Surface-Water Hydrology of California Coastal Basins Between San Francisco Bay and Eel River

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1851

Prepared in cooperation with the California Department of Water Resources

Surface-Water Hydrology of California Coastal Basins Between San Francisco Bay and Eel River

By S. E. RANTZ and T. H. THOMPSON

GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1851

Prepared in cooperation with the California Department of Water Resources

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1967

UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary

.

GEOLOGICAL SURVEY

William T. Pecora, Director

Library of Congress catalog-card No. GS 67-264

CONTENTS

Abstract
Introduction Purpose and scope Other investigations Acknowledgments Description of region Geology and physiography Climate Description of the individual basins Napa River basin Sonoma Creek basin
Purpose and scope Other investigations Acknowledgments Description of region Geology and physiography Climate Description of the individual basins Napa River basin Sonoma Creek basin
Other investigations Acknowledgments Description of region Geology and physiography Climate Description of the individual basins Napa River basin Sonoma Creek basin
Acknowledgments Description of region Geology and physiography Climate Description of the individual basins Napa River basin Sonoma Creek basin
Description of region
Geology and physiography Climate Description of the individual basins Napa River basin Sonoma Creek basin
Climate Description of the individual basins Napa River basin Sonoma Creek basin
Description of the individual basins Napa River basin Sonoma Creek basin
Napa River basin
Sonoma Creek basin
Sonoma Oreek Basing
Petaluma River basin
Marin County basins
Russian River basin
Small basins in Sonoma, Mendocino, and Humboldt Counties
Precipitation
Runoff
Mean annual volume
Average annual water loss and evaporation from water surfaces
Flow duration and regimen of flow
Low flow-magnitude, duration, and frequency
Flood frequency
Method of analysis
Application of regional flood-frequency relations
Maximum recorded peak discharges
High flow-magnitude, duration, and frequency
Selected references

ILLUSTRATIONS

|--|

PLATE	1.	Hydrologic maps of California coastal basins between San	
		Francisco Bay and Eel River In	pocket
FIGURE	1.	Index map showing location of report area	3
	2.	Graphs showing trends in precipitation and runoff	13
	3.	Flow-duration curves of daily discharge for selected gaging	
		stations for period 1931-63	18
	4-7.	Graphs showing relation of:	
		4. P_{mean} to Q_{mean}	20
		5. Q_{10} to Q_{mean}	21
		6. Q_{50} to Q_{mean}	22
		7. Q_{90} to Q_{mean}	23
		III	

CONTENTS

		Page
FIGURE	8. Low-flow frequency curves for Navarro River near Navarro_	26
	9. Frequency-mass curve and storage-draft lines for Navarro	
	River near Navarro for 20-year recurrence interval	27
	10. Flood-frequency curve for Russian River near Hopland	29

TABLES

TABLE 1.	Mean monthly distribution of precipitation at selected stations
2.	Mean annual precipitation for period 1931–63 at stations in north coastal California
3.	Hydrologic budget for watersheds upstream from key stream-gaging stations, for base period 1931-63
4.	Bar chart of records for stream-gaging stations in north coastal California
5.	Flow-duration summary of daily discharge for selected stream-gaging stations
6.	Mean monthly distribution of runoff at selected gaging stations
7.	Low-flow frequency table for selected stream-gaging stations
8.	Composite low-flow frequency table
9.	Summary of results of flood-frequency analysis
10.	Multiple-regression equations and associated statistics for peak discharges at selected recurrence intervals
11.	Comparison of maximum recorded peak discharge and Q ₅₀ computed from regression equation
12.	High-flow frequency data for selected stream-gaging stations
13.	Multiple-regression equations and associated statistics for high flows of various durations at selected recurrence intervals

SURFACE-WATER HYDROLOGY OF CALIFORNIA COASTAL BASINS BETWEEN SAN FRANCISCO BAY AND EEL RIVER

By S. E. RANTZ and T. H. THOMPSON

ABSTRACT

This report presents an analysis of the surface-water hydrology of the coastal basins of California that lie between the north shore of San Francisco Bay and the south boundary of the Eel River basin. Its purpose is to provide hydrologic information in convenient form for use in project planning by the California Department of Water Resources and other water agencies operating in the State.

The report area, comprising about 5,000 square miles, lies wholly within the northern California Coast Ranges (physiographic section). Most of the streams are small and drain watersheds of less than 100 square miles. A notable exception, however, is the Russian River, which has a drainage area of almost 1,500 square miles.

Precipitation is distinctly seasonal, and very little occurs from June through September. About 80 percent of the total precipitation falls during the 5 months November through March. Mean annual precipitation increases from south to north and is strongly influenced by the altitude, shape, and steepness of mountain slopes. Mean annual precipitation ranges from a low 20 inches in the Napa Valley to a high of 110 inches on the mountain divide of the Mattole River basin. Snow has an insignificant influence on the hydrology of the region.

Average annual natural runoff from the region is about 5.5 million acre-feet, which is equivalent to about 21 inches from the entire region. Runoff, however, has an areal distribution similar to that of precipitation and ranges from about 5 inches in the south to about 85 inches in the north. About 80 percent of the runoff occurs during the 4 rainy months December through March. The rains of November, falling on rather dry ground, generally contribute little runoff. Flow in the summer and early fall is poorly sustained, and many of the smaller streams go dry. This seasonal distribution of runoff reflects not only the seasonal distribution of precipitation but also the influence exerted by the geologic characteristics of the California Coast Ranges. The low permeability of the soil and surficial rock and the limited capacity for subsurface storage impede infiltration, and as a result there is little lag between rainfall and runoff.

Study of the runoff regimen indicates that, for any stream, there is a close relationship between the flow-duration curve and the frequency curves for low flows of various durations. Both are influenced by basin characteristics, and the relationship is maintained by the regional consistency of the seasonal pattern of precipitation. The recurrence intervals of low flows sustained for periods ranging from 1 day to 274 days may be derived from the flow-duration curve 2 SURFACE WATER, SAN FRANCISCO BAY TO EEL RIVER, CALIF.

with considerable confidence. The characteristics of the flow-duration curve were found to be roughly related to mean discharge.

Seven major floods have occurred in the region in the past 25 years. In many of the coastal basins south of the Russian River, six of the seven floods were of nearly equal magnitude. In the Russian River basin the flood of December 1964 was generally the maximum of these events, but in the coastal basins north and west of the Russian River the flood of December 1955 generally produced the greatest peak discharges. A flood-frequency study of the region indicates that the magnitude of floods of any given frequency can be related to size of drainage area and to mean annual basinwide precipitation. This precipitation is an excellent index of the relative magnitude of storms of any given frequency because the bulk of the precipitation occurs during several general storms each year, and the same number of general storms occur at all stations in any given year.

The magnitude and frequency of high flows, for durations ranging from 1 day to 274 days, were analyzed by a method that closely paralleled that used in the flood-frequency study. Average discharges for each selected duration and frequency were correlated with drainage area and mean annual basinwide precipitation. Results were highly satisfactory because all correlations had coefficients of multiple correlation that were equal to or greater than 0.99.

INTRODUCTION

PURPOSE AND SCOPE

This report on the surface-water hydrology of coastal basins in northern California has been prepared to provide hydrologic data for use in project planning by the California Department of Water Research and by other water agencies operating in the State. The broad objective of this project planning is the full conservation, control, and utilization of the water resources of California to meet future water needs.

The region studied has an area of 5,000 square miles and comprises the coastal drainage basins that lie between the north shore of San Francisco Bay and the south boundary of the Eel River basin. (See fig. 1.) The average annual runoff from the area is about 5.5 million acre-feet; the estimated ultimate water requirement of the area (California Water Resources Board, 1955) is 1.4 million acre-feet annually. Although runoff within the area varies greatly from basin to basin, the large total volume is indicative of a more-than-adequate water supply for the region. The bulk of the runoff, however, occurs in the winter, when the need for water is least. Consequently, there is a need for storage facilities to overcome the difference in time between periods of abundant supply and heavy demand for water, to provide flood control, and to enhance fishlife and the recreation potential of the region. A prerequisite, however, to the planning for full development of the water resources of the region is a detailed inventory of the water supply, covering the distribution of runoff with respect to both area

FIGURE 1.-Location of report area (shaded).

and time. This report is directed toward filling the need for that inventory. The great mass of surface-water data compiled by the U.S. Geological Survey has been analyzed. These data have been published in the water-supply paper series titled "Surface-Water Supply of the United States, Part 11, Pacific Slope Basins in California," and, since 1961, in an annual report series titled "Surface Water Records of California." The results of the study are reported in this paper.

A 33-year base period, 1931-63, has been used in this report for studying the hydrologic budget (mean annual precipitation, runoff, and water loss) of watersheds upstream from key gaging stations. Three factors influenced the selection of this base period: (1) No stations on natural streams in the region have records for more than 33 years; (2) rainfall records suggest that the average annual runoff for the period 1931-63 closely approximates the long-term mean annual runoff; (3) this 33-year base period includes years of extreme drought

4 SURFACE WATER, SAN FRANCISCO BAY TO EEL RIVER, CALIF.

and severe flooding. (Unless otherwise specified, year is used in this report, to refer to the water year, a 12-month period ending September 30. The water year is commonly used in water-supply studies and is designated by the calendar date of the last 9 months of the period; for example, the period October 1, 1951, to September 30, 1952, is designated the 1952 water year.)

The regimen of the various streams is discussed in the report and is analyzed in studies of flow duration, flood frequency, and frequency and duration of sustained high and low flows. For all these aspects of the hydrology of the study area, except flood frequency, the latest data used were those for the 1963 water year. However, before this report was completed the disastrous floods of December 1964 occurred, and the time base of the flood-frequency analysis was extended to include this major event.

Few stream-gaging stations were operated during all years of the base periods used in this report, and it was necessary, therefore, to resort to correlation techniques to produce synthetic streamflow figures to fill existing gaps in the records. Greater refinement in these correlative estimates of flow would have been possible if this study had been postponed for several years to permit the collection of additional data. The pressing need of the planning agencies, however, for information of the type presented in this report permitted no delay.

OTHER INVESTIGATIONS

Shortly before this study was completed, a report on the water resources and future water requirements of north coastal California was published by the California Department of Water Resources (1965). That report discusses not only most of the present report area but also many of the coastal basins to the north that were treated in an earlier U.S. Geological Survey report (Rantz, 1964). The scope of the State report is much broader than that of the Geological Survey reports, and although there is some duplication in the reports of the two agencies, they in general complement each other. The Geological Survey reports stress frequency studies and regional relationships that deal with the regimen of streamflow. These relationships enable the runoff characteristics of ungaged streams in the area to be deduced. The State report is more strongly projectoriented, to meet the immediate needs of the Department of Water Resources.

The ground-water resources of the report area have been studied in recent years, and the results of the investigations have been published in three U.S. Geological Survey water-supply papers (Cardwell, 1958, 1965; Kunkel and Upson, 1960). A summary of ground-water conditions is given in the report of the California Department of Water Resources (1965).

The quality of water in the region has also been investigated. Information concerning surface-water quality is published by the U.S. Geological Survey in its water-supply paper series titled "Quality of Surface Waters of the United States, Parts 9–14." The California Department of Water Resources publishes information relating to the quality of both surface and ground water in its annual Bulletin 65 series titled "Quality of Surface Waters in California," and Bulletin 66 series titled "Quality of Ground Waters in California." There is no duplication of quality-of-water data in the Geological Survey and State reports.

ACKNOWLEDGMENTS

This study was made under the terms of a cooperative agreement between the U.S. Geological Survey and the California Department of Water Resources. The report was prepared by the Geological Survey under the supervision of Walter Hofmann, district chief of the Water Resources Division.

Acknowledgment is made of the assistance given by the California Department of Water Resources, Sacramento, Calif., in furnishing information on consumptive use of water in the region. Runoff data for the ungaged Lagunitas Creek basin in Marin County were obtained through the courtesy of the Marin Municipal Water District.

DESCRIPTION OF REGION

Most streams in the report area are small and drain watersheds of less than 100 square miles. A notable exception, however, is the Russian River, which has a drainage area of almost 1,500 square miles. This drainage basin and other comparatively large basins in the region are delineated on plate 1. The region is mountainous except for about 550-square miles of relatively flat area, 45 percent of which lies in the Russian River basin and the remainder in the lower part of the basins tributary to San Francisco Bay. (The term "relatively flat," as used here, refers to a land slope of less than 200 ft to the mile.) The principal watershed divides range generally from 2,000 to 3,000 feet in altitude, but there are a few isolated peaks that exceed 4,000 feet. The mountainous areas are well covered with timber, and lumbering is the principal industry.

GEOLOGY AND PHYSIOGRAPHY

The study area lies wholly within the northern California Coast Ranges physiographic section (Fenneman, 1931). The rocks of the

258-151-67----2

northern California Coast Ranges consist chiefly of an inadequately mapped and poorly understood assemblage containing mostly sandstone and shale, with minor altered basalt and chert, which together compose the Franciscan Formation of Jurassic and Cretaceous age (Bailey and others, 1964). The rocks are locally intruded by sill-like masses of ultramafic rock that is now largely altered to serpentine. Volcanic rocks, ranging in age from Pliocene to Recent and in composition from basalt to rhyolite, overlie the Franciscan rocks in the mountains between Clear Lake and the San Pablo embayment of San Francisco Bay. The Franciscan rocks and, to a much lesser degree, the younger volcanic rocks, are folded and faulted so that their erosion has yielded a northwest-trending series of ridges and valleys. Some of the valleys are broad and flat because they contain thick deposits of gravels derived from the erosion of the surrounding mountains; others are narrow because they are still being actively eroded and contain almost no gravel. Because many of the valleys follow zones of brecciated rock along major faults, hummocky topography and landslides are prominent features of the landscape.

The major drainage of the area is provided by the Russian River, whose valley trends eastward from Jenner, on the coast, through the coastal mountains to Healdsburg, where it bifurcates into a long northwest-trending branch and a short southeast-trending branch. South of Healdsburg, parallel ranges separate the longitudinal valleys of the Napa River, Sonoma Creek, and Petaluma River; the Petaluma River valley is the southern extension of the Russian River valley. Extending northwest of Healdsburg and forming a narrow belt between the Russian River and the coast, is the Mendocino Plateau. It is a submaturely dissected upland rising from about 1,600 feet on the west to 2,100 feet on the east (Fenneman, 1931). The Mendocino Plateau is drained westward by the Gualala, Navarro, and Mattole Rivers, and other shorter transverse streams; but in a part near the coast, the South Fork Gualala River and a reach of the Garcia River have longitudinal trends where they flow in the rift valley of the San Andreas fault. North of the 39th parallel the ranges form a broad mountainous belt with only scattered alluvial-filled valleys.

CLIMATE

Climatologists and geographers have classified the climate of the study area as Mediterranean because of its mild wet winters and cool dry summers. Along the coast the climate is marked by moderate and equable temperatures, heavy and recurrent fogs, and prevailing west to northwest winds. Inland, temperatures have a wider range and winds are generally moderate. Temperatures are influenced largely by altitude and by local topography. Precipitation is likewise orographically influenced and decreases generally from north to south. Precipitation is distinctly seasonal, and very little occurs from June through September. The seasonal distribution of precipitation is largely controlled by the anticyclonic cell that is normally present off the California coast, particularly in summer. The frequent winter precipitation generally occurs when this anticyclone either is absent or is far south of its usual summer position. Snow occurs in moderate amounts at altitudes above 2,000 feet but rarely remains on the ground for long periods of time, and it has little or no influence on the regimen of runoff.

DESCRIPTION OF THE INDIVIDUAL BASINS

NAPA RIVER BASIN

The Napa River heads on the south flank of Mount Saint Helena, flows southeastward for about 40 miles, and empties into San Pablo Bay. Its principal tributaries are Conn, Dry, Milliken, and Redwood Creeks, all of which enter the river in a 10-mile reach upstream from the city of Napa. The central alluvial plain of Napa Valley is about 30 miles long and ranges in width from less than 1 mile at the north end to nearly 4 miles just north of Napa. The basin is not gaged downstream from Napa because the city is at the head of tide and because there is little accretion to the flow of the river downstream from the city. This study of the hydrology of the Napa River basin is therefore confined to the drainage area of 230 square miles upstream from Napa.

The principal use of water in the basin is for municipal and domestic purposes and for the irrigation of about 2,500 acres of agricultural land in Napa Valley. The principal towns in the valley are Napa, St. Helena, and Calistoga. Prior to 1945 almost all water was obtained from wells. The only surface-water supply of note was Milliken Creek, on which, in 1924, the city of Napa constructed a reservoir having a capacity of 2,000 acre-feet. The supply, however, failed to keep pace with expanding demands, and in 1945 the city built Conn Dam on Conn Creek. The impounding reservoir, Lake Hennessey, which has a capacity of 31,000 acre-feet, became the chief element in the water supply for the city of Napa. In subesequent years the municipal systems of the towns from St. Helena south and many ranches made connections to the pipeline from Lake Hennessey. The only other major surface-water reservoir in the basin is on Rector Creek, a tributary of Conn Creek. Rector Creek is the source of supply for Yountville Veterans Home and Napa State Hospital.

All streams tributary to the Napa River go dry in summer. Napa River is a perennial stream at the St. Helena gaging station but is usually dry at the Napa gaging station for one or more months during the summer. This loss in streamflow between the two gaging stations is attributed to pumping for irrigation both from the stream and from the ground-water reservoir.

SONOMA CREEK BASIN

Sonoma Creek heads on the west side of the Mayacmas Mountains, flows southeastward for about 28 miles, and empties into San Pablo Bay. The gaging station farthest downstream in the basin is at Boyes Hot Springs, 1.5 miles north of the city of Sonoma; only the 62-squaremile drainage area upstream from this gage is considered in this study. The alluvial plain in this basin extends north from Boyes Hot Springs for about 4 miles and is about 1 mile wide. The only tributary stream of appreciable size is Calabazas Creek, which enters Sonoma Creek at Glen Ellen.

The principal use of water in the basin is for municipal and domestic purposes and for the irrigation of about 500 acres of agricultural land. Almost all water is obtained from wells, but in 1963 importation of supplemental water from the Russian River began. At present (1964) the area served with Russian River water is small, but it is expected to increase rapidly.

PETALUMA RIVER BASIN

The Petaluma River has its source about 1 mile south of Cotati, on the south side of the low divide (altitude of less than 500 ft) that separates Petaluma River drainage from Russian River drainage. The river flows southeastward for about 23 miles and empties into San Pablo Bay. The single gaging station in the basin is 1 mile upstream from Petaluma, the only urban center in the basin. This report is concerned only with the 31-square-mile drainage area upstream from the gage. The alluvial plain in this basin comprises about 20 square miles and has a maximum width of about $3\frac{1}{2}$ miles at the gaging station. The tributary streams are small; Lichau Creek is the largest one upstream from Petaluma.

The principal use of water in the basin is for domestic and municipal purposes and for the irrigation of about 200 acres of agricultural land. Water is obtained from wells and small streams diversions. Since 1962 the city of Petaluma has imported more than half its water supply from the Russian River.

MARIN COUNTY BASINS

The principal streams in Marin County are Novato, Corte Madera, Lagunitas, and Walker Creeks.

Novato Creek flows eastward in a valley adjacent to Petaluma Valley and empties into San Pablo Bay. The only gaging station in the basin is on Novato Creek 1 mile west of Novato, the single urban center in the basin. This report deals with the 17.5-square-mile drainage area upstream from the gage. The only significant use of water in this basin is related to the operation of Stafford Lake, a 4,500-acre-foot reservoir on Novato Creek upstream from the gage. Since early 1952, when the reservoir was completed, water has been diverted from Stafford Lake for municipal use in Novato. Since 1961, part of the water needs of the town have been met by importation of water from the Russian River.

Corte Madera Creek flows southeastward through a highly urbanized valley in southeastern Marin County and empties into San Francisco Bay. The principal water use in the basin is for domestic and municipal purposes. The single gaging station in the basin is 4 miles from the mouth of the creek and gages the runoff from a drainage area of 18 square miles; flow is partly regulated by Phoenix Lake, a reservoir whose capacity is 612 acre-feet.

Lagunitas Creek heads on the north slope of Mount Tamalpais at an altitude of about 2,300 feet, flows northwestward along the base of Bolinas Ridge, and empties into Tomales Bay. The stream has a steep gradient in its upper reaches—it falls 1,500 feet in 11/2 miles. It is joined by its principal tributary, Nicasio Creek, about 4 miles from its mouth; another large tributary, Olema Creek, joins Lagunitas Creek about 1 mile from its mouth. The total drainage area of the Lagunitas Creek basin is about 80 square miles. The streams in the basin are highly regulated by four reservoirs-Lagunitas Lake, Bon Tempe Lake, Alpine Lake, and Kent Lake-on Lagunitas Creek, and Nicasio Reservoir on Nicasio Creek. Nicasio Reservoir was completed in 1961. The five reservoirs are operated for municipal and domestic supply by the Marin Municipal Water District, and they have a combined capacity of 52,500 acre-feet. The only streamflow records obtained in the basin by the U.S. Geological Survey were from a gage on Nicasio Creek at the site of the present reservoir. This station was operated during the period 1954-60.

Walker Creek heads on the west slope of the divide that separates its drainage from that of Novato Creek. Walker Creek flows northwestward for 16 miles through rough mountainous terrain and then westward for 7 miles through gently rolling country; it empties into Tomales Bay. The principal tributaries are Chileno Creek and Arroyo Sausal. The basin is sparsely populated, and there is little irrigation. The principal economic activity is dairying in the Chileno Creek subbasin. The only streams in the basin that have been gaged are Arroyo Sausal and Walker Creek above the mouth of Chileno Creek.

RUSSIAN RIVER BASIN

The Russian River drains an area of 1,485 square miles that is approximately 100 miles long and from 12 to 32 miles wide. From its source, about 16 miles north of Ukiah, the river flows southward for 90 miles through Redwood, Ukiah, Hopland, and Alexander Valleys, and through the northwestern part of the Santa Rosa Plains. The river then turns abruptly westward at Mirabel Park and flows for 22 miles through a canyon in the mountains before entering the Pacific Ocean at Jenner. The several alluvial valleys through which the river flows are separated by mountain gorges. Altitudes in the basin range from 4,480 feet to sea level. The principal tributaries of the Russian River are East Fork, Sulphur Creek, Maacama Creek, Dry Creek, and Mark West Creek. The principal tributary of Mark West Creek is Laguna de Santa Rosa, which drains a large flat marshy area and enters Mark West Creek about 5 miles upstream from its mouth. The flow in the lower reaches of Mark West Creek reverses during periods of medium and high stage on the Russian River. At those times Russian River water enters Mark West Creek, flows into Laguna de Santa Rosa, and spreads over the surrounding lowlands. These lowlands, when inundated, act as a natural detention basin and thereby reduce peak discharges on the lower reaches of the Russian River.

