (0.21 +0.094 K decade™!) are also
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observed at night (Fig. 3a). In addition to increasing the magni-
tudes of urban surface warming (Fig. 2) and SUHI intensity
(Supplementary Fig. 7), increasing city size amplifies the URB
contribution (Fig. 3b). The mean URB contribution increases
from 0.19%0.11 K decade™! for small cities (the corresponding
mean areas is 63km?) to 0.28 +0.13 K decade™! for megacities
(the corresponding mean areas is 475km?2) (Supplementary
Table 2). The Europe, North America, and Oceania continents
display similar percent contributions by city size (Fig. 3c and
Supplementary Table 3). Among the 2000+ city clusters, 90%
have BCC as the greatest contributor to the urban core surface
warming trend; these clusters are found in all the continents. A
smaller percent (5%), located mainly in rapidly urbanizing
regions in eastern China and in central and northern India, have
URB as the greatest contributor to the surface warming trend
(Fig. 4, Supplementary Figs. 8 and 9).

The global mean LSG contribution to the urban surface
warming trend is lower in magnitude (it has an opposite sign)
than the mean BCC and URB contributions. The magnitude
contribution from LSG is —0.10 + 0.028 K decade™! for the day
and —0.052 + 0.014 K decade™! at night (Fig. 3a). In other words,
urban greening creates a cooling effect for both daytime and
nighttime. In natural landscapes, replacement of bare land by
vegetation (especially trees) generally warms the near-surface air
at night3034 due to (1) reduced radiative cooling of the ground
surface that results from sky view factor obstruction from tree
canopy and (2) enhanced turbulence that brings warm air from
above to the surface in stably-stratified conditions34. Here in the
urban environment, the effect of vegetation is cooling at night,
and the underlying mechanism may be related to reduction in
daytime urban heat storage that leads to lower nighttime
temperature3. The role of LSG seems to decrease with increasing
urban size (Fig. 3b and Supplementary Fig. 10). Across
continents, the most negative LSG contribution is observed for
cities in Europe (—0.17 + 0.044 K decade™! and —0.10 + 0.025 for
the day and at night, respectively) where urban cores have
experienced the highest rates of greening (Supplementary Fig. 5).
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On the other hand, the LSG contribution is positive for Africa
and South America (0.047 = 0.018 K decade™! to 0.064 + 0.035 K
decade™1), a result of gradual loss of vegetation in the urban cores
(Supplementary Fig. 5)%8. Interestingly, several cities in rapidly
urbanizing areas in China experienced large negative LSG
contribution (Fig. 4), possibly because of the substantial increase
of vegetation cover induced by urban renewal in these cities33.
We further observe that the global mean LST trends are
expected to increase by ~0.096 K decade~! when population
density increases by 100/km? per decade, while the trends would

decrease by around 0.26 K decade™! as EVI increases by 0.01 per
decade (refer to Supplementary Note 2 and Table 4). These ratios
between LST and population density (or EVI) trends differ largely
among continents. The ratios between LST and population
density trends are relatively smaller in Asia and Africa than in
other continents, which may be attributable to the greater growth
rates of population density in these two continents. There are
relatively smaller ratios between LST and EVI trends in Europe,
Africa, and South America, probably attributable to the relatively
larger EVI trends in these three continents (Supplementary
Table 4). These results may be helpful for providing a rough
estimate of future urban surface warming due to both vegetation
and population changes; and a link between these two (e.g., the
counteraction of vegetation to urban population in surface
warming) can potentially help design general guidelines for heat
mitigation strategies.

Implication

Previous urban warming studies have documented urbanization-
induced regional warming by isolating the urban warming signal
from in-situ SAT data or using satellite-derived LST but mostly
without separating urban cores from transitional surfaces. In this
study, we have divided urban pixels into urban core, rural
background, and transitional areas. We demonstrate that the
mean surface warming trend in the urban core of 2000-plus city
clusters worldwide is 29% greater than the trend for the pixels in
the rural background next to the urban land boundary. This
percentage enhancement is even higher, at 56%, when referenced
to the background temperature trend defined by atmospheric
reanalysis data. This difference may result from the differences
between satellite LST and reanalysis SAT. Another likely reason is
that the rural pixels have been influenced by surface warming of
urban core pixels and transitional pixels through advection and
therefore are not true representation of background conditions.
Such advective effect occurs at the urban-rural boundary, a
spatial scale that is too small to be resolvable by the reanalysis
modeling system. We acknowledge that satellite LST is not as
accurate as SAT measured by weather stations because these two
temperatures represent two different physical parameters (refer to
Supplementary Note 1). However, here we concentrate not on
absolute value but on trend, for which the LST-SAT difference
should be substantially reduced. Although LST-based surface
warming analysis do not serve as a surrogate for SAT-based
investigation, it provides a different strategy that overcomes dif-
ficulties in finding proper urban-rural station SAT pairs parti-
cularly over global cities. More importantly, LST and SAT
characterize distinct and complementary components of urban
warming, and LST is still useful for various applications such as
weather forecasting and prediction as it provides a lower
boundary condition to the atmosphere. We admit possible
uncertainties induced by the deficiencies of satellite LST and
reanalysis SAT data, such as the data error, potential urbanization
signals and natural oscillations of these two data sources!!-3°.
Nevertheless, a closer analysis suggests such impacts should be
minimal and may not induce a large bias on the major findings
(refer to Supplementary Note 3).