The principal use of water in the basin is for the irrigation of about 36,000 acres of agricultural land; it is also used for municipal, domestic, and industrial purposes, notably in the communities of Ukiah, Cloverdale, Healdsburg, Santa Rosa, and Sebastopol. Evapotranspiration from the irrigated areas accounts for most of the water actually consumed.

Several major water developments have been made in the Russian River basin. The Pacific Gas and Electric Co. annually diverts about 150,000 acre-feet of Eel River water into the East Fork Russian River through its Potter Valley diversion tunnel and powerplant northeast of Ukiah. This diversion, which began in 1908, is now regulated by storage in Lake Mendocino, a flood-control and waterconservation reservoir that was built in 1959 on the East Fork Russian River near its mouth. Lake Mendocino has a capacity of 122,500 acre-feet. Its releases maintain runoff on the main stem of the Russian River during the dry season to satisfy irrigation and water-supply requirements downstream. This is done by maintaining a minimum flow of 125 cfs (cubic feet per second) at the Geological Survey gage near Guerneville, 74 miles downstream from the mouth of the East Fork.

PRECIPITATION

At a site on the Russian River just upstream from the mouth of Mark West Creek (3 miles upstream from the Guerneville gage), the Sonoma County Flood Control and Water Conservation District diverts water for municipal use in the cities of Santa Rosa and Forestville within the Russian River basin and for other towns outside the basin. This diversion, which began in 1959, increased from 6,600 acre-feet in 1959 to 12,000 acre-feet in 1964. Water for this diversion is pumped from a gallery 60 feet beneath the streambed.

Some water is also diverted from Copeland Creek 9 miles south of Santa Rosa. This water is exported outside the Russian River basin to Petaluma in amounts of less than 100 acre-feet annually.

To meet the increasing water needs in the basin, construction has been authorized for a flood-control and water-conservation reservoir on Dry Creek near the Geyserville gaging station. The authorized capacity of the reservoir is 277,000 acre-feet. This volume of storage would provide an increase of about 90,000 acre-feet in the annual water supply available to the lower basin for municipal use and for such industrial uses as processing lumber, agricultural, and dairy products.

SMALL BASINS IN SONOMA, MENDOCINO, AND HUMBOLDT COUNTIES

Many small coastal streams north and west of the Russian River basin drain the Mendocino Plateau. The principal ones are the Gualala, Navarro, Noyo, and Mattole Rivers. Virtually the entire area is mountainous; the principal ridges range in altitude from 2,000 feet in the south to 3,000 feet in the north. The mountainous parts are well covered with timber, and lumbering is the principal industry. Some crops are raised in the small valleys, but dairying and sheep raising are of greater commercial importance. Of the 2,100 square miles in the area, only about 500 acres is irrigated, and most of this acreage is near Boonville, in the Navarro River basin. Commercial fishing is centered in the vicinity of Fort Bragg. This city, which had a population of 4,430 in 1960, is the largest in this part of the report area. Utilization of the available water resources is almost negligible in this sparsely populated area.

PRECIPITATION

Precipitation in the report area is distinctly seasonal—about 80 percent of the total occurs during the 5 months November through March. The distribution of annual precipitation is shown in table 1, which gives mean monthly precipitation, in percentage of the total, at four representative stations in the region. The bulk of the precipitation occurs during moderately intense general storms of several days duration. Hourly precipitation in excess of 1 inch is uncommon. Snow falls in moderate amounts at altitudes above 2,000 feet, but it seldom remains on the ground for more than a few days.

Mean annual precipitation generally increases from south to north and is strongly influenced by the altitude, shape, and steepness of mountain slopes. The isohyetal map on plate 1 presents a generalized picture of the areal distribution of mean annual precipitation during the 33-year period 1931–63. The wide range in mean annual precipitation is striking; precipitation decreases from 110 inches in the north to 20 inches in the south. Plate 1 also shows the location of the 43 U.S. Weather Bureau precipitation stations whose records were used in the construction of the isohyetal map; precipitation stations outside the region, whose records were used, are not shown. Table 2 lists mean annual precipitation at each of the 43 stations for the base period 1931–63. (Correlation procedures have been used, where necessary, to adjust station records to the base period.)

Annual precipitation varies greatly from year to year at any particular station. For example, at Fort Bragg the mean annual rainfall for the period 1931-63 was 37.9 inches, but during that period annual precipitation ranged from 19.8 inches in 1931 to 60.3 inches in 1941. Time trends in precipitation are illustrated by graph A of figure 2 which shows accumulated departures of annual precipitation from the 68-year mean at Fort Bragg during the period 1896-1963. 'The progression shown is typical of that for the entire report area. In a graph of this type, the plotted position for any particular year has little significance, and only the slope of the curve is important. A downward slope indicates less than average precipitation; an upward slope indicates that precipitation exceeded the mean. The graph shows that northern California underwent a prolonged wet period from 1900 to 1916, followed by a dry period from 1917 to 1937. The 26 years since 1937 have been predominantly wet. The driest single year in the 68 years of record was 1924, when the annual precipitation totaled 16.6 inches; 1931 was the second driest year. The wettest single year of record was 1941. During the base period (1931-63), chosen for use in this report, the mean annual precipitation at Fort Bragg differed by only 0.7 percent from the mean for the entire 68 years of record at that station.

Mean annual basinwide precipitation has been estimated from the isohyetal map on plate 1 for the larger watersheds in the area and for those watersheds having a potential for development. The watersheds considered are upstream from the stream-gaging stations listed in table 3; these stations can be located on plate 1 by their identifying numbers. Estimates of basinwide precipitation obtained from the existing network of precipitation stations are not precise because of the

FIGURE 2.—Trends in precipitation and runoff. *A*, Accumulated annual departures from mean annual precipitation at Fort Bragg. *B*, Accumulated annual departures from mean annual runoff of Napa River near St. Helena.

258 - 151 - 67 - 3

mountainous nature of the terrain. The estimates are useful, nevertheless, as indexes of precipitation. The basinwide averages are given in table 3.

RUNOFF

MEAN ANNUAL VOLUME

Mean annual runoff in the report area is directly related to mean annual precipitation and is influenced principally by (a) latitude, (b) distance from the ocean, (c) altitude and steepness of the mountain slopes, and (d) exposure and orientation of the mountain slopes. Thus, mean annual runoff tends to increase from south to north. The Mattole River basin, in the north end of the report area, has an average annual runoff of 67.7 inches, or the largest annual volume of runoff per square mile of any of the basins studied.

Runoff trends during the period 1931-63 are illustrated by graph (B) of figure 2, which shows accumulated departures of annual runoff from the 33-year annual mean for Napa River near St. Helena. This 33-year period is the longest practicable for studying long-term runoff trends for the area (p. 3). The trends depicted are similar to those shown by the precipitation graph (A) for Fort Bragg. The driest single year of record was 1931, when runoff was generally about 15 percent of the 33-year mean. The driest 5-year period of record was 1931-35, when runoff was about 50 percent of the long-term mean. The wettest year of record was 1956, when runoff was more than twice the 33-year mean.

Plate 1 shows the location of the 63 stream-gaging stations in the area for which runoff data have been compiled. The stations are numbered in downstream order using the permanent numbering system adopted by the U.S. Geological Survey in 1958. The stations identified by a symbol as being partial-record stations, are sites where discharge measurements of either low flow or both low flow and peak discharge, were systematically made. Stations where only one annual measurement of minimum or maximum discharge was made are not shown. Table 4 lists the 63 gaging stations, with their drainage areas and identifying numbers (pl. 1), and also presents a bar chart showing the period of record at each station.

Table 3 lists estimated mean annual natural runoff from basins upstream from key stream-gaging stations for the period of 1931–63. The runoff figures have been adjusted, where necessary, for the effect of manmade changes in stream regimen. For example, the construction of a reservoir upstream from a gaging station distorts the record of runoff because of evaporation losses and the varying volumes of stored water. Diversion of either surface or ground water for irri-

RUNOFF

gation, domestic, or industrial use likewise affects the runoff record. Where the diverted water is used upstream from the gaging station, the figure for natural runoff in table 3 includes only that part of the diverted water that is lost through evapotranspiration; the remainder is assumed to return eventually to the stream or effluent ground-water body. Table 3 lists average annual consumptive use of applied water in areas upstream from the key gaging stations. Because consumptive use has increased through the years, the average annual consumptive use is less than the present use (1964), and for this study it was assumed to equal two-thirds of the present use. The figures for consumptive use in table 3 are crude approximations, but they are considered satisfactory for this study because they represent only a small part of the natural runoff.

The 33-year average annual runoff figures in table 3 have been obtained by a series of runoff correlations involving short-term stations with longer records. Some of the short-term stations used have been in operation only a few years. Runoff estimates, however carefully made, that are based on short periods of observation are subject to considerable error, but their inclusion is justified because the records are needed now for use in preliminary project planning.

AVERAGE ANNUAL WATER LOSS AND EVAPORATION FROM WATER SURFACES

As considered in this report, the average annual water loss from a drainage basin is the difference between the 33-year mean annual precipitation over the basin and the 33-year mean annual runoff. The use of long-term average figures in this computation minimizes the effect of changes in surface or underground storage. Computed average annual water loss for each watershed under consideration is listed in table 3. Because basinwide precipitation totals for the area are considered index figures, rather than absolute values, the computed annual water loss for evapotranspiration).

Variations in average annual water loss between basins are caused by variations in the factors that influence evapotranspiration, namely: (1) Temperature and other climatic elements, (2) precipitation, (3) soil, (4) vegetation, (5) topography, and (6) geologic factors. The climatic factors—temperature, humidity, windspeed, and solar radiation—fix the upper limit of loss, or the potential evapotranspiration. An index of potential evapotranspiration is the evaporation from the surface of bodies of water such as lakes and reservoirs. A study by the U.S. Weather Bureau (Kohler and others, 1959, pl. 2) produced a generalized map of average annual lake evaporation in the United States, and a part of this map is reproduced on plate 1. Not enough evaporation stations and first-order Weather Bureau stations are present in the area to permit refinement of the isopleths shown. Plate 1 indicates that lake evaporation, and therefore potential evapotranspiration, increases with distance inland from the humid and often foggy coast.

Potential evapotranspiration cannot be attained in a basin unless the basin affords the opportunity for evaporation. Evaporation opportunity is related, therefore, to the available moisture supply and is influenced laregly by the volume and time distribution of precipitation; it is influenced to a lesser degree by such basin characteristics as soil, vegetation, and geology. Because all watersheds in the study area have the same pattern of monthly precipitation and because the annual volume of precipitation is generally equal to or greater than the annual value of potential evapotranspiration, variation in average annual water loss in the region is closely related to variation in average annual potential evapotranspiration. Inspection of plate 1 and of the tabulation of water loss in table 3 shows that average annual water loss from any basin in the study area is equal to about six-tenths of the average basinwide value of the isopleths of lake evaporation shown on Departures from this ratio are to be expected because of the map. variability in the factors that influence annual loss, but some of the variation undoubtedly results from inaccuracies on plate 1 and from discrepancies in the values of water loss computed for this report. These discrepancies reflect the complexity of estimating basinwide precipitation in mountainous terrain.

FLOW DURATION AND REGIMEN OF FLOW

The basic factors that affect the distribution of streamflow with respect to time are topography, tributary pattern, hydrogeology, soil, vegetation, and meteorological conditions. The flow-duration curve is the simplest means of expressing the time distribution of discharge it shows the percentage of time, for a given period, that any specified discharge is equaled or exceeded. It thus provides a useful device for analyzing the availability and variability of streamflow.

Flow-duration curves of daily discharge were prepared for 23 gaging stations that have 5 or more years of complete record of daily discharge not seriously affected by regulation or diversion. Included in the 23 station records are those for stations on the East Fork and the main Russian River for the years prior to regulation by Lake Mendocino. The Russian River records were adjusted to natural flow conditions by subtracting the measured daily importations of Eel River water. Flow-duration curves were also prepared for 10 partial-record stations where low and medium flows have been systematically measured for 5 years. At those 10 stations the measured discharges were considered equivalent to daily mean discharges. Duration percentages for high flows could not be computed for the partial-record stations, however, because of the lack of high-water data for those sites.

The information given by the 33 flow-duration curves is summarized in table 5, where discharges equaled or exceeded during specified percentages of time are tabulated both in cubic feet per second and in cubic feet per second per square mile. All discharges have been placed on a common basis for comparison by being adjusted to the base period 1931–63. To do this, the shorter records were extended by the use of correlation procedures. Some personal judgment was required in the extrapolation of short-term flow-duration curves to the lower discharges; consequently, the low-flow values given in table 5 are, to a considerable degree, subjective estimates. The number of significant figures used in the discharge columns of table 5, therefore, do not imply great precision; they were included to enable the user of the table to conveniently reconstruct smooth flow-duration curves on logarithmic normal-probalility paper from the tabulated values.

Duration curves for three gaging stations, selected for broad areal coverage in the area, have been plotted on logarithmic normal-probability paper in figure 3. Streamflow is shown as a ratio to mean annual discharge to facilitate comparison of the runoff characteristics indicated by the curves. Flow-duration curves, however, present an incomplete picture of the distribution of discharge, as they ignore the chronology of streamflow. The value of a flow-duration curve is enhanced, therefore, when it is supplemented by a knowledge of the regimen, or time distribution, of flow. The average monthly distribution of runoff in the area is summarized in table 6, which lists mean monthly runoff, in percentage of the annual total, at the three gaging stations shown in figure 3. The regimen of the Napa River near St. Helena (sta. 4560) is representative of streams in the southern part of the area, and the regimen of the Mattole River near Petrolia (sta. 4690) is representative of those in the northern part.

Examination of figure 3 and table 6 shows that all three streams have runoff patterns that are closely similar. Table 6 shows that about 80 percent of the runoff occurs during the 4 rainy months December through March. The rains of November, falling on fairly dry ground, generally contribute little runoff. Flow in the summer and early fall is poorly sustained, particularly in the southern part of the area, where many small streams often go dry. The southern basins not only receive the smallest amount of annual precipitation,

FIGURE 3.—Flow-duration curves of daily discharge for selected gaging stations for period 1931–63.

but they also are less likely than the northern basins to receive occasional summer and early fall rains. Pumping of water from wells and streams is partly responsible for the low summer flow in some sectors. In those places, hydraulic continuity generally exists between the stream and adjacent groundwater body, and the natural movement of ground water is toward the stream. Wells adjacent to the stream channel may temporarily reverse the hydraulic gradient; wells farther from the channel may intercept water that would otherwise be discharged to the stream.

In figure 3, the steep slopes of the three curves show that flow is highly variable; that is, the streams have a wide range of discharge. This usually indicates that there is little lag between rainfall and runoff; in this area this condition is due to the shallowness and low permeability of the soil and surficial rock, to the absence of lakes or large marshy areas, and to the lack of mountain snowpacks where precipitation might be stored for delayed runoff. The low-water end of the flow-duration curve for Napa River at St. Helena is steeper than that of the curves for the other two streams, and this relation indicates that low flows of the Napa River are the least sustained of the three.

The general characteristics of the flow-duration curves for the 33 gaging stations can be related to the mean discharges at the stations. Key points that were examined on the curves are Q_{10} , Q_{50} , Q_{90} , Q_{mean} , and P_{mean} , where

- Q_{10} = discharge equaled or exceeded 10 percent of the time during the period 1931-63,
- Q_{50} = median discharge for the period 1931-63,
- Q_{90} = discharge equaled or exceeded 90 percent of the time during the period 1931-63,
- Q_{mean} =mean discharge for the period 1931-63, and
- P_{mean} =percentage of time, in the 1931-63 period, during which Q_{mean} was equaled or exceeded.

Values of Q_{10} , Q_{50} , and Q_{90} , are given in table 5; values of Q_{mean} are given in table 3; and values of P_{mean} are obtained from the individual station flow-duration curves.

In the graphical analyses that follow in figures 4–7, discharges of each of the 33 stations are expressed in cubic feet per second per square mile. For clarity, identifying station numbers are not shown with the plotted points on the graphs.

Figure 4 shows the relation of P_{mean} to Q_{mean} . For the range of mean discharge in the area, values of duration time (P_{mean}) range from 10 percent of the time for low mean discharge to 22 percent of the time for high mean discharge. The values of P_{mean} offer a comparative index to the skewness of the distribution of daily discharges at a station—the lower the value of P_{mean} , the greater the skew in the distribution of flows. Skewness reflects the fact that much of the runoff occurs during rather short periods of high flow. Figure 5 shows the relation of Q_{10} , Q_{mean} , and figure 6, the relation of Q_{50} , to Q_{mean} .

Figure 7, which shows the relation of Q_{90} to Q_{mean} , indicates that for mean discharges less than 1.3 cubic feet per second per square

FIGURE 4.-Relation of Pmean to Qmean.

FIGURE 5.—Relation of Q_{10} to Q_{mean} .

mile (940 acre-feet per year square mile), Q_{90} is usually zero. Q_{90} is a significant index in water resources studies in areas of perennial streamflow—for example, in the northern part of the study area. In such places Q_{90} is often considered an appropriate measure of the quantity of water available for continuous use, without resorting to surface storage and without permanently depleting water in underground storage.

The scatter of plotted points on the graphs in figures 4–7 indicates that for the percentile flows investigated, only a part of the variation in discharge is explained by variation in mean discharge. A large

258-151-67-4

FIGURE 6.-Relation of Q50 to Qmean.

FIGURE 7.---Relation of Q₉₀ to Q_{mean}.

part of the variation in Q_{50} and Q_{90} is related to variation in the geology of the basins, and, consequently, there is relatively poor correlation with Q_{mean} alone. Nevertheless, figures 4–7 are helpful in providing a generalized picture of the characteristics of flow-duration curves in the report area.

Although it is common practice to compute indexes of streamflow variability when analyzing the characteristics of flow-duration curves, it was not done for this report. An index of variability, such as that introduced by Lane and Lei (1950) or that used by Rantz (1964, p. 43-45), is significant for perennial streams but is meaningless for streams that go dry or for streams of highly variable discharge whose low flows are minute. Many streams in the southern part of the area are not perennial, so the computation of index figures of variability was not warranted.

LOW FLOW—MAGNITUDE, DURATION, AND FREQUENCY

A prerequisite for any study involving water supply during periods of critically low runoff is a knowledge of the magnitude, duration, and frequency of deficient flow. To fill the need for this information, lowflow frequency graphs and tables were prepared for 31 sites to show the probable recurrence interval of low flows of various magnitudes and durations. The 31 sites included all 23 complete-record gaging stations and 8 of the 10 partial-record stations that were used in the flow-duration analysis. The gaging stations are those having 5 or more years of discharge record that was not seriously affected by regulation or diversion, or having a discharge record (such as that for the Russian River stations) that could be adjusted to natural flow conditions from a record of measured diversions. The duration periods used in this analysis were 1, 7, 14, 30, 60, 90, 120, 183, and 274 days. A 3-day duration period was not included because the lowest mean discharge for 3 consecutive days during each year was almost identical with the minimum daily discharge of each year. The base period used was April 1, 1931, to March 31, 1963. Using March 31 as the closing day of each year eliminated the possibility of a period of sustained low flow starting in one year and extending into the next.

Low-flow frequency graphs for a gaging station were constructed by applying the following procedure:

1. The smallest mean discharges of each year for each of the nine duration periods (1, 7, 14 ... 274 days) were listed and ranked in ascending order of magnitude, starting with "1" for smallest discharge in the array. 2. The plotting position of each discharge was computed by use of the formula

Recurrence interval = $\frac{N+1}{M}$

where N is the number of years of record (32 yrs), and M is the rank or order number.

3. The discharges and their corresponding recurrence intervals were plotted on logarithmic extreme-value probability paper, and smooth curves were fitted to the plotted points.

Because no station in the report area had a complete array of dischare data for the 32-year base period, it was necessary to estimate many of the discharges needed for the analysis. In making these estimates, discharges at each gaging station for each of the nine duration periods were correlated graphically with concurrent discharges at a nearby station in or near the report area. It was practical to include 8 of the 10 partial-record stations in this analysis because their periodically measured discharges correlated linearly with discharges at complete-record gaging stations, and therefore the correlation equations were valid for discharges averaged over each of the 9 duration periods. The two remaining partial-record stations—Garcia River near Point Arena and Greenwood Creek at Elk—were not used because their discharges did not correlate linearly with those for nearby complete-record stations.

Figure 8 is an example of the low-flow frequency curves derived in this study; the flat roughly parallel curves are typical of those for streams in the northern, or more humid, part of the report area. The nine low-flow frequency curves for streams in the southern, or less humid, part of the area are much steeper because the low flows of these streams are poorly sustained. The spacing of the curves in figure 8 is typical, however, of all streams in the area. The curves are closely spaced for durations of 1 to 120 days because virtually no runoff-producing rain occurs in the region for at least 4 consecutive months in each year. The curves for durations of 183 and 274 days are spaced farther apart because these longer durations include periods of storm runoff.

Table 7 lists the discharges at each station corresponding to selected recurrence intervals on the frequency curves for each of the 31 study sites. Personal judgment was required in the extrapolation of discharges to the higher recurrence intervals, and, consequently, the smaller discharges in table 7 are rather subjective estimates. The number of significant figures shown in the discharge columns of the table, therefore, do not imply great precision, but were included to enable the

FIGURE 8.—Low-flow frequency curves for Navarro River near Navarro (sta. 4680.)

user of the table to reconstruct smooth low-flow frequency curves on logarithmic extreme-value probability paper.

Examination of the low-flow frequency curves and the flow-duration curves indicates that the two sets of data are fairly closely related. This is not surprising because all streams in the area have similar regimens. It was possible, therefore, to prepare a composite low-flowfrequency table (table 8) for the area; in this table the discharges are replaced by corresponding percentiles from the flow-duration curves. For example, table 8 indicates that for any station the 1-day discharge with a 10-year recurrence interval is about equivalent to the discharge at that station that is equaled or exceeded 99 percent of the time (Q_{99}). To carry this example further, if we check this relationship for Navarro River near Navarro, we find that the 1-day discharge with a 10year recurrence interval is 2.9 cfs (from table 7), whereas Q_{99} is 3.1 cfs (from table 5). In general, the composite percentiles listed in table 8 are slightly smaller than the percentiles for individual stations in the northern, or more humid, part of the report area, and somewhat larger than the percentiles for individual stations in the southern, or less humid, part of the area.

The data in table 7 are in convenient form for use in studies of water supply, water power, and pollution control during periods of critically low flow, in those situations where the construction of storage facilities is not contemplated. Where the need for within-year storage is apparent and economic considerations govern the design of the storage facility, the data in these tables may be used to construct a frequencymass curve that represents the total runoff available for a critical period of specified recurrence interval. The traditional mass-curve method of analyzing the storage required to maintain given draft rates may then be applied (Linsley and Franzini, 1964, p. 154–157). An example of this method of analysis, shown in figure 9, is self-explanatory. The curve

of total available runoff, corresponding to a 20-year recurrence interval, is obtained by plotting the volume of runoff, for various durations of minimum flow, against the duration period. Water stored in a reservoir may be depleted by evaporation or seepage; thus, the amount of storage required for a given draft must be increased accordingly.

FLOOD FREQUENCY

The magnitude and frequency of floods are essential elements in studies involving flood-control design or the economics of structures within the reach of flood waters. Accordingly, this report provides regional flood-frequency relations that may be used as guides in determining "design" flood flows for streams, both gaged and ungaged, in the coastal basins discussed in this report. The method of analysis used in deriving the regional relationships is only briefly described here; it was discussed in detail by Benson (1962) and by Cruff and Rantz (1965). The regional concept of flood-frequency analysis is used because flood-frequency curves for individual stations, particularly for those stations with short records, are considered inadequate for establishing flood criteria for design purposes. The flood series for a single station is a random sample and therefore may not be representative of the long-term average distribution of flood events at the gaging station.

The stations used in this study were those that had 10 or more years of record of momentary peak discharge not seriously affected by regulation or diversion. If a stream, for example, is now regulated by a reservoir, but had at least 10 years of record before construction of the reservoir, it was included in the analysis; only the years of record before construction of the reservoir were used as basic data. For the preceding sections of this report, the latest data used were those for the 1963 water year. For the flood-frequency analysis, however, the time base was extended to include the disastrous floods of December 1964. The 17 stations listed in table 9 were the only ones in the area that met the criterion of 10 or more years of unaffected peak discharge record.

METHOD OF ANALYSIS

The first step in the regional analysis of flood frequency was the preparation of individual flood-frequency curves for the 17 stations. Because a time base of at least 35 years was desired, it was necessary to obtain a value of maximum peak discharge at each station for each. year of the period, 1931–65. No station had a complete array of 35 annual peak discharges, and the gaps in the arrays were filled by graphical correlation of concurrent peak discharges at nearby stations in or contiguous to the report area. At each station the completed

array of 35 peak discharges was ranked in order of magnitude, starting with "1" for the greatest discharge and ending with "35" for the smallest. Next, the plotting position or recurrence interval, T, for each discharge was computed by use of the formula:

$$T=\frac{N+1}{M},$$

where N is the number of years of record (35 yrs), and M is the rank or order number. Thus, the computed recurrence interval at each station for the greatest flood discharge since 1930 was 36 years, a value that is consistent with qualitative information concerning historic floods in the region.

Individual station flood-frequency curves were then prepared by plotting peak discharge against recurrence interval on extreme-value probability graph paper. Only those peak discharges that were observed were plotted; the peak discharges computed by correlation were used only to rank the observed discharges and thereby obtain more meaningful values of recurrence interval. A straight line or gentle curve was fitted to the plotted points and extrapolated to a recurrence interval of 50 years, as shown in the example in figure 10.

The individual flood-frequency curves were used to obtain regional flood-frequency equations that relate the peak discharge for selected recurrence intervals to basin and climatic parameters. The recurrence intervals selected for study were 2.33, 5, 10, 25, and 50 years. The 2.33year recurrence interval was included because of its widespread use in statistical analyses of flood frequency that involve the extreme-value

FIGURE 10.—Flood-frequency curve for Russian River near Hopland (sta. 4625).

probability distribution. Investigation of numerous basin and climatic parameters showed the most significant ones to be drainage area and mean annual basinwide precipitation. The relation between peak discharge and drainage area is obvious-in almost all humid environments, the greater the area contributing runoff, the greater the peak flow. The relation between peak discharge and mean annual basinwide precipitation is less obvious, but it can be explained rationally. Mean annual precipitation is an excellent index of the relative magnitude of storms of any given frequency because of the bulk of the annual precipitation in the study area occurs during several general storms each year, and the same number of general storms occur at all stations in any given year. The multiple-regression equations relating peak discharge for each of the five recurrence intervals to drainage area and to mean annual basinwide precipitation are listed in table 10. The constancy of the exponent of drainage area in the equations is noteworthy.

The coefficients of multiple correlation listed in table 10 show a high statistical significance and the listed standard errors of estimate are reasonably low for a regional flood-frequency study. Table 9 summarizes the results of the analysis. The drainage areas of the stations used in developing the regression equations ranged from 17 to 1,340 square miles; mean annual basinwide precipitation ranged from 31 to 92 inches. Table 9 shows that values of peak discharge computed from the regression equations compare reasonably well with those obtained from individual station flood-frequency curves.

APPLICATION OF REGIONAL FLOOD-FREQUENCY RELATIONS

The regional flood-frequency equations that were derived may be used to construct flood-frequency curves for ungaged sites or for sites with short records of peak discharge in the study area. The first step in the process is to determine the drainage area upstream from the site. The next step is to obtain the mean annual basinwide precipitation from plate 1 of this report. Those values of drainage basin area and precipitation are then used in the equations in table 10 to obtain the peak discharges corresponding to recurrence intervals of 2.33, 5, 10, 25, and 50 years. The computed discharges are plotted against recurrence interval on extreme-value probability graph paper, and the desired flood-frequency curve is obtained by drawing a smooth curve through the plotted points. The regression equations in table 10 should be used with caution when it is necessary to apply them to watersheds whose drainage basin area or mean annual basinwide precipitation lie outside the ranges of values given in the preceding paragraph.

MAXIMUM RECORDED PEAK DISCHARGES

In this section of the report the maximum recorded peak discharges at gaging stations in the study area are examined and compared with the theoretical peak discharge for a 50-year recurrence interval as computed by the flood-frequency regression equation. In the years following 1931, major floods occurred on the following dates: February 1940, December 1955, February 1958, February 1960, February 1962, January 1963, and December 1964. No single flood of this group of seven events produced the maximum recorded peak discharge at all gaging stations in the area. In many of the coastal basins south of the Russian River, six of the seven floods were of nearly equal magnitude. In the Russian River basin the flood of December 1964 was generally the maximum event, but in the coastal basins north and west of the Russian River the flood of December 1955 generally produced the greatest peak discharges.

Another notable flood occurred in northern California in 1937, but it has been excluded from this discussion because it was not the maximum event at either of the two stations at which its peak discharge is known. At the station on Conn Creek near St. Helena, where records of natural flow terminated in 1945 with the construction of Conn Dam, the peak discharge of December 1937 was greatly exceeded by that of February 1940. At the station on the Russian River near Guerneville, the peak discharge of December 1937 was exceeded in four of the seven floods listed above.

Relatively few gaging stations were operated during the entire 25-year period (1940-64) that includes all seven floods. However, because no single flood peak predominated in the entire area, it is interesting to examine, with respect to recurrence interval, the maximum peak discharge that occurred at each station whose record includes at least one of the seven floods. Those stations are listed in table 11. Stations whose recorded maximum peak discharge was appreciably affected by reservoir regulation have been omitted, but the lower Russian River stations were included because their recorded peak flows could be adjusted for the effect of regulation by Lake Mendocino.

The maximum discharge (Q_{\max}) for each of the 37 stations in table 11 was compared with the theoretical peak discharge for a 50-year recurrence interval (Q_{50}) , as computed from the last equation given in table 10. The ratios of Q_{\max} to Q_{50} are shown in the last column of table 11. From qualitative historical records we expect the largest flood of the past 25 years to have a recurrence interval of about 35 years. On the basis of the average slope of the flood-frequency curves prepared for this study, the 35-year flood is approximately equal to 93 percent of Q_{50} . Therefore, we expect the largest flood of the past 25 years to be roughly equal to 0.93 (Q_{50}) . The ratios of Q_{\max} to Q_{50} in the last column of table 11 are centered about a value of 0.85, and half the ratios lie between 0.65 and 1.05. The results of this comparison are therefore consistent with the assumptions made concerning the recurrence interval of maximum observed floods.

HIGH FLOW—MAGNITUDE, DURATION, AND FREQUENCY

Studies involving the storage of flood waters require a knowledge of the magnitude, duration, and frequency of high flows. To fill the need for this information, high-flow frequency curves were prepared for the 17 stations used in the flood-frequency analysis. The stations, listed in table 12, are again those having 10 or more years of discharge record that was not seriously affected by regulation or diversion, or having a discharge record (such as that for the Russian River stations) that could be adjusted to natural flow conditions from a record of measured diversions.

The high flows selected for analysis were the maximum average rates of discharge each year for the following duration periods: 1, 3, 7, 15, 30, 60, 90, 120, 150, 183, and 274 days. The maximum 24-hour flow would have been much more significant than maximum flow for 1 calendar day. The users of Geological Survey streamflow data, however, seldom have maximum 24-hour flow rates available to them, and, in addition, the maximum flow for so short a time interval is generally not a critical factor in reservoir design. For these reasons, the rather artificial duration period of 1 calendar day was adopted for use in this study. The results obtained for discharge of this duration were surprisingly consistent.

The method of analyzing the high-flow data closely paralleled that described in the flood-frequency section of this report. This method is most appropriate for use on streams having one major high-water period per year, and its principal advantage is that it allows estimates of required storage to be made for ungaged streams. In the analysis each of the 11 duration periods was studied separately, and the 33-year base period October 1930-September 1963 was used. For each station and each duration period the data were arrayed in order of magnitude, after first filling gaps in the arrays by graphical correlation of concurrent discharges at nearby stations in or near the report area. The recurrence interval of each observed discharge in each array was computed and then plotted with its corresponding discharges on extremevalue probability paper, and the plotted points were fitted with a straight line or smooth curve.

The individual-station frequency curves for each of the 11 duration periods were used to relate the magnitude of sustained high flows for selected recurrence intervals to regional basin and climatic parameters. A regional analysis of this type reduces the statistical sampling error that might be introduced by treating each station individually in a time series. The recurrence intervals selected for study were 2.33, 5, 10, 25, and 50 years; table 12 lists the discharge indicated by the individual station frequency curves for each of these recurrence intervals. The basin and climatic parameters selected for correlation with these discharges were drainage-basin area and mean annual basinwide precipitation. These parameters, too, are listed in table 12. The multipleregression equations relating discharge to the 2 parameters for each of the 5 recurrence intervals and for each of the 11 duration periods are summarized in table 13.

The coefficients of multiple correlation listed in table 13 show an extremely high statistical significance, and the listed standard errors of estimate are low for a regional high-flow frequency study. Examination of the regression constants shows that the drainage-area exponent, b, closely approximates unity for all but the smaller duration periods, and the small range of variation of this exponent about the value of unity suggests that the variations may be random.

The regression equations in table 13 may be used to construct frequency curves for various duration periods of high flow at ungaged sites in the study area. The procedure that would be followed in this construction is similar to that for constructing flood-frequency curves for ungaged sites. The user of the equations is reminded that the equations were developed from records for watersheds whose drainage areas range from 17 to 1,342 square miles and whose mean annual basinwide precipitation ranges from 31 to 92 inches. The equations therefore should be used with caution if it is necessary to apply them to a watershed whose drainage area or mean annual precipitation lies outside these ranges of values.

The information furnished by magnitude-duration-frequency curves is useful in studying the hydrologic and economic aspects of reservoir design for flood control. Data picked from the curves can be used to construct a frequency-mass curve that represents the total flood volume produced, for a specified recurrence interval, within duration periods of various lengths. The traditional mass-curve method of analyzing the storage required to limit reservoir outflow rates to some given value would then be applied. This method of analysis is similar to the method explained and illustrated in the closing part of the lowflow analysis section of this report.

SELECTED REFERENCES

- Bailey, E. H., Irwin, W. P., and Jones, D. L., 1964, Franciscan and related rocks, and their significance in the geology of western California : California Dept. Conserv., Div. Mines and Geology Bull. 183, 177 p.
- Benson, M. A., 1962, Factors influencing the occurrence of floods in a humid region of diverse terrain: U.S. Geol. Survey Water-Supply Paper 1580–B, 64 p.
- California Department of Water Resources, 1965, Water resources and future water requirements, north coastal hydrographic area, southern portion (preliminary edition): Bull. 142–1, 450 p.
- California Water Resources, Board, 1955, Water utilization and requirements of California: Bull. 2, 227 p.
- Cardwell, G. T., 1958, Geology and ground water in the Santa Rosa and Petaluma Valley areas, Sonoma County, California: U.S. Geol. Survey Water-Supply Paper 1427, 273 p.
- Cruff, R. W., and Rantz, S. E., 1965, A comparison of methods used in floodfrequency studies for coastal basins in California: U.S. Geol. Survey Water-Supply Paper 1580–E, 56 p.
- Fenneman, N. M., 1931, Physiography of western United States: New York, McCraw-Hill Book Co., 534 p.
- Kohler, M. A., Nordenson, T. J., and Baker, D. R., 1959, Evaporation maps for the United States: U.S. Weather Bureau Tech. Paper 37, 13 p.
- Kunkel, Fred, and Upson, J. E., 1960, Geology and ground water in Napa and Sonoma Valleys, Napa and Sonoma Counties, California: U.S. Geol. Survey Water-Supply Paper 1495, 252 p.
- Lane, E. W., and Lei, Kai, 1950, Stream flow variability : Am. Soc. Civil Engineers Trans., v. 115, p. 1084–1134.
- Linsley, R. K., and Franzini, J. B., 1964, Water-resources engineering: New York, McGraw-Hill Book Co., 654 p.
- Rantz, S. E., 1964, Surface-water hydrology of coastal basins of northern California: U.S. Geol. Survey Water-Supply Paper 1758, 77 p.
- U.S. Geological Survey, 1960, Compilation of records of surface waters of the United States through September 1950, Part 11-A, Pacific slope basins in California except Central Valley: U.S. Geol. Survey Water-Supply Paper 1315-B, 413 p.
 - 1964, Compilation of records of surface waters of the United States, October 1950 to September 1960, Part 11, Pacific slope basins in California : U.S. Geol. Survey Water-Supply Paper 1735, 715 p.

TABLES

_

_

•

36 SURFACE WATER, SAN FRANCISCO BAY TO EEL RIVER, CALIF.

Station	Mean annual precip-	Mea	n mon	thly di	stribul	tion of	precip precip	itation itation	as pe	rcentag	e of m	ean an	nual
	itation 1931-63 (in.)	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.
Kentfield (No. 16)	46. 4	5.3	10	20	22	18	13	6.9	3.2	0.7	0	0.1	0.8
26)	39.6	5.4	10	20	21	19	12	7.0	3.2	1.2	0	.3	.9
42) Upper Mattole	37.9	6.9	11	19	20	16	13	7.1	3.9	1.7	.1	.3	1.0
(No. 43)	79.7	7.3	12	19	20	16	13	6.0	4.0	1, 3	.2	.2	1.0

TABLE 1.—Mean monthly distribution of precipitation at selected stations

 $\begin{array}{c} \textbf{TABLE 2.} \\ \textbf{--Mean annual precipitation for period 1931-63 at stations in north coastal} \\ California \end{array}$

No. (pl. 1)	Station	Latitude (N)	Longitude (W)	Altitude (ft)	Period of record	Estimated 33-year mean annual precipitation (in.)
1 2 3 4 5 6 6 7 8 9 9 0 10 11 12 13 14 15 16 17 8 19 20 20	Angwin Pacific Union College Calistoga	38°34′ 38°35′ 38°30′ 38°27′ 38°23′ 38°18′ 38°12′ 38°12′ 38°12′ 38°12′ 38°14′ 38°14′ 38°14′ 38°14′ 38°14′ 38°14′ 38°14′ 38°24′ 38°21′ 38°21′ 38°21′ 38°21′ 38°225′	122°26' 122°35' 122°32' 122°27' 122°28' 122°27' 122°16' 122°16' 122°18' 122°38' 122°38' 122°38' 122°33' 122°33' 122°33' 122°33' 122°34' 122°34' 122°34' 122°49'	$1, 815 \\ 365 \\ 255 \\ 1, 792 \\ 160 \\ 1, 465 \\ 16 \\ 60 \\ 20 \\ 20 \\ 20 \\ 30 \\ 16 \\ 350 \\ 30 \\ 16 \\ 350 \\ 31 \\ 45 \\ 171 \\ 145 \\ 167 \\ 210 \\ 1, 000 \\ $	$\begin{array}{c} 1939-63\\ 1931-63\\ 1907-63\\ 1940-63\\ 1953-62\\ 1943-62\\ 1943-62\\ 1943-62\\ 1945-63\\ 1955-63\\ 1955-63\\ 1945-63\\ 1943-63\\ 1947-63\\ 1947-63\\ 1947-63\\ 1942-63\\ 1942-63\\ 1888-1963\\ 1942-63\\ 1888-1963\\ 1942-63\\ 1940-63\\ 1$	$\begin{array}{c} 37.8\\ 36.1\\ 33.1\\ 39.8\\ 31.2\\ 23.8\\ 20.0\\ 27.2\\ 22.7\\ 23.9\\ 30.6\\ 30.6\\ 46.4\\ 35.7\\ 30.6\\ 46.4\\ 35.7\\ 30.6\\ 28.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 40.6\\ 55.9\\ 50.9\\ 40.6\\ 55.9\\ 50.9\\$
22 23 24 25 26 27 28	Guerneville Fort Ross Cazadero Venado Healdsburg Healdsburg 2 E Kellogg	38°30' 38°31' 38°32' 38°37' 38°37' 38°37' 38°37' 38°38'	123°00' 123°15' 123°08' 123°01' 122°52' 122°52' 122°52' 122°39'	115 116 1,040 1,260 102 102 1,360	1939-63 1875-1963 1939-63 1939-63 1877-1963 1952-63 1943-63	45. 8 39. 0 71. 1 56. 1 39. 6 36. 3 42. 7
29 30 31 32 33 34 35 36 37 38 39 40 41 42	Skaggs Springs Los Lomas Ranch Cloverdale 11 W. Cloverdale 3 SSE The Geysers Point Arena Point Arena Yorkville Hopland Largo Station Ukiah Redwood Valley Potter Valley Powerhouse Fort Bragg Airway Fort Bragg	38°41' 38°46' 38°46' 38°45' 38°55' 38°55' 39°01' 39°09' 39°10' 39°10' 39°16' 39°22' 39°24' 39°24'	123°08' 122°59' 122°49' 123°42' 123°42' 123°16' 123°16' 123°16' 123°12' 123°16' 123°12' 123°16' 123°12' 123°49' 123°49'	$\begin{array}{c} 1,930\\ 1,820\\ 320\\ 1,600\\ 197\\ 235\\ 1,100\\ 550\\ 623\\ 1,550\\ 718\\ 1,014\\ 61\\ 80\\ 90\end{array}$	$\begin{array}{c} 1939-63\\ 1940-63\\ 1939-63\\ 1940-63\\ 1940-63\\ 1941-63\\ 1943-63\\ 1877-1963\\ 1940-63\\ 1939-63\\ 1939-63\\ 1990-63\\ 1990-63\\ 1940-63\\ 1890-1962\\ 1890-1963\\ 1890-1962\\ 1890-190$	$\begin{array}{c} 57.\ 4\\ 59.\ 6\\ 39.\ 3\\ 53.\ 9\\ 39.\ 3\\ 32.\ 9\\ 46.\ 0\\ 34.\ 9\\ 35.\ 6\\ 49.\ 5\\ 34.\ 6\\ 43.\ 9\\ 38.\ 5\\ 37.\ 9\\ 37.\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ $

TABLES

	Gaging station		Ave	rage annu:	al basinwid	le values	
		Drain- age area	Consump- tive use	Precipi-	Natural	runoff	Water
No. (pl. 1)	Name	(sq mi)	of applied water (acre-ft)	tation (in.)	Thou- sands of acre-feet	Inches	loss (in.)
	Napa River basin						
4560 4565 4570 4580	Napa River near St. Helena Conn Creek near St. Helena Dry Creek near Napa Napa River near Napa Sanama Creek hasin	81. 4 53. 2 17. 4 218	1,200 (1) (1) 5,000	43 37 44 41	63. 1 23. 9 13. 0 135. 0	14.5 8.4 14.0 11.6	28 29 30 29
4585	Sonoma Creek at Boyes Hot Springs	62.2	500	45	43.8	13.2	32
	Petaluma River basin						
4590	Petaluma River at Petaluma Novato Creek basin	30. 9	500	31	11. 5	7.0	24
4595	Novato Creek near Novato	17.5	(1)	30	8.4	9.0	21
	Corte Madera Creek basin						
4600	Corte Madera Creek at Ross	18.1	(1)	40	17.2	17.8	22
	Lagunitas Creek basin						
	Lagunitas Creek above Nicasio	49 K	(1)	19	44.0	10.4	90
4605	Nicasio Creek near Point Reyes Station	42. 0 36. 2	(1)	38	27.0	14.0	24
	Walker Creek basin						
4608	Walker Creek near Tomales	37. 1	(1)	40	31. 1	15.7	24
	Russian River basin						
4610 4615	Russian River near Ukiah	99.7	250	46	121.0	22.8	23
4625 4627 4629 4630 4632	Calpella Russian River near Hopland Feliz Creek near Hopland Cummisky Creek near Cloverdale Russian River near Cloverdale Bie Sulbur Creek near	93.0 362 31.1 13.4 502	4, 500 8, 000 (¹) 10, 000	40 45 47 44 44	77.5 332.0 30.4 13.2 476.0	15. 6 17. 2 18. 3 18. 5 17. 8	24 28 29 26 26
4637 4639 4639, 4 4640 4645	Človerdale. Sausal Creek near Healdsburg. Maacama Creek near Kellogg. Franz Creek near Kellogg. Russian River near Healdsburg. Dry Creek near Cloverdale.	82. 3 11. 2 43. 4 15. 7 793 87. 8	$ \begin{array}{c} (1) \\ (1) \\ 1,300 \\ 400 \\ 18,000 \\ (1) \end{array} $	52 47 56 42 45 50	126. 0 13. 7 58. 7 13. 4 808. 0 110. 0	28.7 22.9 25.4 16.0 19.1 23.5	23 24 31 26 26 26
4648.8 4652 4653 4658	Warm Springs Creek at Skaggs Springs Dry Creek near Geyserville Mill Creek near Healdsburg Santa Rosa Creek near Santa	$\begin{array}{r} 32.7\\ 162\\ 11.8\end{array}$	(1) (1) 200	54 50 50	49. 9 198. 0 14. 8	28. 6 22. 9 23. 5	25 27 26
4670 4670, 5 4672	Rosa Russian River near Guerneville Big Austin Creek at Cazadero Austin Creek near Cazadero	12.5 1,340 26.5 63.1	100 31,000 (¹) (¹)	48 45 70 65	12.9 1,367.0 68.2 135.0	19. 4 19. 1 48. 3 40. 1	29 26 22 25
	Gualala River basin	1					
4675 4675, 5	South Fork Gualala River near Annapolis North Fork Gualala River near	161	(1)	58	272.0	31.7	26
	Gualala	39.2	(1)	67	100.0	47.8	19
	Garcia River basin						
4676 See f	Garcia River near Point Arena cotnotes at end of table.	98.5	(1)	1 64	238.0	45, 3	19

.