It is well known that the surface UHI intensity generally
increases with increasing city size3”. Our results illustrate that the
urban surface warming trend is also size-dependent. The largest
surface warming trend, 0.59 0.23 K decade™!, or 47% greater
than the trend of the rural background, is found for the group of
520 megacities. Currently, about 1.7 billion people live in these
megacities with more than 1 million inhabitants. It is predicted
that as urbanization continues, the number of megacities will
increase, and so will the number of people who live in these
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cities®. According to one projection, the total population in the
megacities with more than 1 million inhabitants is projected to
increase to 2.4 billion by 203038. The LST trend in Fig. 2 suggests
that these people could experience additional heat exposure
around 0.30K on top of the background warming trend.
Although this temperature increment seems small, it would have
a large effect on the frequency of heatwaves because the occur-
rence frequency of high temperatures is very sensitive to the shift
of the mean®. For example, during the summer over the globe,
the temperature distribution is approximately Gaussian, the fre-
quency of hot summers with temperature exceeding a threshold
of 0.43¢ is about 33%, where o is the standard deviation*. By
simply shifting the mean temperature of the distribution upward
by only 0.30°C, the frequency of hot summers will increase
disproportionally to 55%, with the assumptions that the Gaussian
distribution and the variance remain the same.

Results of our attribution analysis support the use of urban
greening as an effective strategy to mitigate urban surface
warming?!. The greening trend reported here for most cities

appears to be unintentional (Supplementary Fig. 5), presumably
associated with a longer growing season in the warmer urban
environment than in the rural background*2. In some cities, the
greening trend is at least partly a result of active urban adaptation
efforts. For example, the City of Chicago in the US has been
expanding street tree coverage to reduce urban temperature since
a severe heatwave in 199543, and our trend analysis reveals that
the EVI in the City of Chicago has been increasing at 0.011
decade™!, a rate that is more than three times higher than the
mean rate for megacities (0.0026 decade~!; Supplementary
Fig. 11). However, in the global south or equatorial regions of
Africa and South America, the urban cores have experienced loss
of vegetation (Supplementary Fig. 5) despite the general greening
trend of the terrestrial land2°. Our attribution analysis suggests
that protection of urban vegetation can slow down daytime sur-
face warming of these cities by 0.084 K decade~! (Fig. 3).
Similar relations between surface UHI intensity and population
have been revealed at the global scale*4. We however need to note
that there are large differences between this investigation and the
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previous study by Manoli et al.#4. Here we mainly focused on the
long-term surface warming trends, while the focus of the previous
study by Manoli et al.** was on the spatial variability of surface
UHI. Several mitigation options are available to address the faster
urban surface warming through our analysis and previous
reports. Our results support that urban greening is an effective
strategy to mitigate urban surface warming. The use of green
space and building structure to reduce intra-city aerodynamic
roughness and surface imperviousness within cities are also
effective ways to mitigate urban heat1>, The management of
urban surface properties like surface albedo and emissivity
modifications is also a viable alternative, because they influence
heat storage and net radiation in urban areas**. Policymakers
should also consider the intertwining climatic conditions
experienced by citizens due to both urban surface warming and
climate change rather than localized warming alone36-44,

Methods

Satellite datasets. Three MODIS datasets (2002-2021) were used in this study,
including the LST (MYD11A2, 8-day composites), EVI (MOD13A2, 16-day
composites), and yearly land cover type (MCD12Q1) datasets. All these datasets
were downloaded from the EOSDIS (https://earthdata.nasa.gov/). The LST dataset
includes two overpasses per day (at ~01:30 am and ~13:30 pm local solar time). The
spatial resolution of the LST and EVI data is 1000 m, and that for the land cover
type data are 500 m. The land cover type data were resampled to 1km to match
resolution of the LST and EVI data using the nearest neighbor method.

City cluster data. The city cluster boundary dataset was obtained from global
urban boundary (GUB) data in 2018 (http://data.ess.tsinghua.edu.cn/). City clus-
ters with a size larger than 50 km? at the beginning of the study period were
considered in this study. In total, 2080 city clusters were used. They were divided
into four groups, labeled as small, medium, large, and megacities, according to
ascending order in urban size between the 0 to 25th, 25th to 50th, 50th to 75th, and
75th to 100th percentile, respectively. The corresponding mean areas are 63, 95,
194 and 475 km?. Here we choose urban built area as a proxy of city size mainly by
referring to previous studies*>*7, which have examined the relations between urban
warming and city size as measured by urban built area. There are 844, 132, 604,
346, 130, 24 cities in Asia, Africa, Europe, North America, South America, and
Oceania, respectively. This city cluster dataset was generated from the global
artificial impervious area product, and it corresponds well with the global nighttime
light data and population data*8. Due to the high quality, the GUB dataset have
been used extensively in various similar studies**>?. This dataset was resampled to
the resolution of 1km to match those of the satellite data using the nearest
neighbor method. The rural buffer of each city cluster was set to match the size of
the city cluster, noting that the urban expansion information for each city cluster
was obtained by the MODIS yearly land cover type dataset (i.e., MCD12Q1) rather
than by this city cluster boundary dataset. For each city cluster, the pixels classified
as ‘urban and built-up areas’ by MODIS land cover product were defined as urban
areas. Then the urban expansion was determined by examining the identified
urban area from 2002 to 2021. Note that we used the data in 2020 to represent the
land cover type of 2021, because the land cover type products are only available
until 2020.

Population data. The population dataset (2002 to 2020) was obtained from the
Oak Ridge National Laboratory (https://landscan.ornl.gov/). This dataset was
generated at a 1 km grid resolution from land cover type, nighttime light, and high-
resolution panchromatic imagery”!. Note that we used the 2020 data to represent
the population of 2021, because the population data are only available until 2020.

Reanalysis data. The monthly reanalysis SAT for the period of 2002 to 2021 was
provided by the Goddard Earth Sciences Data and Information Services Center
(GES DISC) (https://disc.gsfc.nasa.gov/), produced by the common Global Land
Data Assimilation System (GLDAS). The original data has a grid resolution of

9 km. It was also resampled to 1 km to match the grid size of the satellite data using
the nearest neighbor method. The SAT trend for each city cluster was calculated as
the mean of all the grids in the city cluster using linear regression. Before the trend
calculation, all the monthly SATs within an annual cycle were averaged into yearly
mean value to eliminate the seasonal effect.

Detection of trends in urban core, rural background, and transitional land. To
avoid the confounding effect of transitional pixels on time trend detection, we
divided the pixels in each cluster and in its buffer into three groups: urban core,
rural background, and transitional. Delineation is made with the help of a
breakpoint detection algorithm (Breaks For Additive Season and Trend, BFAST)
and the annual data on LST and land cover type. The urban core pixels are those

tagged as urban by the land cover product at the beginning and the end of the
observation period but exclude those that exhibit a breakpoint behavior. The rural
background consists of pixels tagged as land cover types other than urban or water
and excludes pixels with breakpoint behaviors. Water bodies are removed because
they are not suitable as rural background for surface UHI calculations?>*0. The
transitional pixels are those that exhibit breakpoint behaviors during the obser-
vational period.

We used the BFAST algorithm to determine abrupt changes, or breakpoints,
and time trends in both satellite LST and EVI time series®2. This algorithm
decomposes the time series into the trend, the seasonal, and the remainder
components (refer to Supplementary Note 4):

8(8) = Su(t) + 5in(1) + Sie(1)
= (@ (t) + B) + (A - sin@af(t — tg) + 0)) + T, ()

where S(t) is the observed LST/EVI at time ¢ (¢t =1, ..., n, where #n is the number of
LST/EVI observations throughout the period from 2002 to 2021); S;(t), S(t), and
Sre(t) are the trend, seasonal, and remainder components, respectively; a;(t) and ;
represent the segment-specific trends and intercepts on each sub-period within the
time series LST/EVI data; A, 5, and 6 denote the seasonal amplitude, day of spring
equinox and phase shift respectively; and f is the frequency, set as a constant 1/46
for LSTs and 1/23 for EVI, due to the temporal resolution of LST (8-day) and EVI
(16-day) data (i.e., 46 LST observations and 23 EVI observations per year). More
information on major acronyms and abbreviations can be found in Supplementary
Table 5.

The BFAST algorithm was implemented with the ‘bfast’ package in R (http://
bfast.r-forge.r-project.org/)>%; and the ordinary least squares residuals-based
moving sum test was applied to test whether abrupt changes appear within time
series data. With the BFAST algorithm, we obtained the abrupt changes (i.e.,
breakpoints) and trends for each pixel of the LST and EVI data for each city cluster
(refer to Supplementary Note 4). For each city cluster, the trends at the urban core
and rural background were calculated based on all the available pixels within the
urban core and rural background, respectively. Due to the segment-specific trends
for transitional pixels, the trends in the transitional land were calculated as the
mean of all the grids tagged as transitional pixels using linear regression. The 8-day
interval LST were averaged into annual means to suppress the seasonal effect.