TABLE 3.—Hydrologic budget for watersheds upstream from key stream-gaging stations, for base period 1931-63

	Gaging station		Ave	erage annu	al basinwi	le values	
		Drain- age area	Consump- tive use	Precipi-	Natural	runofi	Water
No. (pl. 1)	Name	(sq mi)	of applied water (acre-ft)	tation (in.)	Thou- sands of acre-feet	Inches	loss (in.)
	Alder Creek basin						
4676.5	Alder Creek near Manchester	26. 6	(1)	60	58.6	41.3	19
	Elk Creek basin						
4677	Elk Creek near Elk	24.8	(1)	58	51.0	38.6	19
	Greenwood Creek basin						
4677.5	Greenwood Creek at Elk	24. 2	(1)	54	34.8	27.0	27
	Navarro River basin						
4678 4680	Rancheria Creek near Boonville Navarro River near Navarro	65.6 303	100 500	52 53	96. 5 322. 0	27.6 19.9	24 33
	Big River basin						
4680. 7 4681	South Fork Big River near Comptche Big River near Mendocino	36. 2 152	(1) (1)	50 52	35. 2 138. 0	18.2 17.0	32 35
	Noyo River basin						
4685	Noyo River near Fort Bragg	106	(1)	56	138.0	24.4	32
	Ten Mile River basin						
4686	Middle Fork Ten Mile River near		(1)	50	60.0	22.0	94
4686.5	North Fork Ten Mile River near	00,0 20,1		50	69.0	32.6	21
4687	South Fork Ten Mile River near	26.5		54	34.2	24.2	30
	Mattole River hasin	20.0			0.12		
4690	Mattole River near Petrolia	240	(1)	92	874.0	68.3	24
4695	North Fork Mattole River at Petrolia	37.6	(1)	82	122.0	60.8	21
	Bear River basin						
4695. 5	Bear River at Capetown	78.3	(1)	75	237.0	56.8	18

 TABLE 3.—Hydrologic budget for watersheds upstream from key stream-gaging stations, for base period 1931-63.—Continued

¹ Negligible
 ² No gaging stations in basin; estimate of runoff furnished by Marin Municipal Water District.

Period of record Drainage area (q mi) Station No. 3 5 5 Gaging station (q m) 1 Napa River basin: Sulphur Creek near St. Helena	Le	gend	d: 0	Con	ple	ete-re	cor	d station Partial-record s	tation 🗀		
a Gaging station area Station a Napa River basin: 4.9 4559.5 Sulphur Creek near St. Helena		P	orio	d of	70	ord			Drainage		
S S S S Organization (sq mi) No. Napa River basin: Sulphur Creek near St. Helena	5		0	- 01	100			Coging station	area	Station	
Napa River basin: 4.49 4559.5 Napa River near St. Helena. 63.2 4.49 Conn Creek near St. Helena. 63.2 4.4560 Dry Creek near Napa 118.8 4550.5 Dry Creek near Napa 118.8 4550.5 Napa River near Napa 218 4550.5 Napa River near Napa 218 4550.5 Sonoma Creek near Napa 218 4550.5 Sonoma Creek near Napa 218 4550.5 Sonoma Creek near Napa 6.06 4584.5 Sonoma Creek near Novato 6.06 4584.5 Sonoma Creek basin: 6.06 4584.5 Petaluma River at Petaluma 30.9 4590 Novato Creek basin: 17.5 4595 Corte Madera Creek basin: 17.5 4595 Lagunitas Creek: 18.1 4600 Lagunitas Creek: 18.1 4607 Walker Creek basin: 17.5 4595 Corte Madera Creek basin: 17.4 4608 Salmon Creek basin: 18.1 4607 Walker Creek basin: 15.7 4605 <td>6</td> <td>5</td> <td>63</td> <td>- 25</td> <td>20</td> <td>8</td> <td></td> <td>Gaging Station</td> <td>(sq mi)</td> <td>No.</td>	6	5	63	- 25	20	8		Gaging Station	(sq mi)	No.	
Aroya River Orsek near St. Helena	<u> </u>	- <u></u>	<u> </u>	T		ÌТ Т	·	Mana Dina Lucius	· · · · · ·		
Support Creek near St. Helena	1					_		Napa Kiver oasin:	4 49	1550 5	
Appa River near St. Helena	-						L	Sulphur Greek near St. Helena	4.45	4000,0	
Onth Creek near St. Heiena 30.1 Dry Creek near Yountville 18.8 Affor 18.8 Dry Creek near Napa 218 Sonoma Creek ar Napa 9.81 Sonoma Creek ar Noyao 6.06 Sonoma Creek ar Boyes Hot Springs 62.2 Petaluma River at Petaluma 30.9 Petaluma River at Petaluma 30.9 Novato Creek basin: 17.5 Novato Creek hear Novato 17.5 Corte Madera Creek basin: 17.5 Corte Madera Creek basin: 18.1 Walker Creek basin: 36.2 Walker Creek basin: 36.2 Walker Creek basin: 37.1 Walker Creek basin: 38.0 Salmon Creek as Bodega 15.7 Potter Valley powerhouse tailrace near 99.7 Potter Valley 38.0 Russian River near Ukiah 19.9 Russian River near Clove	\vdash	+	- <u>-</u>					Napa River near St. Helena	52.9	4565	
Dry Creek near Yountville 18.8 4575 Dry Creek near Yountville 18.8 4575 Napa River near Napa 218 4582 Sonoma Creek basin: 9.81 4582 Sonoma Creek tas Kenwood 6.06 4584 Petaluma River at Petaluma 30.9 4590 Novato Creek hasin: 30.9 4590 Novato Creek hasin: 71.5 4595 Corte Madera Creek basin: 17.5 4595 Corte Madera Creek basin: 18.1 4600 Lagunitas Creek: 18.1 4600 Malker Creek basin: 36.2 4605 Walker Creek basin: 37.1 4608 Salmon Creek a Bodga 15.7 4609.2 Russian River near Omales 37.1 4610 Potter Valley 15.7 4609.2 Russian River near Ukiah 19.4 4610 Potter Valley powerhouse tailrace near 97.7 4610 Potter Valley near Ukiah 19.4 4621 Russian River near Hopland 362 4622 Russian River near Hopland 38.2	-	+-	-				_	Conn Creek near St. Helena	00.4 17.4	4505	
Dry Creek near Yoan. 218 4530 Napa River near Napa. 218 4532 Redwood Creek near Napa. 9.81 4532 Sonoma Creek near Kenwood. 6.06 4534 Sonoma Creek near Kenwood. 6.06 4584 Novato Creek aborsin: 62.2 4585 Petaluma River at Petaluma. 30.9 4590 Novato Creek hoasin: 17.5 4595 Corte Madera Creek basin: 18.1 4600 Lagunitas Creek basin: 18.1 4600 Malker Creek basin: 18.1 4605 Walker Creek near Point Reyes Station 36.2 4605 Walker Creek near Tomales			+					Dry Creek near Napa	19.9	4575	
Napa River near Napa 293 4532 Sonoma Creek basin: 931 4532 Sonoma Creek tas Naya 6.06 4534 Sonoma Creek tas Naya 6.06 4534 Petaluma River basin: 931 4530 Novato Creek hasin: 30.9 4530 Novato Creek hasin: 30.9 4530 Corte Madera Creek basin: 17.5 4535 Corte Madera Creek basin: 18.1 4600 Lagunitas Creek basin: 18.1 4600 Walker Creek: basin: 18.1 4600 Walker Creek: basin: 19.2 4607 Walker Creek: basin: 15.7 4608 Salmon Creek at Bodega 15.7 4609.2 Russian River near Ukiah 19.2 4607 Potter Valley 15.7 4609.2 Russian River near Ukiah 15.7 4608 Salmon Creek near Holpand 36.2 4605 Potter Valley 15.7 4610 Potter Valley 15.4 4614 East Fork Russian River near Clapella 93.0 4615		+-	-	-				Nene Biven neer Yountville	210.0	4510	
Redwold Creek near Kenwood								Napa River near Napa	210 0.91	4500	
Somonia Creek ouskin: 6.06 4584 Sonoma Creek at Boyes Hot Springs								Redwood Creek near Napa	9.01	4004	
Sonoma Creek near Kenwood 0.00 4585 Sonoma Creek at Boyes Hot Springs 62.2 4585 Petaluma River basin: 30.9 4590 Novato Creek basin: 17.5 4595 Corte Madera Creek basin: 17.5 4595 Corte Madera Creek basin: 18.1 4600 Lagunitas Creek basin: 36.2 4605 Walker Creek basin: 36.2 4605 Walker Creek basin: 37.1 4608 Salmon Creek at Bodga 37.1 4608 Salmon Creek basin: 37.1 4608 Salmon Creek has Dolga 15.7 4609.2 Russian River near Ukiah 99.7 4610 Potter Valley 99.7 4610 Potter Valley 99.7 4610 Potter Valley 99.7 4610 Potter Valley 90.4 4615 East Fork Russian River near Clapella 90.4 4627 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>Sonoma Creek ousin.</td><td>6.06</td><td>1591</td></t<>							-	Sonoma Creek ousin.	6.06	1591	
Petaluma River aboyes fut Springs	-	1-	-	-+			·	Sonoma Creek near Kenwood	0.00	4004	
Petaluma River at Petaluma 30.9 4590 Novato Creek basin: 30.9 4590 Novato Creek basin: 17.5 4595 Corte Madera Creek basin: 18.1 4600 Lagunitas Creek basin: 18.1 4600 Lagunitas Creek basin: 36.2 4605 Walker Creek: 37.1 4608 Malker Creek: 37.1 4608 Malker Creek: 37.1 4608 Salmon Creek basin: 37.1 4609.2 Russian River basin: 15.7 4609.2 Russian River basin: 99.7 4610 Potter Valley		-+-		-+-				Botaluma Biyon hagin.	04.4	4000	
Novato Creek nasim: 30.3 4350 Novato Creek nasim: 17.5 4595 Corte Madera Creek asim: 17.5 4595 Lagumitas Creek basim: 18.1 4600 Lagumitas Creek basin: 18.1 4600 Walker Creek creek: Nicasio Creek basin: 36.2 4605 Walker Creek: Nicasio Creek basin: 37.1 4607 Walker Creek near Tomales. 37.1 4609.2 Russian River basin: 37.1 4609.2 Russian River basin: 15.7 4609.2 Russian River basin: 99.7 4610 Potter Valley powerhouse tailrace near 99.7 4610 Potter Valley powerhouse tailrace near 91.5 4614 East Fork Russian River near Clupella 93.0 4615 Russian River near Hopland 36.2 4632 Russian River near Cloverdale 32.4 4632 Russian River near Cloverdale 32.4 4632 Russian River near Kellogg 15.7 4639.4 Russian River near Cloverdale 32.4 4632 Russian River near Cloverdale			1				_	Petaluma River oasin: Dotoluma Diver at Dotoluma	20.0	4500	
Novato Creek basin: 17.5 4595 Corte Madera Creek basin: 18.1 4600 Lagunitas Creek basin: 18.1 4600 Lagunitas Creek basin: 36.2 4605 Walker Creek basin: 36.2 4605 Walker Creek basin: 37.1 4608 Walker Creek basin: 37.1 4608 Salmon Creek as Bodega. 15.7 4609.2 Russian River near Ukiah. 99.7 4610 Potter Valley powerhouse tailrace near 99.7 4610 Potter Valley powerhouse tailrace near 99.7 4610 Potter Valley powerhouse tailrace near 99.7 4610 East Fork Russian River near Calpella. 93.0 4614 East Fork Russian River near Calpella. 93.0 4614 East Fork Russian River near Calpella. 93.0 4622 Russian River near Hopland. 362 4633 Feliz Creek near Hopland. 362 4633 Sausal Creek near Kellogg. 15.7 4639 Russian River near Cloverdale. 564 4633 Sausal Creek near Healdsburg 112 <td< td=""><td>-</td><td>-1-</td><td></td><td>-</td><td></td><td></td><td></td><td>Nonsta Chaole brains</td><td>30.9</td><td>4590</td></td<>	-	-1-		-				Nonsta Chaole brains	30.9	4590	
Novado Creek Maar Arvado 11.3 4053 Corte Madera Creek ta Ross 11.3 4600 Lagunitas Creek basin: 18.1 4600 Lagunitas Creek basin: 36.2 4605 Walker Creek: Nicasio Creek near Point Reyes Station 36.2 4607 Walker Creek near Tomales 37.1 4608 58 Salmon Creek basin: 37.1 4608 58 Salmon Creek at Bodega 15.7 4609.2 Russian River near Ukiah 99.7 4610 Potter Valley 99.7 4610 Potter Valley 1.5 4614 East Fork Russian River near Calpella 93.0 4615 East Fork Russian River near Calpella 93.0 4615 Robinson Creek near Ukiah 105 4621 Russian River near Hopland 362 4632 Feliz Creek near Healdsburg 11.2 4634 Big Sulphur Creek near Cloverdale 82.3 4632 Big Sulphur Creek near Cloverdale 82.3 4632 Big Sulphur Creek near Cloverdale 87.4 4643 Big Sulphur Creek near Kell								Novato Creek basin.	175	4505	
Corte Madera Creek at Ross				_	-			Conta Madana Charle having	11.5	4070	
Correct Material Creek at Ross 18.1 4000 Lagunitas Creek basin: Salmon Creek basin: 36.2 4605 Walker Creek: Nicasio Creek basin: 37.1 4608 Walker Creek cosin: 37.1 4609.2 Walker Creek basin: 37.1 4609.2 Salmon Creek basin: 37.1 4609.2 Salmon Creek basin: 37.1 4609.2 Russian River hear Tomales 37.1 4609.2 Potter Valley 15.7 4609.2 Potter Valley 15.7 4610 Potter Valley 15.7 4614 East Fork Russian River near Clapella 93.0 4615 East Fork Russian River near Ukiah 105 4620 Russian River near Hopland 362 4623 Feliz Creek near Hopland 362 4632 Feliz Creek near Healdsburg 11.1 4629 Russian River near Cloverdale 502 4633 Feliz Creek near Healdsburg 12.4 4637 Maacama Creek near Kellogg 13.1 4645 Franz Creek near Kellogg 13.1 4645 <			1	1	1			Corte Madera Creek basth.	101	4000	
Lagunitals Creek cosini: 362 Walker Creek: Nicasio Creek near Point Reyes Station 362 Walker Creek: Arroyo Sausal near Marshall	-	+-		÷				Corte Madera Creek at Koss	19.1	4000	
Lagunitas Creek: 36.2 4605 Walker Creek: 37.1 4607 Walker Creek: 37.1 4608 Salmon Creek basin: 37.1 4609.2 Walker Creek: 37.1 4609.2 Russian River basin: 37.1 4609.2 Russian River basin: 37.1 4609.2 Russian River basin: 39.7 4610 Potter Valley powerhouse tallrace near 99.7 4610 Potter Valley powerhouse tallrace near 99.7 4610 East Fork Russian River near Calpella 95.4 4614 East Fork Russian River near Calpella 96.4 4620 Russian River near Hopland								Lagunitas Creek basin:	 		
Milker Creek basin: 362 4003 Walker Creek basin: Arroyo Sausal near Marshall					1			Lagunitas Creek: Nicerio Creek Point Demos Station	96.9	4005	
Walker Creek: Arroyo Sausal near Marshall. Walker Creek: Arroyo Sausal near Marshall. Walker Creek: Salmon Creek tossin: Salmon Creek at Bodega. Russian River near Ukiah. Potter Valley Potter Valley. Potter Valley. Potter Valley. Potter Valley. Potter Valley. Sast Fork Russian River near Calpella. 93.0 4614 East Fork Russian River near Calpella. 93.0 Russian River near Hopland. 10 Russian River near Cloverdale. 11 12 13 4621 Russian River near Cloverdale. 13.1 4621 Russian River at Geyserville 656 4632 Russian River at Cloverdale. 11.1 4632 Russian River at Cloverdale. 13.4 4629 Russian River at Cloverdale. 12.2 4632								Walken Creek having	30.4	4005	
Arroyo Sausal near Marshall. 19.2 4607 Walker Creek near Tomales. 37.1 4608 Salmon Creek at Bodega. 15.7 4609.2 Russian River basin: 99.7 4610 Potter Valley powerhouse tailrace near 99.7 4610 Potter Valley								Walker Creek Justic.	í I		
All Oyo Datas Hear Matshall 15.2 4608 All Oyo Datas Hear Matshall 37.1 4608 Salmon Creek hear Tomales 37.1 4608 Salmon Creek basin: Salmon Creek basin: 37.1 4609.2 Russian River hear Ukiah 99.7 4610 Potter Valley powerhouse tailrace near 99.7 4610 Potter Valley 1.5 4614 East Fork Russian River tributary near 99.7 4610 Potter Valley 1.5 4614 East Fork Russian River near Calpella 93.0 4615 East Fork Russian River near Ukiah 105 4620 Russian River near Hopland 31.1 4627 Russian River near Cloverdale 13.4 4629 Russian River at Geyserville 656 4635 Sausal Creek near Kellogg 11.2 4637 Maacama Creek near Kellogg 15.7 4648.4 Maacama Creek near Healdsburg 11.2 4637 Maacama Creek near Guyerville 162 4652 Maacama Creek near Guyerville 162 4653 Maacama Creek near Kellogg <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Arroyo Saugal noar Marshall</td><td>10.9</td><td>4607</td></td<>								Arroyo Saugal noar Marshall	10.9	4607	
Values Salmon Creek basin: Salmon Creek at Bodega		+-		-+		1		Walker Crook near Tomalos	15.4	4001	
Salmon Creek at Bodega	-	+-	-		-			Salmon Creek hagin	- 51.1	4000	
Russian River basin: 10.1 4092.2 Russian River basin: 99.7 4610 Potter Valley powerhouse tailrace near 99.7 4610 Potter Valley powerhouse tailrace near 99.7 4610 Potter Valley								Salmon Creek busin.	15.7	4600.9	
Addistant River near Ukiah 99.7 4610 Potter Valley powerhouse tailrace near Potter Valley 4710 East Fork Russian River near Calpella 93.0 4615 East Fork Russian River near Ukiah 105 4620 Robinson Creek near Hopland 362 4625 Russian River near Cloverdale 362 4635 Russian River near Cloverdale 3640 4635 Russian River at Geyserville 502 4630 Big Sulphur Creek near Cloverdale 32.3 4635 Sausal Creek near Kellogg 33.4 4635 Maccama Creek near Kellogg 13.4 4639 Franz Creek near Kellogg 13.4 4639 Maccama Creek near Kellogg 13.1 4645 Warm Springs Creek at Skaggs Springs 32.7 4648 Dry Creek near Healdsburg 13.1 4653 Mark West Creek near Santa Rosa 12.5 4653 Mark West Creek at Mark West Springs 30.5 4654.5 Mark West Creek at Santa Rosa 12.5 4653 Mark West Creek at Santa Rosa 2.5 4653 M	-	+-		-+				Balandin Offer at Douega-	10.1	4003.4	
Potter Valley powerhouse tailrace near Potter Valley powerhouse tailrace near Potter Valley								Russian River near Ilkiah	99.7	4610	
Potter Valley		-		<u>†</u> -				Potter Valley nowerhouse tailrace near	33.1		
Line			-					Potter Valley		4710	
Potter Valley.154614East Fork Russian River near Calpella93.04615East Fork Russian River near Ukiah1054620Russian River near Hopland3624621Russian River near Hopland3624621Russian River near Hopland3624621Russian River near Hopland3624621Russian River near Hopland3624630Big Sulphur Creek near Cloverdale5024632Russian River at Geyserville5024632Russian River at Geyserville5024632Russian River at Geyserville5024634Maccama Creek near Kellogg11.24637Maacama Creek near Kellogg11.24637Maacama Creek near Kellogg15.74663Mark West Creek near Geyserville1624645Mark West Creek near Geyserville1624654.55Mark West Creek near Guerneville1814654.55Mark West Creek near Windsor18.4 <th colspan<="" td=""><td></td><td></td><td></td><td>1</td><td></td><td></td><td>п.</td><td>East Fork Russian River tributary near</td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>п.</td> <td>East Fork Russian River tributary near</td> <td></td> <td></td>				1			п.	East Fork Russian River tributary near		
East Fork Russian River near Calpella93.04615Robinson Creek near Ukiah1054620Russian River near Ukiah19.94621Russian River near Hopland		1-					UR	Potter Valley	.15	4614	
East Fork Russian River near Ukiah								East Fork Russian River near Calpella	93.0	4615	
Robinson Creek near Ukiah				_			R	East Fork Russian River near Ukiah	105	4620	
Russian River near Hopland 362 4625 Russian River near Hopland 31.1 4627 Cummisky Creek near Cloverdale 13.4 4629 Russian River near Cloverdale 502 4630 Big Sulphur Creek near Cloverdale 82.3 4632 Russian River at Geyserville 666 4635 Maacama Creek near Healdsburg 11.2 4637 Maacama Creek near Kellogg 33.4 4640 Dry Creek near Cloverdale 793 4640 Dry Creek near Cloverdale 87.3 4645 Warm Springs Creek at Skaggs Springs 32.7 4648.8 Dry Creek near Geyserville 162 4652 Mill Creek near Geyserville 162 4654.5 Mark West Creek near Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4653 Santa Rosa Creek at Santa Rosa 12.5 4662 Russian River near Guerneville 1,340 4670 Big Austin Creek at Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672	L						1	Robinson Creek near Ukiah	19.9	4621	
Feliz Creek near Hopland 31.1 4627 Cummisky Creek near Cloverdale 13.4 4629 Russian River near Cloverdale 502 4630 Big Sulphur Creek near Cloverdale 502 4630 Russian River at Geyserville 656 4635 Russian River at Geyserville 656 4639 Russian River at Geyserville 11.2 4637 Russian River at Geyserville 15.7 4639.4 Russian River near Healdsburg 793 4640 Dry Creek near Cloverdale 87.8 4645 Warm Springs Creek at Skaggs Springs 32.7 4648.8 Dry Creek near Healdsburg 131 4650 Dry Creek near Geyserville 162 4652 Mill Creek near Healdsburg 131 4655 Mark West Creek at Mark West Springs 30.5 4654.5 Mark West Creek near Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4662 Russian River near Guerneville 1,340 4670.5 Austin Creek near Cazadero 26.5 4670.5				_				Russian River near Hopland	362	4625	
Image: Commisky Creek near Cloverdale 13.4 4629 Russian River near Cloverdale 502 4630 Big Sulphur Creek near Cloverdale 82.3 4632 Russian River at Geyservile 656 4635 Sausal Creek near Healdsburg 11.2 4637 Maacama Creek near Kellogg 15.7 4639.4 Franz Creek near Kellogg 15.7 4639.4 Maacama Creek near Cloverdale 87.8 4640 Dry Creek near Cloverdale 87.8 4645 Mark West Creek near Geyserville 131 4650 Dry Creek near Healdsburg 131 4650 Dry Creek near Healdsburg 162 4652 Mark West Creek at Mark West Springs 30.5 4654.5 Mark West Creek near Windsor 42.8 4655 Laguna de Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5<		_					I	Feliz Creek near Hopland	31.1	4627	
Russian River near Cloverdale 502 4630 Big Sulphur Creek near Cloverdale 82.3 4632 Russian River at Geyserville 656 4635 Sausal Creek near Healdsburg 11.2 4637 Maacama Creek near Kellogg 15.7 4639.4 Russian River near Healdsburg 793 4640 Dry Creek near Kellogg 793 4644 Dry Creek near Healdsburg 87.8 4645 Mar West Creek near Healdsburg 131 4650 Dry Creek near Geyserville 162 4652.4 Mark West Creek at Mark West Springs 30.5 4654.5 Mark West Creek near Santa Rosa 12.5 4653 Mark West Creek at Santa Rosa 12.5 4654.5 Mark West Creek at Santa Rosa 12.5 4654.5 Mark West Creek at Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4657 Mark West Creek at Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa				_			1	Cummisky Creek near Cloverdale	13.4	4629	
Big Sulphur Creek near Cloverdale 82.3 4632 Russian River at Geyserville 656 4635 Maacama Creek near Healdsburg 11.2 4637 Maacama Creek near Kellogg 15.7 4639.4 Franz Creek near Kellogg 15.7 4639.4 Macama Creek near Kellogg 793 4640 Dry Creek near Cloverdale 87.8 4645 Warm Springs Creek at Skaggs Springs 32.7 4648.8 Dry Creek near Geyserville 162 4652 Mill Creek near Geyserville 162 4654.5 Mark West Creek at Mark West Springs 30.5 4654.5 Mark West Creek near Guerneville 12.5 4658 Santa Rosa Creek near Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4657 Big Austin Creek at Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672	L	_						Russian River near Cloverdale	502	4630	
Russian River at Geyserville 656 4635 Sausal Creek near Healdsburg 11.2 4637 Maacama Creek near Kellogg 11.2 4637 Maacama Creek near Kellogg 15.7 4639.4 Franz Creek near Cloverdale 793 4640 Dry Creek near Cloverdale 87.8 4645 Warm Springs Creek at Skaggs Springs 32.7 4648.8 Dry Creek near Geyserville 162 4652 Mill Creek near Geyserville 162 4654.5 Mark West Creek near Windsor 42.8 4655 Laguna de Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 46670.5 Mustin Creek near Guerneville 1,340 4670 Big Austin Creek near Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672	L	+-				_		Big Sulphur Creek near Cloverdale	82.3	4632	
Sausal Creek near Healdsburg 11.2 4637 Maacama Creek near Kellogg 15.7 4639.4 Macama Creek near Kellogg 15.7 4639.4 Macama Creek near Kellogg 15.7 4639.4 Maacama Creek near Kellogg 793 4640 Dry Creek near Cloverdale 87.8 4645 Mark West Creek near Cloverdale 131 4650 Dry Creek near Geyserville 162 4653 Mark West Creek at Mark West Springs 30.5 46545 Mark West Creek near Windsor 42.8 4655 Laguna de Santa Rosa 2.5 4658 Santa Rosa Creek at Santa Rosa 2.5 4652 Mark West Creek near Guerneville 13.4 4655 Mark West Creek near Windsor 42.8 4655 Laguna de Santa Rosa: 2.5 4658 Santa Rosa Creek at Santa Rosa 2.5 4652 Mark West Creek near Guerneville 13.4 4670 Mark West Creek near Guerneville 14.3 4670 Mark West Creek near Guerneville 2.5 4670.5 Austin Creek near Cazadero 26.5	P		_	_				Russian River at Geyserville	656	4635	
Maacama Creek near Kellogg	L					-4	1	Sausal Creek near Healdsburg	11.2	4637	
Image: Sector of the sector	\vdash	-+	1					Maacama Creek near Kellogg	43.4	4639	
Russian River near Healdsburg 793 4640 Dry Creek near Cloverdale 87.8 4645 Warm Springs Creek at Skaggs Springs 32.7 4648.8 Dry Creek near Healdsburg 131 4650 Dry Creek near Geyserville 162 4652 Mill Creek near Healdsburg 11.8 4653 Mark West Creek at Mark West Springs 30.5 4654.5 Mark West Creek near Guerewindsor 42.8 4655 Laguna de Santa Rosa 12.5 4662 Santa Rosa Creek at Santa Rosa 12.5 4667 Big Austin Creek near Guerneville 1,340 4670.5 Austin Creek near Cazadero 26.5 4672	1-	+-	_	_			1	Franz Creek near Kellogg	15.7	4639.4	
Dry Creek near Cloverdale 87.8 4645 Warm Springs Creek at Skaggs Springs 32.7 4648.8 Dry Creek near Healdsburg 131 4650 Dry Creek near Healdsburg 162 4652 Mill Creek near Healdsburg 162 4653 Mark West Creek at Mark West Springs 30.5 4654.5 Mark West Creek near Windsor 42.8 4655 Laguna de Santa Rosa: 2.5 4658 Santa Rosa Creek at Santa Rosa. 12.5 4658 Big Austin Creek at Cazadero 26.5 4670.5 Austin Creek near Cazadero 26.5 4670.5	-	-+	+				ł	Russian River near Healdsburg	793	4640	
Warm Springs Creek at Skaggs Springs. 32.7 4648.8 Dry Creek near Healdsburg 131 4650 Dry Creek near Geyserville 162 4653 Mark West Creek near Healdsburg 11.8 4653 Mark West Creek near Windsor 4655 4654.5 Mark West Creek near Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 56.4 4662 Russian River near Guerneville 1,340 4670 Big Austin Creek near Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672	 	+						Dry Creek near Cloverdale	87.8	4645	
Dry Creek near Healdsburg 131 4650 Dry Creek near Geyserville 162 4652 Mill Creek near Geyserville 11.8 4653 Mark West Creek at Mark West Springs 30.5 4654.5 Mark West Creek near Windsor 4653 Laguna de Santa Rosa: 12.5 4654 Santa Rosa Creek near Santa Rosa 12.5 4658 Russian River near Guerneville 1,340 4670 Big Austin Creek near Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672	1		+		-	<u></u> ф	1	Warm Springs Creek at Skaggs Springs	32.7	4648.8	
Dry Creek near Geyserville 162 4652 Mill Creek near Healdsburg 11.8 4653 Mark West Creek at Mark West Springs 30.5 4654.5 Mark West Creek near Windsor 42.8 4655 Laguna de Santa Rosa: 12.5 4658 Santa Rosa Creek near Santa Rosa 12.5 4662 Russian River near Guerneville 1,340 4670 Big Austin Creek near Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672				-				Dry Creek near Healdsburg	131	4650	
Mill Creek near Healdsburg 11.8 4653 Mark West Creek at Mark West Springs 30.5 4654.5 Mark West Creek near Windsor 42.8 4655 Laguna de Santa Rosa: 12.5 4658 Santa Rosa Creek near Santa Rosa 12.5 4662 Russian River near Guerneville 1,340 4670 Big Austin Creek near Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672	-							Dry Creek near Geyserville	162	4652	
Mark West Creek at Mark West Springs		-+				⊢	1,	Mill Creek near Healdsburg	11.8	4653	
Mark West Creek near Windsor 42.8 4655 Laguna de Santa Rosa: 12.5 4658 Santa Rosa Creek near Santa Rosa 12.5 4658 Santa Rosa Creek at Santa Rosa 12.5 4662 Russian River near Guerneville 1,340 4670 Big Austin Creek near Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672			-			<u> </u>	1	Mark West Creek at Mark West Springs	30.5	4654.5	
Laguna de Santa Rosa: 12.5 4658 Santa Rosa Creek near Santa Rosa. 12.5 4662 Santa Rosa Creek at Santa Rosa. 12.4 4662 Russian River near Guerneville. 1,340 4670 Big Austin Creek at Cazadero. 26.5 4670.5 Austin Creek near Cazadero. 63.1 4672	1-			-				Mark West Creek near Windsor	42.8	4655	
Santa Rosa Creek near Santa Rosa 12.5 4653 Santa Rosa Creek near Santa Rosa 56.4 4662 Russian River near Guerneville 1,340 4670 Big Austin Creek near Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672	1	1					_	Laguna de Santa Rosa:		1050	
Santa Rosa Creek at Santa Rosa 56.4 4662 Russian River near Guerneville 1,340 4670 Big Austin Creek at Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672	-							Santa Rosa Creek near Santa Rosa	12.5	4658	
Russian River near Guerneville 1,340 4670 Big Austin Creek at Cazadero 26.5 4670.5 Austin Creek near Cazadero 63.1 4672		-+						Santa Rosa Creek at Santa Rosa	56.4	4662	
Big Austin Creek at Cazadero	-							Russian River near Guerneville	1,340	4670	
Austin Creek near Cazadero	-	+	_	-+		₫	1	Big Austin Creek at Cazadero	26.5	4670.5	
	-							Austin Creek near Cazadero	63.1	4672	

TABLE 4.-Bar chart of records for stream-gaging stations in north coastal California

Le	gend	l: C	om	olete	-rec	ord	station Partial-record s	tation 🗀	
	Pe	riod	of	eco	d	T		Drainage	a
10	8	8	Q	20	8	2	Gaging station	area	Station
19	192	19,	61	19	19(19		(sq mi)	NO.
			T				Gualala River basin:	ŀ	
							South Fork Gualala River near Annapolis	161	4675
					ıL		North Fork Gualala River near Gualala	39.2	4675.5
			1.				Garcia River basin:		
					1.↓∎	[†]	Garcia River near Point Arena	98.5	4676
							Alder Creek basin:		
-			+	-F	ц.,		Alder Creek near Manchester	26.6	4676.5
							Elk Creek basin:		
-					1		Elk Creek near Elk	24.8	4677
							Greenwood Creek basin:	040	LODEE
\vdash			+-	-+-	┸┼╴		Greenwood Creek at Elk	24.2	46(7.5
							Navarro River		
					-		Rancheria Creek near Boonville	65.6	4678
F	1-	-			1.		Navarro River near Navarro	303	4680
							Albion River basin:		
							Albion River near Comptche	14.4	4680.1
			1	_			Big River basin:		
							Big River:		
	_						South Fork Big River near Comptche	36.2	4680.7
L	-		_	_F	ıĻ	_	Big River near Mendocino	152	4681
							Noyo River basin.	l	
				_			Noyo River near Fort Bragg	106	4685
					_		Ten Mile River basin:		
-					1+-		Middle Fork Ten Mile River near Fort Bragg.	33.3	4686
\vdash							North Fork Ten Mile River near Fort Bragg.	39.1	4686.5
+				-+-	┵┼╼		South Fork Ten Mile River near Fort Bragg.	26.5	4687
							Cottoneva Creek basin:		ł
					_		Dunn Creek:	100	1000 =
					╾╢┻		Mattale Pinon basing	1,08	4000.0
							Mattole River near Petrolia	240	4690
		-					North Fork Mattala River at Petrolia	37.6	4695
							Rear River basin.		1000
				-			Bear River at Capetown	78.3	4695.5
					- T -		• • • • • • • • • • • • • • • • • • • •		1

 TABLE 4.-Bar chart of records for stream-gaging stations in north coastal

 California-Continued

									and the second	
			Napa Riv	ver basin			Sonoma	Creek at	Petaluma	River at
Gaging station	. Napa Rive Helena	sr near St. (4560)	Conn Cree Helena	k near St. (4565)	Dry Creek (45	near Napa (0)	Boyes Hol (456	t Springs 35)	Petalum	• (4590)
Period of record	1929-32,	1939-63	1929	-59	1961	-63	1955	-63	1948-	63
Drainage area.	81.4 s	q mi	53.2 s	q mi	17.4 s	q mi	62.2 sc	q mi	30.9 sc	mi
		Dischage t]	nat is equaled	l or exceeded	during perc	ent of time in	dicated, adju	isted to base	period 1931-6	~
Time (percent)	cfs	efs per sq mi	cfs	efs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	efs per sq mi
99.9. 99.5. 99.	00. 80.	0 0 .0006 .0010	0000	0000	0000	0000	0000	0000	0000	00 00
98. 90. 70.	1.5	. 0018 . 0037 . 0092 . 0184	.00 002	0 0 0004	.216 .216	0 0 .0034 .0121	. 03 . 12 1. 0	. 0005 0019 . 0014 . 0161	0000	0000
60. 550. 340.	25 33 9.2 25 13 6.2 25 13 6.2	. 0356 . 0762 . 307	.30 9.371 9.37	. 0056 . 0395 . 0883 . 175	5.273 273	. 0310 . 0747 . 155 . 299	17.9.4.12 17.9.12	. 0322 . 0675 . 146 . 275	0 03 16 58	0 .0010 .0188 .0188
20. 10. 2.	800 380 380 380 380 380 380	. 676 1.94 4.67 11.1	21 64 162 405	. 395 1.20 3.05 7.61	11 32 182	. 632 1.84 4.43 10.5	38 270 640	. 611 1. 77 4. 34 10. 3	2.4 14 56 210	.0777 .453 1.81 6.80
1 0.5 0.1	1, 450 2, 030 4, 200	17.8 24.9 51.6	860 950 2, 000	12.4 17.9 37.6	850 850 850	17. 2 24. 1 48. 9	$1,050 \\ 1,460 \\ 2,950$	16.9 23.5 47.4	380 550 1,100	12.3 17.8 35.6

TABLE 5.-Flow-duration summary of daily discharge for selected stream-gaging stations

TABLES

Gaging station	Novato Cr	eek near	Corte Mad	era Creek	Nicasio C1	eek near		Russian F	tiver basin	
	Nov: (459)	5)	at R (460	sso (0	Point Reye (460	5) Station	Russian R Uki (461	iver near ah 0)	East Fork River near (461	Russian Calpella)
Period of record.	1946-	ş	1951-	8 19	1953-	- 09	1911-13, 1	1952-63	1941-	8
Drainage area.	17.5 sq	Ē	18.1 sc	1 mi	36.2 sc	l mi	99.7 sç	ī	9 3. 0 sq	ī
	А 	ischarge tha	t is equaled o	or exceeded d	luring percer	it of time ind	icated, adjus	ited to base]	period 1931-63	
Time (percent)	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sp mi	cfs	cfs per sq mi
99.9. 99.5	0000	0000	0 0 05	0 0 0 0028	0000	0000	0000	0000	0000	0000
96. 900. 700.	0000	0000	10 	.0055 .0099 .0199	0 0 10 10	0 0 .0017 .0028	. 04 . 11 1. 43	.0004 .0011 .0043 .0140	0 0 . 25	$\begin{array}{c} 0\\ 0\\ \cdot 0004\\ \cdot 0027\end{array}$
60 50 30 30	.02 .14 .62	.0011 .0080 .0354	5.33 P.O	. 0552 . 105 . 182 . 304	6.2 . 18 6.2	. 0050 . 0182 . 0773 . 166	5.2 33 85	. 0522 . 151 . 331 . 652	1.1 4.5 37	.0118 .0484 .161 .398
20	18 50 135 135	. 314 1. 03 2. 86 7. 71	11 36 235 235	. 608 1. 99 5. 19 13. 0	16 56 400	. 442 1.55 4.28 11.0	155 360 1, 390	1. 55 3. 61 13. 9 22 13. 9	93 960 960 960	1.00 2.47 5.05 10.3
1 0.5 0.1	230 350 810	13. 1 20. 0 46. 3	390 540 1, 200	21.5 29.8 66.3	650 970 1, 900	18.0 26.8 52.5	2, 040 5, 250 5, 250	20.5 28.6 52.7	1, 450 2, 050 3, 900	15.6 22.0 41.9

TABLE 5.-Flow-duration summary of daily discharge for selected stream-gaging stations-Continued

				Rus	sian River ba	sin-Contin	ned			
Gaging station	Russian R Hopland	iver near 1 (4625)	Feliz Cre Hopland	ek near l (4627)	Russian R Cloverda	liver near le (4630)	Big Sulphur Cloverda	Creek near le (4632)	Russian R Healdsbur	ver near g (4640)
Period of record.	1939	क्ष	1958	63	1951	-63	1957	-63	1939-	ŝ
Drainage area.	362 sc	i mi	31.1 sc	a mi	502 sc	1 mi	82.3 \$	q mi	793 sq	mi
	н	Discharge tha	tt is equaled o	or exceeded	during percen	nt of time in	dicated, adju	sted to base p	eriod 1931–63	
Time (percent)	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi
99.9. 199.5. 198.8.	00000	0 0 0 0 0 0 0 0 0	0000	0000	0000°.	0 0 0 0002	1.0 1.2 1.4	0.0122 .0146 .0170 .0207	0,4,4,00 0,00,00	0.0038 .0054 .0066 .0066
98. 90. 70.	1.00	. 0003 . 0006 . 0014 . 0047	000. 06	0 0 0 0019		. 0003 . 0006 . 0016	00200 80080	. 0267 . 0389 . 0632 . 0972	8.5 11 16 25	.0107 .0139 .0202 .0315
60. 50. 31.	203 88 203 88 203 88 203 88 203 88 203 88 203 88 203 88 203 88 203 88 203 88 203 88 203 88 203 80 80 80 80 80 80 80 80 80 80 80 80 80	.0152 .0635 .243 .561	1.1 3.2 14.7.2	. 0354 . 103 . 232 . 450	10 40 135 275	. 0199 . 0797 . 269 . 548	14 30 87 87	. 170 . 365 . 644 1. 06	490 ²³⁰ 88 490 ²³⁰ 88	. 0492 . 108 . 290 . 618
20. 10. 2.	$\begin{array}{c} 470\\ 1,050\\ 2,000\\ 3,750\end{array}$	1.30 2.90 10.4 2.52	36 86 415	1. 16 2. 77 13. 3 13. 3	650 1, 510 2, 950 5, 850	$1.29 \\ 3.01 \\ 5.88 \\ 11.7 $	$165 \\ 310 \\ 620 \\ 1, 290 $	2.00 3.77 7.53 16.7	1, 100 8, 500 8, 500	$1.39 \\ 3.03 \\ 5.80 \\ 10.7 $
1 0.5 0.1	5, 400 7, 400 13, 300	14. 9 20. 4 36. 7	640 870 1, 350	20.6 28.0 43.4	8,600 12,100 22,200	17.1 24.1 44.2	1, 920 2, 700 5, 100	23. 3 32. 8 62. 0	12,000 17,000 30,000	15.1 21.4 37.8

TABLE 5.--Flow-duration summary of daily discharge for selected stream-gaging stations-Continued

TABLES

43

		and the second se	and the second se							
	Rus	sian River b	asin-Contin	pen		Gualala R	ver basin			
Gaging station.	Dry Cre Cloverda	ek near le (4645)	Russian R Guernevil	iver near lle (4670)	South Forl River near (467	c Gualala Annapolis 5)	North For River near (467	k Gualala Gualala ¹ 5.5)	Garcia Ri Point Arer	ver near 1a ¹ (4676)
Period of record	1941-	3	1939-	3	1950-	ß	1951	-56	1951-56,	1962-63
Drainage area.	87.8 30	a mi	1,340 s	q mi	161 sc	III	39.2 s	q mi	98.5 s	l mi
	H	Discharge tha	t is equaled c	or exceeded o	luring percen	it of time ind	icated, adju	sted to base	period 1931-6	
Time (percent)	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi
99.9. 99.5. 99	0.08 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.0003 0006 0006 0007 0010	6.0 9.50 11	0.0045 .0060 .0071	0.3 6 1.2 8 1.2	0.0019 .0037 .0050 .0075	0.9 1.7 2.1	0.0230 .0357 .0434 .0436	48897 0007 000	0. 0406 . 0508 . 0609 . 0711
98. 900. 700.		. 0018 . 0042 . 0148 . 0148	38 38 38 38 38 38 38 38 38 38 38 38 38 3	. 0112 . 0142 . 0194 . 0284	2:1 3:4 12:7	. 0130 . 0211 . 0416 . 0745	16.18	.0714 .0944 .143 .196	9.0 12 17 24	. 0914 . 122 . 173 . 244
60. 500. 300. 300.	66 84 66 66	. 0774 . 171 . 387 . 752	55 110 310 720	. 0410 . 0821 . 231 . 537	23 140 140 140	. 142 . 248 . 472 . 870	23 30 81 23 30 81 23 30 81 23	.306 .459 .765 1.35	37 55 150 0	376 558 914 1.52
20. 10. 2.	145 320 660 1, 280	1.65 3.64 14.6 14.6	1,700 4,000 8,000 15,000	1.27 2.99 5.97 11.2 11.2	$320 \\ 810 \\ 3,200 \\ 3,200 $	$1.99 \\ 5.03 \\ 9.94 \\ 19.9$	120 300	3.06 7.65	280 630	2.84 6.40
1 0.5 0.1	4, 600 600	21.4 29.8 52.4	21,000 29,000 48,000	15.7 21.6 35.8	5,000 7,100 12,600	31. 1 44. 1 78. 3				

TABLE 5.---Flow-duration summary of daily discharge for selected stream-gaging stations---Continued

44

See footnote at end of table.

		•	2	•		2				
	Alder C	reek near	Elk Creek	near Elk ¹	Greenwoo	d Creek at		Navarro Riv	er basin	
Gaging station	Mancheste	3r ¹ (4676.5)	(46	(17)	Elk 1 ((4677.5)	Rancheria Boonvill	Creek near le (4678)	Navarro R Navarro	iver near (4680)
Period of record.	195	-56	195	I56	1991	-56	1959	-63	1950	8
Drainage area.	26.6 :	sq mi	24.8 :	3q mi	24.2 sq	l mi	65.6 s	q mi	303 sc	l mi
		Discharge th	at is equaled	or exceeded	during perce	nt of time inc	licated, adju	sted to base	period 1931-6	
Time (percent)	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	cfs per sq mi
90.9. 99.5. 99 88	0.9 1.2 1.4	0.0338 .0451 .0526	0.9 1.4 1.6	0. 0363 . 0484 . 0565 . 0645	$\overset{0}{\overset{0}{_{15}}}$	0 0 .0061	0.3 .55 .55	0.0046 .0061 .0076 .0091	3350 3370 371	$\begin{array}{c} 0.\ 0.066\\ .\ 0.0086\\ .\ 0.102\\ .\ 0.122\end{array}$
985. 900. 700.	0004 1777	$\begin{array}{c} . 0789 \\ . 102 \\ . 139 \\ . 177 \end{array}$	0.000 0.000 1000 0.000	. 0847 . 109 . 153 . 206	5.1.9 5.1.9 5.1.9	.0124 .0248 .0537 .0537	5020 50020 50020	. 0137 . 0229 . 0457 . 0838	2345 85.3 2345 85.3	. 0175 . 0271 . 0462 . 0759
60 50 30 30	6.8 10 31 31	. 256 . 376 . 639 1. 17	7.4 11 32	. 298 . 444 . 726 1. 29	3.9 11.6.4 21	. 161 . 264 . 455 . 868	18 18 83 83 83 83	. 152 . 274 . 518 . 960	38 63 195 195	. 125 . 208 . 363 . 644
20 20100	69 172	2. 59 6. 47	64 155	2. 58 6. 25	44 107	1. 82 4. 42	130 330 640 1, 200	1.98 5.03 9.75 18.3	400 990 3, 550	1. 32 3. 27 6. 27 11. 7
1 0.5 0.1							1, 760 2, 470 4, 500	26.8 37.6 68.6	5, 300 7, 400 13, 500	17.5 24.4 44.6

TABLE 5.—Flow-duration summary of daily discharge for selected stream-gaging stations—Continued

See footnote at end of table.