Here we chose the BFAST algorithm rather than the simple land use product to
determine urban core, rural background, and transitional lands. This is mostly
because the latter usually omit the land transitions, such as intra-urban renewal
and redevelopment in a city center, that can distort the estimation of warming
trend but are not tagged by the simple land use product®3. The BFAST algorithm
has been used widely by the remote sensing community to determine transitional
pixels with a high accuracy®2. In the present study, the percent of pixels that have
undergone transitional change detected by the BFAST algorithm (20.3%) is greater
than the pixels tagged as land cover change with the simple land use product
(14.7%). This higher percent confirms that the BFAST algorithm is better at
determining land transitions, especially for those that are not revealed in the land
use product.

The surface UHI intensity was calculated as the difference in LST between the
urban core and the rural background pixels. The trend in the surface UHI intensity
was calculated by subtracting the trend at the urban core from that in the rural
background.

(6]

Attribution of urban surface warming. The individual contributions from URB,
BCC, and LSG to urban surface warming trends were quantified with the least
square-based statistical attribution approach. This approach and its derivative
version have been successfully used to isolate the contributions of urbanization and
greenhouse gas emissions to the observed warming in Chinal3. The statistical
attribution approach expresses the observed urban core temperature as a linear
combination of the component contributions, as:

Tons(t) = Boce(Toce = Vece) + Burs(Turs = Yure) + Brsa(Tis = Vise) +¢
@

where Tops is the yearly anomaly (the observed change of annual mean LST as
referenced to that in the previous year) during the study period; Tgcc, Turs, and
Tis are changes in temperature signals attributed to contributions from BCC,
URB, and LSG, respectively; Sscc, furs. and Pisg are the associated scaling factors;
vpco» Vures and vigg are, respectively, the noises from internal variability in BCC,
URB and LSG components, which were included to reduce the possible uncer-
tainties induced by the presence of noises in variables; and ¢ is a residual error
term. Note that the annual mean Togs, Tgce, Turss and Tigg were calculated to
suppress natural variability such as the seasonal effect!3. The scaling factors and
noise terms were estimated using the total least squares method in order to account
for contributions from BCC, URB, and LSG to Togs more appropriately.

The BCC component (Tpcc) was given by SAT from reanalysis data
(Supplementary Fig, 12) at rural areas for each city>%, for which the difference
between LST and SAT trends could be reconciled by the scaling factor fgcc. We
further need to note that the reanalysis SAT data was used mainly by referring to
previous studies!8, which pointed out that assimilation models do not account for
land use changes and therefore should not include urbanization signals?.
Nevertheless, there may exist possible uncertainties induced by urbanization signals
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involved in reanalysis SAT data. These urbanization signals may arise from the data
assimilation of different datasets when generating reanalysis data. Therefore, the
reanalysis SAT data over urban areas were entirely excluded to reduce the possible
uncertainties related to the possible urbanization signals involved in

reanalysis data.

The URB component (Tyrp) was set as the LST variations induced by urban
population change through the statistical relationship between LST and population
obtained at the pixel level. We quantified Tygp based on the widely used ‘space-for-
time substitution’ approach®. For each city, we established the statistical
relationship between yearly population density and LST anomalies (the observed
change of population density or LST as referenced to those in the previous year)
from 2002 to 2021 at the pixel level. Here the logarithmic function between LST
and population density was used mainly due to the nonlinearity between these two
parameters*4, Using the mean yearly anomalies in population density at the city
level as the prediction variable, the Tygrp was estimated based on the established
logarithmic function between LST and population density.

The LSG component (Tysg) indicates the LST variations induced by vegetation
change over the urban core (i.e., urban greening or degreening over urban core)?4.
Here the surface warming due to urban greening was estimated indirectly based on
the statistical relationship between EVI and LST (Supplementary Fig. 13). Such a
relationship was obtained over rural background where the surface is less impacted
by urbanization when compared with urban core. The included scaling factor B;sg
can also help adjust the differences in the LST-LSG relationships between rural
background and urban core. We are also aware that this representation is not
flawless because of the existence of possible oscillations24.

Data availability

The MODIS data are publicly available at https://e4ftl01.cr.usgs.gov/; the city cluster
boundary dataset is publicly available at http://data.ess.tsinghua.edu.cn/; the population
dataset is publicly available at https://landscan.ornl.gov/; and the reanalysis data are
publicly available at https://disc.gsfc.nasa.gov/. The major code and data generated from
the original datasets as described in the article as well as supplementary materials are also
available at https://zenodo.org/record/6568484.

Code availability
The breakpoint detection algorithm (Breaks For Additive Season and Trend, BFAST)
used in this study is available as software modules in R32.
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