							Ten Mile F	tiver basin		
Gaging station	Big River n cino ¹	ear Mendo- (4681)	Noyo Rive Bragg	r near Fort (4685)	Middle For River near 1 (46	k Ten Mile fort Bragg ¹ 86)	North Fork River near 1 (468	c Ten Mile Fort Bragg 1 6.5)	South Fork River near I (46)	Ten Mile ort Bragg 1 37)
Period of record.	1951	-56	195	1-63	1951	-56	1951	56	1961	-56
Drainage area	152 sc	1 mi	106 s	iq mi	33.3 s	q ml	39.1 s	q mi	26.5 s	q mi
Time (percent)		ischarge that	t is equaled	or exceeded d	luring percen	t of time ind	icated, adju	sted to base	period 1931-6	
9	cfs	cfs per sq mi	cls	efs per sq mi	cfs	efs per sq mi	cfs	cfs per sq m	i cfs	im per sq mi
99.9. 99.5. 99 98	0.6 1.3 1.7	0.0039 .0066 .0086 .0112	0.6 1.3 1.7	0.0057 .0094 .0123 .0160	0.3 1.0	0.0090 0150 0210	0.3 .6 1.1	0.0077 .015 3 .0205 .0281	0 .05 .08 .13	0 . 0019 . 0030 . 0049
95. 90. 70.	12.7.4.2	.0178 .0276 .0493 .0789	2.7 12.5 12.5	. 0255 . 0396 . 0708 . 113	1.2.4.7.	.0511 .0811 .141 .210	1.0 9.1 9.0 9.4 1 9.0 9.4 1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	.0486 .0728 .138 .205		. 0113 . 0208 . 0528 . 0943
60. 50. 30. 30.	8832	.138 .217 .368 .625	21 33 56 56	. 198 . 311 . 528 . 896	11 16 26 26	.330 .480 .781 1.26	48 30 81 12 48 30 82 13	. 307 . 460 . 767 1. 23	4.8 14.8 23	.181 .294 .528 .868
20. 10. 26.	190 440	1.25 2.89	190 440 810 1,500	1.79 4.15 14.2	83 190	2.49 5.71	95 217	2.43 5.55	47 110	1. 77 4. 15
1 0,5 0,1			2, 200 5, 400	20.8 20.8 50.9						

TABLE 5.—Flow-duration summary of daily discharge for selected steam-gaging stations—Continued

See footnote at end of table.

46

SURFACE WATER, SAN FRANCISCO BAY TO EEL RIVER, CALIF.

Ģ
ue
in
pt
ő
Ĩ
18
<i>i</i> 01
at
st
в
gi
70
ž
an
ste
a s
te
60
sel
2
f.
e
ur,
he
i8C
g
ili
đa
*
20
s
m
em,
8
nc
ti
ra
du
2
20
Ē
J.
10 9
BLJ
Į.

•

		Mattole R	iver basin		Bear F	tiver
Gaging station	Mattole F Petrolia	tiver near 1 (4690)	North Forb River at Pet	t Mattole rolia (4695)	at Cape (4695	tоwn 1 .5)
Period of record.	195	0-63	1961	-67	1961	56
Drainage area.	240	sq mi	37.6 s	q mi	78.3 8	q mi
	Discharge (hat is equale adj	d or exceede usted to base	od during per period 1931	rcent of time -63	e indicated,
Time (percent)	cfs	cfs per sq mi	cfs	cfs per sq mi	cfs	efs per sq mi
99.9. 90.5. 99.5. 98.	4.5 9.0 12	0. 0188 . 0300 . 0375 . 0375	0.1 1.1 8 8	0. 0186 . 0293 . 0372 . 0479	ನ್ನಡ 4 ಗ್ರ ಬಿಲ್ಲೆ 4 ಗ್ರ ಬಿಲ್ಲಿ 20	0. 0358 . 0460 . 0536 . 0638
98. 90. 70.	81 89 81 81 81 81 81 81 81 81 81 81 81 81 81	. 0750 . 117 . 204 . 338	947.0 894	. 0745 . 112 . 197 . 319	25 16 9 6 25 16 9 6	.0881 .123 .304 .319
60. 560. 30.	138 240 710	. 575 1. 00 1. 75 2. 96	823350 82	. 532 . 904 2.63	40 67 115 192	. 511 . 856 1. 47 2. 45
20. 10. 2.	1, 420 2, 950 8, 600 8, 600	5.92 20.6 35.8	200 413 693 1,200	5.32 11.0 18.4 31.9	388 800	4, 96 10. 2
1. 0.5 0.1	12, 100 16, 000 25, 000	50.4 66.7 104	$\begin{array}{c} 1,700\\ 2,240\\ 3,500 \end{array}$	45. 2 59. 6 93. 1		

¹ Partial-record station.

48 SURFACE WATER, SAN FRANCISCO BAY TO EEL RIVER, CALIF.

	Mean annual runoff	Mea	n mont	thly di	stribut	ion of	runoff,	, as per	rcentag	e of m	ean an	nual r	unoff
Gaging station	(thou- sands of acre- ft)	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.
Napa River near St. Helena (sta. 4560) Navarro River	63.1	0.3	1.7	20.2	27.5	27.1	12.6	7.6	2.1	0.6	0.2	0.06	0.04
(sta. 4680) Mattole River	322	1.2	2.4	17.4	28.7	25.6	13. 3	7.1	2.6	.9	.4	.2	.2
near Petrolia (sta. 4690)	874	2.5	6.4	17.8	27.1	20.9	11.3	7.0	4.5	1.4	.5	.3	.3

TABLE 6.—Mean monthly distribution of runoff at selected gaging stations

TABLE 7.—Low-flow frequency table for selected stream-gaging stations [Discharge adjusted to base period Apr. 1, 1931-Mar. 31, 1963]

Station	Gaging station	Num- ber of	Ordinat	es of low- inc	flow fre licated :	quency recurren	curves, ce inter	in cubi vals, in	c feet po years	er secon	d, for
		utive days	1.02	1.10	1.3	2.0	5.0	10	20	30	50
4560	Napa River near St. Helena.	1 7 14 30 60 90 120 183 274	1. 1 1. 2 1. 3 1. 5 1. 7 2. 2 3. 2 9. 5 120	0.80 .90 1.0 1.1 1.3 1.6 2.2 6.4 86	$\begin{array}{c} 0.\ 45 \\ .\ 55 \\ .\ 65 \\ .\ 80 \\ 1.\ 0 \\ 1.\ 2 \\ 1.\ 6 \\ 4.\ 5 \\ 53 \end{array}$	$\begin{array}{c} 0.\ 15 \\ .\ 22 \\ .\ 30 \\ .\ 40 \\ .\ 55 \\ .\ 70 \\ .\ 90 \\ 2.\ 5 \\ 19 \end{array}$	$\begin{array}{c} 0.\ 02\\ .\ 03\\ .\ 06\\ .\ 11\\ .\ 23\\ .\ 33\\ .\ 40\\ 1.\ 0\\ 6.\ 3\end{array}$	0 .01 .02 .05 .12 .19 .24 .55 3.8	$0\\0\\0\\.02\\.07\\.11\\.14\\.32\\2.5$	$0\\0\\0\\.01\\.05\\.08\\.11\\.23\\2.1$	0 0 0 .03 .05 .07 .15 1.8
4565	Conn Creek near St. Helena.	1 7 14 30 60 90 120 183 274	$\begin{array}{c} 0 \\ 0 \\ 0 \\ .25 \\ .45 \\ .75 \\ 3.3 \\ 50 \end{array}$	0 0 0 .10 .22 .45 2.1 34	0 0 0 .03 .07 .22 1.3 20	0 0 0 0 0 0 0 .55 7.0	0 0 0 0 0 0 0 2.1	0 0 0 0 0 0 0 1.0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
4 570	Dry Creek near Napa.	1 7 14 30 60 90 120 183 274	0 0 0 . 45 . 65 2. 0 24	0 0 0 .32 .45 1.3 17	0 0 0 0 .24 .32 .90 11	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ .12 \\ .50 \\ 4.0 \end{array}$	0 0 0 0 .02 .04 .20 1.3	0 0 0 0 0 0 0 0 . 08 . 80	0 0 0 0 0 0 0 0 0 0 0 0 0 2 .50	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0
4585	Sonoma Creek at Boyes Hot Springs.	1 7 14 30 60 90 120 183 274	0.85 .90 1.0 1.1 1.3 1.6 2.3 6.6 84	$\begin{array}{r} 0.\ 60 \\ .\ 70 \\ .\ 80 \\ .\ 85 \\ 1.\ 0 \\ 1.\ 2 \\ 1.\ 6 \\ 4.\ 5 \\ 60 \end{array}$	0.30 .40 .48 .60 .80 .90 1.2 3.2 37	$\begin{array}{c} 0.\ 03 \\ .\ 09 \\ .\ 16 \\ .\ 26 \\ .\ 40 \\ .\ 50 \\ .\ 70 \\ 1.\ 8 \\ 13 \end{array}$	0 0 .01 .20 .26 .80 4.4	0 0 0 .02 .06 .10 .40 2.7	0 0 0 0 .01 .03 .18 1.8	0 0 0 0 0 0 0 .10 1.6	0 0 0 0 0 0 0 0 1.4
4590	Petaluma River at Petaluma.	$1 \\ 7 \\ 14 \\ 30 \\ 60 \\ 90 \\ 120 \\ 183 \\ 274$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ .01 \\ .03 \\ .35 \\ 28 \end{array}$	0 0 0 0 0 0 0 .01 .15 16	0 0 0 0 0 0 0 7,0	0 0 0 0 0 0 0 .01 1.3	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0

Station No.	Gaging station	Num- ber of consec-	Ordinate	es of low-ind	flow free licated 1	quency recurren	curves, ce inter	in cubi vals, in	e feet pe years	er secon	d, for
		utive days	1.02	1.10	1.3	2.0	5.0	10	20	30	50
4595	Novato Creek near Novato.	1 7 14 30 60 90 120 183 274	$0\\0\\.01\\.02\\.03\\.05\\.10\\.56\\20$	$0\\0\\0\\.01\\.02\\.05\\.33\\12$	$\begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ .02 \\ .18 \\ 6.4 \end{matrix}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
4600	Corte Madera Creek at Ross.	1 7 14 30 60 90 120 183 274	0.55 .58 .62 .75 .87 1.1 2.6 31	$\begin{array}{c} 0.\ 45 \\ .\ 50 \\ .\ 53 \\ .\ 55 \\ .\ 62 \\ .\ 70 \\ .\ 87 \\ 1.\ 9 \\ 22 \end{array}$	$\begin{array}{c} 0.\ 30 \\ .\ 35 \\ .\ 38 \\ .\ 45 \\ .\ 53 \\ .\ 58 \\ .\ 70 \\ 1.\ 4 \\ 13 \end{array}$	0. 10 . 15 . 20 . 27 . 35 . 40 . 50 . 95 4. 7	0 0 .04 .07 .16 .23 .27 .53 1.8	0 0 .02 .08 .13 .17 .35 1.3	$egin{array}{c} 0 \\ 0 \\ 0 \\ .03 \\ .07 \\ .10 \\ .22 \\ .97 \end{array}$	0 0 0 .01 .04 .07 .16 .87	0 0 0 0 .01 .04 .10 .79
4605	Nicasio Creek near Point Reyes Sta- tion.	1 7 14 30 60 90 120 183 274	$\begin{array}{r} 0.09\\ .09\\ .10\\ .11\\ .12\\ .14\\ .22\\ 1.6\\ 55 \end{array}$	$\begin{array}{r} 0.\ 07\\ .\ 08\\ .\ 09\\ .\ 10\\ .\ 11\\ .\ 12\\ .\ 15\\ .\ 80\\ 35\end{array}$	0.05 .06 .07 .08 .09 .10 .11 .36 18	$\begin{array}{c} 0.\ 01 \\ .\ 02 \\ .\ 03 \\ .\ 04 \\ .\ 06 \\ .\ 07 \\ .\ 08 \\ .\ 16 \\ \textbf{4}.\ 5 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ .02 \\ .03 \\ .04 \\ .09 \\ .75 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0 0 0 0 .01 .04 .16	0 0 0 0 0 0 0 .02 .14	0 0 0 0 0 0 0 .01 .13
4610	Russian River near Ukiah.	1 7 14 30 60 90 120 183 274	$\begin{array}{c} 0.78\\ .84\\ .92\\ 1.1\\ 2.0\\ 3.0\\ 4.7\\ 26\\ 180\end{array}$	$\begin{array}{c} 0.31 \\ .36 \\ .43 \\ .50 \\ .78 \\ 1.2 \\ 2.0 \\ 12 \\ 117 \end{array}$	$\begin{array}{c} 0.14\\ .16\\ .20\\ .23\\ .31\\ .54\\ 1.0\\ 6.2\\ 75\end{array}$	$\begin{array}{c} 0.\ 05 \\ .\ 06 \\ .\ 07 \\ .\ 09 \\ .\ 12 \\ .\ 20 \\ .\ 44 \\ 2.\ 8 \\ 38 \end{array}$	$\begin{array}{c} 0.01\\ .02\\ .02\\ .03\\ .04\\ .06\\ .14\\ 1.0\\ 14\\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ .01 \\ .02 \\ .03 \\ .06 \\ .61 \\ 7.4 \end{array}$	0 0 0 .01 .02 .03 .32 4.3	0 0 0 0 .01 .21 3.3	0 0 0 0 .01 .11 2.4
4615	East Fork Russian River near Calpella.	1 7 14 30 60 90 120 183 274	0.10 .11 .13 .17 .40 .67 1.1 10	$\begin{array}{c} 0.\ 02 \\ .\ 03 \\ .\ 04 \\ .\ 05 \\ .\ 10 \\ .\ 19 \\ .\ 38 \\ 4.\ 0 \\ 68 \end{array}$	0 .01 .02 .03 .05 .14 1.8 41	$egin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & .01 \\ .04 \\ .56 \\ 18 \end{array}$	0 0 0 0 .01 .13 4.5	0 0 0 0 0 0 2.0	0 0 0 0 0 0 0 1.0	0 0 0 0 0 0 0 .01 .72	0 0 0 0 0 0 0 0 0 . 49
46 25	Russian River near Hop- land.	1 7 14 30 60 90 120 183 274	$\begin{array}{r} 0.85\\ .90\\ 1.0\\ 1.2\\ 2.2\\ 3.4\\ 5.5\\ 58\\ 530\end{array}$	$\begin{array}{r} 0.38 \\ .42 \\ .50 \\ .58 \\ .85 \\ 1.3 \\ 2.2 \\ 17 \\ 350 \end{array}$	$\begin{array}{c} 0.\ 21 \\ .\ 24 \\ .\ 28 \\ .\ 31 \\ .\ 38 \\ .\ 60 \\ 1.\ 0 \\ 7.\ 5 \\ 230 \end{array}$	$\begin{array}{c} 0.\ 11 \\ .\ 12 \\ .\ 14 \\ .\ 16 \\ .\ 19 \\ .\ 28 \\ .\ 50 \\ 3.\ 0 \\ 105 \end{array}$	$\begin{array}{c} 0.\ 05 \\ .\ 06 \\ .\ 07 \\ .\ 08 \\ .\ 10 \\ .\ 14 \\ .\ 21 \\ 1.\ 0 \\ 22 \end{array}$	0.03 .04 .05 .07 .09 .13 .69 9.5	$\begin{array}{c} 0.\ 02\\ .\ 02\\ .\ 03\\ .\ 04\\ .\ 05\\ .\ 06\\ .\ 08\\ .\ 40\\ 5.\ 0\end{array}$	$\begin{array}{c} 0.\ 01 \\ .\ 02 \\ .\ 03 \\ .\ 03 \\ .\ 04 \\ .\ 29 \\ \textbf{3.}\ 7 \end{array}$	0 .01 .02 .02 .03 .04 .18 2.6
46 27	Feliz Creek near Hop- land.	1 7 14 30 60 90 120 183 274	08 10 12 16 40 70 1.2 7.6 52	$\begin{array}{c} 0 \\ 0 \\ .01 \\ .02 \\ .08 \\ .19 \\ .40 \\ 3.3 \\ 34 \end{array}$	$\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \\ .03 \\ .14 \\ 1.6 \\ 22 \end{smallmatrix}$	0 0 0 0 0 .01 .64 11	0 0 0 0 0 0 . 14 4. 0	0 0 0 0 0 0 .04 2.0	0 0 0 0 0 0 0 0 0 1.1	0 0 0 0 0 0 0 0 0 0 0 0	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ . 52 \end{array}$

TABLE 7.—Low-flow frequency table for selected stream-gaging stations—Continued

50 SURFACE WATER, SAN FRANCISCO BAY TO EEL RIVER, CALIF.

		1	i i								
Station No.	Gaging station	Num- ber of consec-	Ordinat	es of low- inc	flow fre	quency recurrer	curves, ice inter	in cubi vals, in	c feet pe years	er secon	d, for
		utive days	1.02	1.10	1.3	2.0	5.0	10	20	30	50
4630	Russian River near Clover- dale.	1 7 14 30 60 90 120 183 274	1.4 1.5 1.7 2.1 4.0 6.4 10 92 730	0.58 .65 .78 .91 1.4 2.3 4.0 30 480	$\begin{array}{r} 0.32\\ .36\\ .42\\ .47\\ .59\\ .94\\ 1.7\\ 12\\ 320\\ \end{array}$	$\begin{array}{c} 0.17\\ .18\\ .21\\ .24\\ .29\\ .42\\ .78\\ 5.2\\ 155\end{array}$	0.08 .09 .11 .13 .15 .21 .32 1.8 38	0.05 .06 .07 .08 .11 .14 .20 1.1 17	0.03 .04 .05 .06 .08 .09 .13 .60 9.4	0.02 .03 .03 .04 .06 .07 .09 .44 6.9	$\begin{array}{c} 0.01 \\ .02 \\ .03 \\ .04 \\ .05 \\ .06 \\ .27 \\ 4.8 \\ .\end{array}$
4632	Big Sulphur Creek near Cloverdale.	$ \begin{array}{c c} 1 \\ 7 \\ 14 \\ 30 \\ 60 \\ 90 \\ 120 \\ 183 \\ 274 \\ \end{array} $	7.0 7.2 7.5 7.8 9.2 11 14 37 160	5.0 5.2 5.6 6.0 6.6 7.6 9.2 22 112	3.9 4.1 4.4 4.6 4.9 5.6 7.3 14 80	2.9 3.0 3.2 3.4 3.7 4.1 5.3 9.8 48	2.0 2.1 2.2 2.4 2.7 3.0 3.8 6.7 24	1.6 1.7 1.8 2.0 2.2 2.5 3.0 5.7 16	$1.3 \\ 1.4 \\ 1.5 \\ 1.6 \\ 1.8 \\ 2.1 \\ 2.5 \\ 4.6 \\ 11$	1.1 1.2 1.3 1.4 1.6 1.8 2.2 3.9 10	0.90 1.0 1.1 1.2 1.3 1.4 1.8 3.1 9.0
4640	Russian River near Healds- burg.	1 7 14 30 60 90 120 183 274	19 20 21 22 27 32 40 170 1, 200	14 15 16 17 19 22 27 72 810	$ \begin{array}{r} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 17 \\ 20 \\ 46 \\ 550 \\ \end{array} $	8.6 9.0 9.5 10 11 13 15 31 270	6.2 6.7 7.2 7.7 8.4 9.5 11 20 85	$\begin{array}{r} 4.9\\ 5.4\\ 5.8\\ 6.2\\ 7.2\\ 8.0\\ 9.2\\ 18\\ 52\end{array}$	3.8 4.2 4.7 5.3 6.0 6.8 7.6 15 38	3.3 3.6 4.1 4.6 5.2 6.0 6.8 13 33	2.8 3.1 3.4 3.8 4.2 4.9 5.6 10 29
4645	Dry Creek near Cloverdale.	$ \begin{array}{c} 1 \\ 7 \\ 14 \\ 30 \\ 60 \\ 90 \\ 120 \\ 183 \\ 274 \end{array} $	2.0 2.1 2.3 2.6 3.9 5.0 7.5 26 175	$\begin{array}{c c} 0.92 \\ 1.0 \\ 1.2 \\ 1.4 \\ 1.9 \\ 2.8 \\ 4.0 \\ 12 \\ 115 \end{array}$	$\begin{array}{c} 0.45 \\ .52 \\ .60 \\ .67 \\ .92 \\ 1.5 \\ 2.4 \\ 7.5 \\ 75 \end{array}$	0.18 .21 .24 .28 .38 .60 1.2 4.8 38	0.08 .09 .10 .12 .16 .23 .44 2.4 14	$\begin{array}{r} 0.06 \\ .07 \\ .08 \\ .09 \\ .11 \\ .14 \\ .22 \\ 1.7 \\ 8.4 \end{array}$	$\begin{array}{c} 0.04\\ .05\\ .05\\ .06\\ .07\\ .09\\ .13\\ .98\\ 6.2\\ \end{array}$	0.03 .04 .04 .05 .06 .07 .10 .64 5.4	0.02 .03 .03 .04 .04 .05 .07 .36 4.4
4670	Russian River near Guerne- ville.	1 7 14 30 60 90 120 183 274	31 32 34 36 43 51 63 250 1, 900	24 25 27 29 32 36 43 110 1,230	19 20 22 24 26 28 33 72 800	15 16 17 18 19 23 25 49 390	11 12 13 14 15 17 19 33 115	9.5 10 11 12 13 14 16 30 81	7.48.09.0101112142560	6.6 7.1 8.0 9.0 10 11 13 22 52	5.8 6.2 6.8 7.5 8.2 9.4 11 18 46
4675	South Fork Gualala River near Annapolis.	1 7 14 30 60 90 120 183 274	8.8 9.4 9.8 11 15 19 23 72 420	5.5 6.0 6.6 7.2 9.0 11 15 41 275	3.7 4.1 4.5 4.8 5.5 7.3 10 28 180	2.2 2.5 2.7 3.0 3.4 4.5 6.5 18 97	$1.2 \\ 1.4 \\ 1.5 \\ 1.7 \\ 2.1 \\ 2.8 \\ 3.6 \\ 9.8 \\ 46$	0.78 .95 1.0 1.2 1.5 1.9 2.6 7.9 31	$\begin{array}{r} 0.53 \\ .61 \\ .70 \\ .86 \\ 1.0 \\ 1.3 \\ 1.8 \\ 5.6 \\ 24 \end{array}$	$\begin{array}{c} 0.38 \\ .42 \\ .53 \\ .69 \\ .77 \\ .94 \\ 1.4 \\ 4.6 \\ 20 \end{array}$	0. 22 . 26 . 32 . 43 . 49 . 61 1. 0 3. 3 16
4675. 5	North Fork Gualala River near Gualala.	1 7 14 30 60 90 120 183 274	6.5 6.8 7.0 7.5 9.1 11 12 29 150	4.9 5.1 5.4 5.7 6.5 7.5 9.1 18 100	3.8 4.1 4.3 4.6 4.9 5.8 7.1 14 67	2.9 3.1 3.3 3.5 3.7 4.3 5.4 10 38	2.1 2.3 2.4 2.6 2.8 3.3 3.8 7.0 20	1.6 1.8 1.9 2.1 2.4 2.7 3.2 6.0 15	1.3 1.4 1.5 1.7 1.9 2.2 2.6 5.0 12	1.0 1.1 1.3 1.5 1.6 1.8 2.3 4.4 11	0.73 .80 .92 1.1 1.2 1.4 1.9 3.6 9.5

TABLE 7.—Low-flow frequency table for selected stream-gaging stations—Continued

Station No.	Gaging station	Num- ber of consec-	Ordinate	es of low- inc	flow free licated i	quency recurren	curves, ice inter	in cubic vals, in	e feet pe years	er secon	l, for
		utive days	1.02	1.10	1.3	2.0	5.0	10	20	30	50
4676. 5	Alder Creek near Man- chester.	1 7 14 30 60 90 120 183 274	$\begin{array}{r} 4.1\\ 4.2\\ 4.4\\ 4.6\\ 5.4\\ 6.1\\ 6.9\\ 16\\ 90\end{array}$	3.3 3.4 3.6 3.8 4.2 4.6 5.4 10 60	2.7 2.9 3.0 3.1 3.3 3.8 4.4 7.9 40	2. 2 2. 3 2. 4 2. 5 2. 7 3. 0 3. 6 6. 0 22	1.6 1.7 1.8 1.9 2.1 2.4 2.7 4.4 11	$1.4 \\ 1.5 \\ 1.5 \\ 1.6 \\ 1.8 \\ 2.0 \\ 2.3 \\ 3.9 \\ 8.5$	$1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.7 \\ 2.0 \\ 3.4 \\ 7.1$	$1.0 \\ 1.0 \\ 1.1 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.8 \\ 3.1 \\ 6.3 $	$\begin{array}{r} 0.80 \\ .85 \\ .93 \\ 1.0 \\ 1.1 \\ 1.2 \\ 1.5 \\ 2.6 \\ 5.6 \end{array}$
4677	Elk Creek near Elk.	1 7 14 30 60 90 120 183 274	4.3 4.5 4.7 4.9 5.9 6.8 7.7 18 80	3.4 3.5 3.7 3.9 4.4 4.9 5.9 12 54	2.8 2.9 3.1 3.2 3.4 3.9 4.7 8.7 38	2.2 2.3 2.4 2.5 2.7 3.1 3.7 6.6 23	$1.6 \\ 1.8 \\ 1.8 \\ 1.9 \\ 2.1 \\ 2.4 \\ 2.8 \\ 4.7 \\ 12$	1.4 1.5 1.5 1.6 1.8 2.0 2.4 4.1 9.4	1.2 1.2 1.3 1.4 1.5 1.7 2.0 3.4 7.9	$1.0 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.8 \\ 3.1 \\ 7.0 $	$\begin{array}{r} 0.80 \\ .86 \\ .95 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.5 \\ 2.6 \\ 6.1 \end{array}$
4678	Rancheria Creek near Boonville.	1 7 14 30 60 90 120 183 274	4. 1 4. 4 5. 2 6. 7 8. 6 11 27 147	2.7 2.9 3.2 3.5 4.1 5.2 6.8 18 100	$1.8 \\ 2.0 \\ 2.2 \\ 2.4 \\ 2.7 \\ 3.5 \\ 4.7 \\ 13 \\ 66$	1.1 1.2 1.3 1.4 1.7 2.1 3.2 8.0 37	0. 62 .68 .74 .81 1. 0 1. 3 1. 8 4. 7 19	0.45 .51 .55 .61 .74 .90 1.2 3.8 14	0.38 .41 .50 .55 .64 .90 2.7 10	0.33 .36 .39 .42 .46 .51 .72 2.1 8.6	0. 27 28 30 33 36 40 55 1. 6 7. 4
4680	Navarro River near Navarro.	1 7 14 30 60 90 120 183 274	17 18 19 21 26 32 38 94 450	12 13 14 15 17 21 26 60 310	8.6 9.4 10 11 12 15 19 43 208	5.7 6.3 6.7 7.3 8.2 10 14 30 120	3.7 4.0 4.2 4.6 5.5 6.9 8.6 19 65	$\begin{array}{c} 2.9\\ 3.2\\ 3.4\\ 3.7\\ 4.3\\ 5.0\\ 6.5\\ 16\\ 47\end{array}$	2.5 2.6 2.8 3.1 3.4 3.8 4.8 12 37	2.2 2.3 2.5 2.7 2.9 3.2 4.2 10 32	1.8 1.9 2.0 2.2 2.4 2.6 3.4 7.9 28
4681	Big River near Fort Bragg.	1 7 14 30 60 90 120 183 274	9.2 9.6 10 11 14 17 20 48 215	6.2 6.6 7.2 7.8 9.2 11 14 31 147	4.4 4.8 5.2 5.5 6.2 8.0 10 23 101	2.9 3.2 3.4 3.7 4.2 5.2 7.2 16 62	1.7 1.9 2.0 2.3 2.8 3.5 4.4 10 34	$1.2 \\ 1.4 \\ 1.5 \\ 1.7 \\ 2.1 \\ 2.5 \\ 3.3 \\ 8.4 \\ 25$	0.90 1.0 1.1 1.3 1.5 1.8 2.4 6.4 20	$\begin{array}{c} 0.\ 70\\ .\ 75\\ .\ 90\\ 1.\ 1\\ 1.\ 2\\ 1.\ 4\\ 2.\ 0\\ 5.\ 3\\ 17\end{array}$	0.46 .52 .62 .76 .85 1.0 1.5 4.0 15
4685	Noyo River near Fort Bragg.	1 7 14 30 60 90 120 183 274	9.2 9.6 10 11 14 17 20 48 215	6.2 6.6 7.2 7.8 9.2 11 14 31 147	4.4 4.8 5.2 5.5 6.2 8.0 10 23 101	2.9 3.2 3.4 3.7 4.2 5.2 7.2 16 62	1.7 1.9 2.0 2.3 2.8 3.5 4.4 10 34	$ \begin{array}{c} 1,2\\ 1,4\\ 1,5\\ 1,7\\ 2,1\\ 2,5\\ 3,3\\ 8,4\\ 25\\ \end{array} $	0.90 1.0 1.1 1.3 1.5 1.8 2.4 6.4 20	$\begin{array}{c} 0,70\\ .75\\ .90\\ 1.1\\ 1.2\\ 1.4\\ 2.0\\ 5.3\\ 17\end{array}$	0.46 .52 .62 .76 .85 1.0 1.5 4.0 15
4686	Middle Fork Ten Mile River near Fort Bragg.	1 7 14 30 60 90 120 183 274	5.5 5.7 6.0 6.5 7.9 9.3 11 23 95	3.8 4.1 4.4 4.8 5.5 6.5 7.9 15 65	2.8 3.0 3.2 3.4 3.8 4.9 6.0 12 46	1.8 2.0 2.1 2.3 2.6 3.3 4.4 8.9 29	1.0 1.1 1.2 1.4 1.7 2.2 2.7 6.0 17	0.67 .79 .85 1.0 1.2 1.5 2.0 5.0 13	0.48 .54 .60 .73 .85 1.0 1.5 4.0 10	$\begin{array}{c} 0.35\\ .39\\ .47\\ .60\\ .66\\ .79\\ 1.2\\ 3.3\\ 9.2 \end{array}$	$\begin{array}{c} 0.22 \\ .25 \\ .31 \\ .38 \\ .44 \\ .54 \\ .85 \\ 2.5 \\ 8.4 \end{array}$

TABLE 7.—Low-flow frequency table for selected stream-gaging stations—Continued

52 surface water, san francisco bay to eel river, calif.

Station No.	Gaging station	Num- ber of consec-	Ordinat	es of low- ine	flow fre dicated	quency recurren	curves, ace inter	in cubi vals, in	c feet p years	er secon	d, for
		utive days	1.02	1.10	1.3	2.0	5.0	10	20	30	50
4686.5	North Fork Ten Mile River near Fort Bragg.	1 7 14 30 60 90 120 183 274	6.3 6,5 6.8 7.4 9.0 11 13 26 108	4.3 4.7 5.0 5.5 6.3 7.4 9.0 17 74	$\begin{array}{r} 3.2\\ 3.4\\ 3.6\\ 3.9\\ 4.3\\ 5.6\\ 6.8\\ 14\\ 52\end{array}$	2.1 2.3 2.4 2.6 3.0 3.8 5.0 10 33	$1.1 \\ 1.2 \\ 1.4 \\ 1.6 \\ 1.9 \\ 2.5 \\ 3.1 \\ 6.8 \\ 19$	0.76 .90 .97 1.1 1.4 1.7 2.3 5.7 15	$\begin{array}{c} 0.55 \\ .62 \\ .68 \\ .83 \\ .97 \\ 1.1 \\ 1.7 \\ 4.6 \\ 12 \end{array}$	$\begin{array}{r} 0.39 \\ .44 \\ .54 \\ .68 \\ .75 \\ .90 \\ 1.4 \\ 3.8 \\ 11 \end{array}$	0. 22 . 26 . 33 . 43 . 50 . 62 . 97 2. 8 9. 0
4687	South Fork Ten Mile River near Fort Bragg.	1 7 14 30 60 90 120 183 274	$1.8 \\ 1.9 \\ 2.0 \\ 3.0 \\ 3.7 \\ 4.5 \\ 12 \\ 53$	1.0 1.1 1.2 1.4 1.7 2.2 3.0 7.4 36	0.63 .72 .80 .87 1.0 1.5 2.0 5.2 25	$\begin{array}{c} 0.33 \\ .39 \\ .43 \\ .59 \\ .82 \\ 1.3 \\ 3.5 \\ 15 \end{array}$	0.13 .16 .18 .23 .31 .44 .62 2.0 8.0	$\begin{array}{c} 0.07\\.09\\.11\\.14\\.20\\.26\\.40\\1.6\\5.7\end{array}$	$\begin{array}{r} 0.04\\ .05\\ .06\\ .08\\ .11\\ .15\\ .24\\ 1.1\\ 4.5\end{array}$	0.02 .03 .04 .06 .07 .10 .18 .82 3.8	0 .01 .02 .03 .04 .05 .11 .55 3.3
4690	Mattole River near Petrolia.	1 7 14 30 60 90 120 183 274	61 63 65 70 92 111 135 370 1, 650	41 44 47 50 61 73 90 220 1, 150	29 31 34 36 41 51 65 160 810	20 21 23 25 28 35 47 105 490	$12 \\ 13 \\ 14 \\ 16 \\ 19 \\ 23 \\ 30 \\ 65 \\ 250$	$8.9 \\ 9.5 \\ 10 \\ 12 \\ 14 \\ 17 \\ 22 \\ 55 \\ 170 \\ 170 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	6.7 7.2 8.3 9.3 10 13 17 42 130	5.3 5.7 6.7 7.7 8.5 10 14 35 112	3.8 4.2 4.8 5.6 6.5 7.4 10 27 98
4695	North Fork Mattole River at Petrolia.	1 7 14 30 60 90 120 183 274	9.1 9.4 9.7 11 13 16 20 52 230	6.2 6.7 7.2 7.7 9.1 11 13 31 160	4.4 4.7 5.1 5.5 6.2 7.7 9.6 23 110	$\begin{array}{r} 3.0\\ 3.2\\ 3.5\\ 3.8\\ 4.2\\ 5.3\\ 7.2\\ 15\\ 69 \end{array}$	1.8 2.0 2.2 2.5 2.9 3.5 4.5 9.7 35	$1.4 \\ 1.5 \\ 1.6 \\ 1.9 \\ 2.2 \\ 2.6 \\ 3.4 \\ 8.3 \\ 25$	1.0 1.1 1.3 1.4 1.6 2.0 2.6 6.3 19	$\begin{array}{c} 0.83 \\ .89 \\ 1.0 \\ 1.2 \\ 1.3 \\ 1.6 \\ 2.2 \\ 5.3 \\ 16 \end{array}$	$\begin{array}{r} 0.\ 60\\ .\ 66\\ .\ 76\\ .\ 87\\ 1.0\\ 1.1\\ 1.6\\ 4.1\\ 14\end{array}$
4695. 5	Bear River at Capetown.	1 7 14 30 60 90 120 183 274	19 20 21 23 27 32 40 102 445	$13 \\ 14 \\ 15 \\ 16 \\ 19 \\ 22 \\ 27 \\ 61 \\ 310$	$ \begin{array}{r} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 16 \\ 20 \\ 46 \\ 215 \\ \end{array} $	7.3 7.7 8.3 8.8 9.6 12 15 30 133	5.0 5.4 5.8 6.3 7.1 8.3 10 21 69	4.2 4 4 5.2 5.7 6.5 8.1 18 50	$\begin{array}{c} 3.5\\ 3.7\\ 4.0\\ 4.2\\ 4.6\\ 5.4\\ 6.5\\ 14\\ 38 \end{array}$	$\begin{array}{r} \textbf{3.1}\\ \textbf{3.2}\\ \textbf{3.5}\\ \textbf{3.8}\\ \textbf{4.0}\\ \textbf{4.6}\\ \textbf{5.7}\\ \textbf{12}\\ \textbf{32} \end{array}$	$2.7 \\ 2.8 \\ 3.0 \\ 3.2 \\ 3.4 \\ 3.6 \\ 4.6 \\ 9.4 \\ 28$

TABLE 7.—Low-flow frequency table for selected stream-gaging stations—Continued

TABLE 8.—Composite low-flow frequency table

Number of consecutive days	Ordinat	tes of cor of flow d	nposite le luration,	ow-flow i for indic	frequenc; ated reci	y curves, irrence ii	, express ntervals,	ed as per in years	centiles
	1.02	1.10	1.3	2.0	5.0	10	20	30	50
1 7 14 30 60 90 120 183 274	75 74 73 71 67 63 59 43 16	82 81 80 78 75 71 67 51 21	88 87 85 84 82 77 72 57 27	94 93 92 91 89 85 85 80 64 37	98.0 97.5 97.0 95.0 92.0 89.0 73.0 49.0	99.0 98.7 98.4 95.0 95.3 95.3 95.3 95.5	99.6 99.5 99.3 99.0 98.5 97.5 95.5 84.0 61.0	99.8 99.7 99.6 99.3 99.1 98.5 97.0 87.0 63.0	a b 99. 9 99. 8 99. 6 99. 4 98. 5 91. 0 66. 0

NOTE.—Symbols a and b indicate percentiles greater than 99.9. Ordinates represented by a and b are discharges in cubic feet per second, where $a=0.90(Q_{99.9})$ and $b=0.95(Q_{99.9})$.

TABLES

TABLE 9.—Summary of results of flood-frequency analysis

			Mean	Peak d rec	lischarge for i currence inte	ndicated rvals	
Station	Gaging station	Drainage area	annual basin- wide		Peak disch	arge, in cfs	Percent difference
No.		(sq mi)	precipi- tation (in.)	Recur- rence interval (years)	Q _c (from individual station frequency curves)	Qr (from regression equation)	$\frac{100(Q_{o}-Q_{r})}{Q_{r}}$
4560	Napa River near St. Helena.	81.4	43	2.33 5 10 25 50	6, 4 00 9, 200 11, 000 12, 700 13, 800	5, 660 8, 250 10, 100 12, 300 13, 900	$ \begin{array}{r} +13 \\ +12 \\ +9 \\ +3 \\ -1 \end{array} $
4565	Conn Creek near St. Helena.	53.2	37	2.33 5 10 25 50	3, 200 5, 200 6, 800 8, 600 9, 900	3, 280 4, 720 5, 720 6, 810 7, 540	-2 + 10 + 19 + 26 + 31
4 570	Dry Creek near Napa	17.4	44	2.33 5 10 25 50	$1,220 \\ 1,980 \\ 2,510 \\ 3,080 \\ 3,500$	$1,700 \\ 2,520 \\ 3,100 \\ 3,770 \\ 4,260$	$ \begin{array}{r} -28 \\ -21 \\ -19 \\ -18 \\ -18 \\ -18 \\ \end{array} $
4585	Sonoma Creek at Boyes Hot Springs.	62.2	45	2.33 5 10 25 50	4, 300 6, 200 7, 700 9, 600 11, 000	4 , 870 7, 150 8, 830 10, 800 12, 200	$ \begin{array}{c} -12 \\ -13 \\ -13 \\ -11 \\ -10 \end{array} $
4590	Petaluma River at Peta- luma.	30.9	31	2, 33 5 10 25 50	1, 080 1, 410 1, 630 1, 820 1, 930	1, 660 2, 360 2, 810 3, 260 3, 530	-35 -40 -42 -44 -45
4600	Corte Madera Creek at Ross.	18. 1	40	2.33 5 10 25 50	2, 020 2, 740 3, 180 3, 600 3, 880	1, 540 2, 250 2, 750 3, 300 3, 690	+31 +22 +16 +9 +5
4610	Russian River near Ukiah.	99.7	46	2, 33 5 10 25 50	9, 900 13, 500 16, 200 19, 800 22, 000	7, 320 10, 700 13, 300 16, 300 18, 500	+35 +26 +22 +21 +19
4 615	East Fork Rnssian River near Calpella.	93. 0	40	2.33 5 10 25 50	7, 670 10, 600 12, 800 15, 600 17, 500	5, 710 8, 260 10, 100 12, 200 13, 600	+34 +28 +27 +28 +29
4625	Russian River near Hopland.	362	45	2, 33 5 10 25 50	21, 800 33, 000 40, 500 50, 000 56, 000	20, 000 29, 000 35, 800 43, 900 49, 600	+9 +14 +13 +14 +13
4630	Russian River near Cloverdale.	502	44	2.33 5 10 25 50	24, 200 36, 800 47, 000 59, 000 68, 000	25, 100 36, 300 44, 800 54, 800 61, 800	$ \begin{array}{r} -4 \\ +1 \\ +5 \\ +8 \\ +10 \end{array} $
4640	Russian River near Healdsburg.	793	45	2, 33 5 10 25 50	35, 800 50, 000 60, 500 72, 000 80, 000	37, 400 54, 000 66, 700 81, 900 92, 600	-4 -7 -9 -12 -14
4645	Dry Creek near Clover- dale.	87.8	50	2, 33 5 10 25 50	10, 100 15, 200 18, 000 22, 000 25, 500	7, 430 11, 000 13, 700 17, 000 19, 500	+36 +38 +31 +29 +31

54SURFACE WATER, SAN FRANCISCO BAY TO EEL RIVER, CALIF.

			Mean	Peak d rec	lischarge for i currence inte	ndicated rvals	
Station	Gaging station	Drainage area	annnal basin- wide		Peak disch	arge, in cfs	Percent difference
No.		(sq mi)	precipi- tation (in.)	Recur- rence interval (years)	Q. (from individual station frequency curves)	com dual on regression equation)	
4670	Russian River near Guerneville.	1, 340	45	2, 33 5 10 25 50	50, 200 68, 000 80, 000 93, 000 102, 000	56, 900 82, 000 101, 000 125, 000 141, 000	$-12 \\ -17 \\ -21 \\ -26 \\ -28$
4675	South Fork Gualala River near Annapolis.	161	58	2, 33 5 10 25 50	25, 500 35, 400 43, 000 52, 200 59, 000	14, 800 22, 200 28, 100 35, 600 41, 600	+72 +59 +53 +47 +42
4680	Navarro River near Navarro.	303	53	2. 33 5 10 25 50	16, 800 29, 000 41, 000 57, 000 71, 500	21, 800 32, 200 40, 400 50, 600 58, 400	$-23 \\ -10 \\ +1 \\ +13 \\ +22$
4685	Noyo River near Fort Bragg.	106	56	2.33 5 10 25 50	7, 300 11, 500 15, 900 22, 400 28, 000	10, 000 15, 000 18, 900 23, 900 27, 700	$-27 \\ -23 \\ -16 \\ -6 \\ +1$
4 690	Mattole River near Petrolia.	240	92	2. 33 5 10 25 50	30, 800 46, 000 58, 700 74, 700 89, 000	38, 900 61, 000 80, 800 109, 000 134, 000	-21 -25 -27 -31 -34

TABLE 9.—Summary of results of flood-frequency analysis—Continued

TABLE 10.—Multiple-regression equations and associated statistics for peak discharges at selected recurrence intervals

Recurrence interval	Multiple-regression equation	Coefficient of multiple	Standard estim	error of late
(years)		correlation	Logarith- mic units	Percent
2.33 5 10 25 50	$\begin{array}{c} Q_{2:35} = 0.922 \ A^{0.800} \ P^{1.88} \\ Q_5 = 0.929 \ A^{0.704} \ P^{1.49} \\ Q_{10} = 0.793 \ A^{0.704} \ P^{1.59} \\ Q_{25} = 0.580 \ A^{0.706} \ P^{1.72} \\ Q_{50} = 0.416 \ A^{0.705} \ P^{1.84} \\ \end{array}$	0.972 976 978 977 977	0. 128 . 119 . 115 . 119 . 124	30 28 26 28 29

NOTE.—Q=discharge, in cubic feet per second. A=drainage area, in square miles. P=mean annual basinwide precipitation, in inches.

Station		Drain- age	Mean annual basin-	Period of	Maximum di during period	scharge of record	Q50 from re-	Ratio,
No.	Gaging Station	area (sq mi)	wide precip- itation (in.)	record	Date	Q _{max} (cfs)	gression equation (cfs)	Qmax/ Q50
4560	Napa River near St.	81.4	43	192932,	Dec. 22, 1955	12, 600	13, 900	0.91
4565	Conn Creek near St.	53. 2	37	1 1929-45	Feb. 27, 1940	7, 700	7, 540	1.02
4570	Dry Creek near	17.4	44	1951-65	Feb. 28, 1958	3, 460	4, 260	. 81
4580	Napa River near	218	41	1929-32,	Jan. 31, 1963	16, 900	27, 900	. 61
4582	Redwood Creek	9.81	35	1959-65	Jan. 31, 1963	1, 330	1, 770	.75
4585	Sonoma Creek at Boyes Hot	62. 2	45	1955-65	Dec. 22, 1955	8, 880	12, 200	.73
4 590	Springs. Petaluma River at Petaluma	30. 9	31	1948-63	Dec. 22, 1955	1,860	3, 530	. 53
4 600	Corte Madera Creek	18.1	40	1951-65	Dec. 22, 1955	3, 620	3, 690	. 98
4605	Nicasio Creek near Point Reyes Sta-	36.2	38	1953-60	Dec. 22, 1955	9,010	5, 830	1.55
4608	Walker Creek near	37.1	40	1959-65	Feb. 13, 1962	3, 430	6, 510	. 53
4609.2	Salmon Creek at	15.7	36	1962-65	Jan. 31, 1963	1, 430	2,710	. 53
4610	Bodega. Russian River near	99.7	46	1911-13	Dec. 22, 1964	19, 500	18, 500	1.05
4615	East Fork Russian River near Cal-	93. 0	40	1952-65 1941-65	Dec. 22,1964	18, 800	13, 600	1.38
4625	peila. Russian River near	362	45	193965	Dec. 22, 1964	² 57, 500	49, 600	1.16
4627	Feliz Creek near	31, 1	47	1958-65	Dec. 22, 1964	6,080	7,620	.80
4630	Russian River near	502	44	195165	Dec. 22, 1964	² 67, 100	61, 800	1. 09
4632	Big Sulphur Creek	82.3	52	1957-65	Dec. 22, 1955	20,000	19,900	1.00
4639	near Cloverdale. Maacama Creek	43.4	56	195865	Dec. 22, 1964	8,920	13, 700	. 65
4639. 4	Franz Creek near	15.7	42	195565	Dec. 22, 1955	4, 130	3, 600	1, 15
4640	Russian River near	793	45	1939-65	Dec. 22, 1964	² 81, 400	92, 600	. 88
4645	Dry Creek near	87.8	50	1941-65	Dec. 22, 1964	18, 100	19, 500	. 93
4 652	Dry Creek near	162	50	1959-65	Dec. 22, 1964	32, 900	31, 800	1. 03
4658	Geyserville. Santa Rosa Creek	12.5	48	1959-65	Feb. 8,1960	3,200	3,840	. 83
4 670	near Santa Rosa. Russian River near	1, 34 0	45	1939-65	Dec. 23, 1964	² 101, 000	141, 000	0.72
4672	Guerneville. Austin Creek near	63.1	65	1959-65	Feb. 13, 1962	15, 100	24, 300	. 62
4 675	Cazadero. South Fork Gualala River near	161	58	1950-65	Dec. 22, 1955	55, 000	41, 600	1.32
4675.5	Annapolis. North Fork Gualala River near	39. 2	67	1951-56	Dec. 22, 1955	11,900	17, 600	. 68
4676	Gualala. Garcia River near Point Arena.	98. 5	64	1951–56, 1962–65	Dec. 22, 1955	26, 300	33, 600	.78
4678	Rancheria Creek	65.6	52	1959-65	Dec. 22, 1964	20, 000	16, 600	1.20
4 680	near Boonville. Navarro River near	303	53	1950-65	Dec. 22, 1955	64, 500	58, 400	1.10
4680.1	Navarro. Albion River near	14.4	57	1961-65	Dec. 21,1964	2,050	5,900	. 35
4680. 7	South Fork Big River near Comptche.	36. 2	50	1960-65,	Dec. 22, 1964	8,200	9, 650	0.85

TABLE 11.—Comparison of maximum recorded peak discharge and Q_{50} computed from regression equation

See footnotes at end of table.

Station		Drain-	Mean annual basin-	Period of	Maximum di during period	ischarge of record	Q50 from re-	Ratio.
No.	Gaging Station	area (sq mi)	wide precip- itation (in.)	record	Date	Q _{max} (cfs)	gression equation (cfs)	Q _{max} / Q ₅₀
4681	Big River near Mendocino	152	52	1951-56	Dec. 22, 1955	31, 300	32, 400	0. 97
4685	Noyo River near	106	56	1951 - 65	Dec. 22, 1964	24,000	27,700	. 87
4686	Middle Fork Ten Mile River near Fort Bragg	33, 3	58	1964-65	Dec. 21, 1964	5,670	11,800	. 48
4690	Mattole River near Petrolia	240	92	1911-13, 1950-65	Dec. 22, 1955	90, 400	134, 000	. 67
4695	North Fork Mattole River at Petrolia.	37.6	82	1951-57	Dec. 22, 1955	9, 600	2 4, 700	. 39

TABLE 11.—Comparison of maximum recorded peak discharge and Q_{50} computed from regression equation—Continued

¹ Regulated by Lake Hennessey after 1945.
² Adjusted for reservoir regulation by Lake Mendocino on the basis of provisional computations by U.S. Army Corps of Engineers.

TABLE 12.—High-flow frequency data for selected stream-gaging stations

(Discharge, in cubic feet per second, from individual station frequency curves)

8515823 8528333 2515823 8528333 2515823 8528333 2515823 85283 251582 2515823 251582 2515823 2515823 2515823 2515823 2515823 2515823 2515823 2515823 251582 25155 8038833 660 280 E Mean discharge, at selected recurrence intervals, for indicated number of consecutive days 80885130 370 510 810 810 48,0236 \$28825 575 685 575 575 390 675 675 790 8852223 810 1, 420 1, 700 660 650 520 660 650 520 660 650 520 258 344 10 8808255 810 2, 050 2, 050 380 2, 050 2, 000 2, 000 2, 000 2, 000 2, 000 2, 000 2, 000 2, 000 2, 000 2, 0 870 850 3,100 3,100 3,100 3,100 3,100 535 690 690 800 1-2,200 2,270 2,270 2,270 3,1000 861880 86180 86 590 760 970 130 202020202 . ຈົນດ້ຜ່ 3, 410 5, 190 8, 420 9, 780 **4**, 32, 290 **7**00 **8**, 470 **9**00 **1**, 330 **1**, 330 **1**, 330 **1**, 330 **1**, 330 **1**, 330 **1**, 330 **1**, 330 1,960 3,000 6,740 6,760 $\begin{array}{c} 880\\ 1, 710\\ 2, 180\\ 2, 540\end{array}$ 980 870 870 2210 760 760 Recur-rence interval (years) R ŝ Mean annual basin-wide precip-itation (in.) \$ Drainage area (sq mi) 53.2 17.4 30.9 81.4 62.2 18.1 Conn Creek near St. Helena. Dry Creek near Napa..... Sonoma Creek at Boyes Hot Springs... Corte Madera Creek at Ross..... Petaluma River at Petaluma..... -----Napa River near St. Helena.... Gaging station 220 Sta-No.

TABLES

58

٠

SURFACE WATER, SAN FRANCISCO BAY TO EEL RIVER, CALIF.

Sta-		Drainace	Mean annual basin-	Recur- rence		A	fean disc	harge, ai	t selected umber of	recurren	ce intervive days	rals, for i	indicated		
No.	Gaging station	area (sq mi)	wide precip- itation (in.)	interval (years)	I	ŝ	7	15	30	60		120	150	183	274
4610	Russian River near Ukiah.	99.7	46	2. 33 50 50	$\begin{array}{c} \textbf{4}, 240\\ 6, 180\\ 7, 820\\ 10, 400\\ 12, 800 \end{array}$	2, 890 3, 990 6, 420 7, 900	$\begin{array}{c} 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	$\substack{\mathbf{1, 330}\\\mathbf{2, 280}\\\mathbf{3, 240}\\\mathbf{3, 240}\\$	$\substack{ 1,380\\ 1,750\\ 2,250\\ 2,700 \end{array}$	$640\\920\\1,140\\1,750\\1,750$	$^{540}_{1,\ 280}$	450 650 820 1, 170	370 530 880 830 950	320 465 730 840 840	208 296 368 525
4615	East Fork Russian River near Calpella.	93. 0	40	2, 33 25 50 50 50 50 50 50 50 50 50 50 50 50 50	$\begin{array}{c} 3, 300\\ 5, 050\\ 6, 280\\ 8, 400\\ 8, 000\end{array}$	2, 050 4, 530 4, 950 950	1,320 3,500 3,340 3,340	$^{1,830}_{1,830}$	640 930 1,160 1,460 1,680	$^{460}_{680}$ $^{680}_{680}$ $^{840}_{1,170}$ $^{1,040}_{1,170}$	360 535 680 860 1,000	300 460 585 745 870	250 375 475 600 700	215 320 410 600	140 207 335 386
4625	Russian River near Hopland	362	45	$25 \\ 25 \\ 25 \\ 25 \\ 50 \\ 50 \\ 50 \\ 50 \\ $	$\begin{array}{c} 12,000\\ 19,500\\ 25,100\\ 32,300\\ 37,500\\ \end{array}$	$\begin{array}{c} 7,750\\ 12,300\\ 15,600\\ 19,200\\ 21,200\end{array}$	$ \begin{array}{c} 5,000\\ 9,800\\ 12,600\\ 14,600\\ 14,600 \end{array} $	3,480 5,010 6,200 8,200 8,200	8, 710 6, 600 6, 600	$\begin{array}{c} 1,770\\ 2,550\\ 3,180\\ 3,970\\ 4,560\\ \end{array}$	1, 500 2, 200 4, 040 4, 040	$\begin{array}{c} 1, 250 \\ 2, 340 \\ 3, 250 \\$	$\begin{array}{c} 1, 040 \\ 1, 570 \\ 1, 980 \\ 2, 830 \\ 2, 830 \\ 2, 0 \end{array}$	845 345 1, 300 2, 300 2, 300 2, 300	$ \begin{array}{c} 576\\ 880\\ 1,120\\ 1,400\\ 1,590\end{array} $
4630	Russian River near Cloverdale	202	44	2. 33 50 50	$\begin{array}{c} 18,000\\ 25,200\\ 31,300\\ 44,500\\ 44,500\\ \end{array}$	$ \begin{array}{c} 12,000\\ 17,000\\ 21,300\\ 28,200\\ 29,800 \end{array} $	$7,500\\110,600\\18,100\\18,600\\18,600$	$ \begin{array}{c} 5,100\\ 7,020\\ 8,600\\ 10,400\\ 11,600\end{array} $	8, 800 9, 1100 9, 1100 9, 1170	2,500 5,500 6,320	$\begin{array}{c} 2,060\\ 3,750\\ 5,410\\ 5,410\end{array}$	$\begin{array}{c} 1,710\\ 2,630\\ 3,220\\ 4,250\\ \end{array}$	$\begin{array}{c} 1,480\\ 2,160\\ 3,240\\ 3,550\\ \end{array}$	$\substack{1,210\\1,820\\2,290\\3,190\end{array}$	1,280 1,280 2,120 2,470
4640	Russian River near Healdsburg	793	45	25 50 50 50 50 50 50 50 50 50 50 50 50 50	26, 500 39, 900 50, 000 62, 200 70, 500	$\begin{array}{c} 18,600\\ 28,500\\ 36,000\\ 44,300\\ 49,400\end{array}$	$\begin{array}{c} 12,400\\ 17,800\\ 22,400\\ 22,400\\ 32,400\\ \end{array}$	$\begin{array}{c} 8,500\\ 12,200\\ 14,600\\ 18,200\\ 18,200\end{array}$	$\substack{6,\ 000\\8,\ 800\\11,\ 000\\13,\ 600\\15,\ 300 \end{aligned}$	$\begin{array}{c} 4, 330\\ 6, 400\\ 7, 850\\ 9, 290\\ 10, 100\end{array}$	9, 250 9, 200 9, 250 9, 250	2,710 5,700 8,120 8,120	2, 400 3, 750 5, 780 6, 350	1,900 3,240 4,140 5,240	3,560 3,210 3,560 3,560 3,560 3,560 3,560 3,560 3,560 3,560 3,560 3,560 3,560 3,560 3,560 3,560 3,560 3,560 3,570 5,050 5,000 5,000 5,000 5,00000000
4645	Dry Creek near Cloverdale	87.8	20	22 22 20 22 23 23 20 23 20 20 20 20 20 20 20 20 20 20 20 20 20	4,800 7,300 9,000 10,700	3, 630 5, 580 8, 810 9, 990	2,000 3,790 5,500	$1, 270\\ 2, 250\\ 3, 220\\ 3, 2$	2, 050 2, 050 2, 370	610 900 1,120 1,420	$ \begin{array}{c} 490\\720\\910\\1,150\\1,340\end{array} $	410 617 780 987 987	340 498 625 910	285 413 520 553 755	195 285 356 448 517

TABLE 12.—High-flow frequency data for selected stream-gaging stations—Continued

2, 160 5, 4, 350 6, 800 6, 900	498 673 815 990 1,130	$ \begin{array}{c} 565 \\ 800 \\ 1, 270 \\ 1, 480 \\ 1, 480 \\ \end{array} $	250 360 542 542 610	1,600 2,370 3,140 3,140
3, 200 6, 550 9, 900	$\begin{array}{c} 720\\ 1, 240\\ 1, 580\\ 1, 840\end{array}$	$ 880\\1,260\\1,560\\2,220\\2,220 \\ $	372 530 660 820 940	2, 140 3, 770 3, 950 4, 450
3,900 6,000 10,500 12,600	$\begin{smallmatrix} 1, 190\\ 1, 450\\ 1, 780\\ 2, 040\\ \end{smallmatrix}$	1,060 1,480 2,270 2,600	430 628 782 980 1,130	5, 130 5, 130 5, 130 5, 130
$\begin{array}{c} 4,600\\ 7,180\\ 9,400\\ 12,600\\ 15,000\\ \end{array}$	2, 230 2, 020 2, 230	1, 250 1, 740 2, 120 3, 000	$^{540}_{760}$ $^{760}_{940}$ $^{1}_{1,260}$	$ \begin{array}{c} 3, 020\\ 3, 940\\ 5, 380\\ 5, 950\\ 5, 950\\ 6, 6$
$\begin{array}{c} 5,810\\ 8,650\\ 11,200\\ 14,400\\ 17,000\end{array}$	$\substack{1,170\\2,450\\2,450\\2,800}$	$\begin{array}{c} 1,500\\ 2,140\\ 3,290\\ 3,900\\ \end{array}$	$ \begin{array}{c} 580\\ 810\\ 1,250\\ 1,430\\ 1,430 \end{array} $	3, 670 5, 390 6, 120 6, 610
10, 500 10, 600 13, 300 16, 700 19, 200	$\substack{1, 500\\2, 440\\3, 370\end{cases}$	$\begin{array}{c} 1,710\\ 2,400\\ 3,540\\ 4,260\\ \end{array}$	1,030 1,030 1,260 1,520 1,680	4, 450 5, 750 6, 570 7, 980
9,700 14,500 24,000 28,200	5, 400 5, 400 5, 600 5, 000 5, 00000 5, 0000000000	2,520 5,600 6,420	$1,\ 040\\1,\ 530\\2,\ 260\\2,\ 500\\2,$	$\begin{array}{c} 5,750\\ 7,800\\ 9,350\\ 11,200\\ 12,500\\ \end{array}$
26,000 36,000 36,000 36,000	3,100 5,650 6,300	$\begin{array}{c} 3, 600\\ 4, 830\\ 5, 810\\ 8, 020\\ 8, 020\end{array}$	$\begin{array}{c} 1,410\\ 1,950\\ 2,380\\ 2,940\\ 3,360\end{array}$	$\begin{array}{c} 7,900\\ 10,600\\ 12,600\\ 14,800\\ 16,200 \end{array}$
20,400 39,500 51,300 61,000	$\begin{array}{c} 4,500\\ 6,620\\ 8,210\\ 10,200\\ 11,500\end{array}$	5,580 7,810 9,700 12,000 13,800	2, 150 3, 020 3, 750 5, 320	$\begin{array}{c} 11,800\\ 15,800\\ 19,000\\ 23,200\\ 26,300 \end{array}$
30, 290 57, 500 84, 900 84, 900	$\begin{array}{c} 7,060\\ 10,200\\ 12,800\\ 16,000\\ 18,400 \end{array}$	8,700 12,100 18,200 20,800	3, 320 4, 950 6, 220 8, 750 8, 750	$\begin{array}{c} 16,200\\ 22,100\\ 26,500\\ 32,000\\ 36,200\\ \end{array}$
39,200 57,000 86,200 95,100	$\begin{array}{c} 11,600\\ 17,500\\ 21,700\\ 25,600\\ 27,500\end{array}$	$12,200\\19,200\\34,500\\34,500\\41,500$	$\begin{array}{c} 5,100\\ 8,100\\ 10,800\\ 14,400\\ 17,100\end{array}$	$\begin{array}{c} 18,200\\ 24,600\\ 30,200\\ 38,500\\ 45,000\\ \end{array}$
25 25 25 25 25 25 25 25 25 25 25 25 25 2	2.33 5 25 50 50	250	2. 33 50 50	$25 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ $
45	8 <u>6</u>	53	56	92
1, 340	161	303	106	240
Russian River near Guerneville	South Fork Gualala River near Annap- olis	Navarro River near Navarro	Noyo River near Fort B agg	Mattole River near Petrolia
4670	4675	4680	4685	4690

.

Number of	Recur-	Values multi equation	of consta ple-regres n: $Q_T = a$	nts in sion AbPoi	Coefficient	Standard estimation	error of ste	Range of per- centage differ- ences between individual	
consecutive days	rence interval T (years)	a	b		of multiple correlation	Loga- rithmic units	Per- cent	station dis- charges and discharges computed from regression equations	
1	2. 33 5 10 25 50	0. 341 . 657 1. 054 1. 041 1. 172	0.928 .920 .915 .908 .898	1. 327 1. 272 1. 222 1. 292 1. 311	0. 991 . 990 . 989 . 992 . 992	0.080 .083 .087 .076 .075	18 19 20 18 17	$\begin{array}{r} -20 \text{ to } +40 \\ -23 \text{ to } +30 \\ -25 \text{ to } +38 \\ -26 \text{ to } +28 \\ -26 \text{ to } +28 \end{array}$	
3	2, 33 5 10 25 50	. 070 . 171 . 284 . 438 . 557	. 960 . 953 . 949 . 941 . 934	1. 591 1. 473 1. 407 1. 363 1. 347	. 992 . 992 . 992 . 992 . 992 . 992	.080 .078 .078 .078 .077 .077	19 18 18 18 18	$\begin{array}{r} -25 \text{ to } +40 \\ -22 \text{ to } +44 \\ -21 \text{ to } +46 \\ -19 \text{ to } +44 \\ -18 \text{ to } +42 \end{array}$	
7	2.33 5 10 25 50	. 032 . 087 . 148 . 236 . 308	. 968 . 952 . 946 . 937 . 932	1. 671 1. 534 1. 466 1. 419 1. 394	. 994 . 994 . 995 . 994 . 994	. 070 . 066 . 064 . 065 . 067	16 15 15 15 16	-21 to +39 -18 to +35 -17 to +33 -17 to +35 -18 to +37	
15	2.33 5 10 25 50	.022 .070 .123 .196 .258	. 975 . 952 . 940 . 926 . 913	1. 655 1. 480 1. 406 1. 356 1. 334	. 995 . 995 . 995 . 995 . 995 . 994	.065 .063 .061 .060 .064	15 15 14 14 15	$\begin{array}{r} -21 \text{ to } +32 \\ -18 \text{ to } +35 \\ -17 \text{ to } +35 \\ -16 \text{ to } +36 \\ -15 \text{ to } +37 \end{array}$	
30	2.33 5 10 25 50	.0109 .032 .058 .110 .162	$1.002 \\ .982 \\ .974 \\ .965 \\ .959$	1. 705 1. 554 1. 473 1. 381 1. 325	. 995 . 995 . 995 . 995 . 995 . 995	. 068 . 063 . 061 . 060 . 065	16 15 14 14 15	$\begin{array}{r} -23 \text{ to } +29 \\ -20 \text{ to } +31 \\ -21 \text{ to } +32 \\ -21 \text{ to } +30 \\ -21 \text{ to } +31 \end{array}$	
60	2. 3 3 5 10 25 50	. 0039 . 0177 . 042 . 104 . 167	1.018 .993 .981 .966 .958	1.857 1.601 1.451 1.294 1.218	. 994 . 996 . 997 . 997 . 997	. 073 . 059 . 051 . 051 . 051 . 051	17 14 12 12 12	-24 to +31 -19 to +21 -18 to +18 -20 to +17 -15 to +20	
90	2. 33 5 10 25 50	0022 0122 036 090 155	1.039 1.008 .988 .972 .964	1. 919 1. 626 1. 439 1. 284 1. 193	. 995 . 996 . 997 . 997 . 997	. 071 . 059 . 053 . 051 . 050	16 14 12 12 11	$\begin{array}{r} -22 \text{ to } +31 \\ -16 \text{ to } +26 \\ -14 \text{ to } +25 \\ -15 \text{ to } +25 \\ -15 \text{ to } +24 \end{array}$	
120	2. 33 5 10 25 50	. 00130 . 0085 . 024 . 063 . 109	1.036 1.015 .997 .980 .965	2.011 1.664 1.485 1.320 1.234	. 994 . 996 . 996 . 996 . 996 . 996	. 078 . 064 . 057 . 054 . 055	18 15 13 12 13	$\begin{array}{r} -25 \text{ to } +34 \\ -21 \text{ to } +29 \\ -20 \text{ to } +26 \\ -19 \text{ to } +23 \\ -18 \text{ to } +20 \end{array}$	
150	2. 33 5 10 25 50	.00078 .0053 .0161 .043 .072	$1.046 \\ 1.016 \\ .996 \\ .976 \\ .961$	2.084 1.740 1.542 1.380 1.303	. 994 . 996 . 997 . 997 . 997	. 080 . 062 . 054 . 048 . 048	18 14 12 11 11	$\begin{array}{r} -24 \text{ to } +33 \\ -20 \text{ to } +31 \\ -18 \text{ to } +28 \\ -16 \text{ to } +24 \\ -16 \text{ to } +21 \end{array}$	
183	2. 33 5 10 25 50	.00071 .0044 .0105 .021 .030	1.032 1.019 1.008 .988 .972	2. 078 1. 736 1. 591 1. 498 1. 468	. 993 . 994 . 995 . 996 . 996	. 084 . 071 . 064 . 057 . 054	19 16 15 13 12	$\begin{array}{r} -26 \text{ to } +36 \\ -24 \text{ to } +33 \\ -21 \text{ to } +31 \\ -16 \text{ to } +28 \\ -15 \text{ to } +25 \end{array}$	
274	2. 33 5 10 25 50	.00040 .0025 .0062 .0154 .024	$1.024 \\ 1.005 \\ .996 \\ .988 \\ .981$	2. 141 1. 801 1. 643 1. 479 1. 408	. 994 . 995 . 996 . 996 . 997	. 079 . 066 . 060 . 055 . 052	18 15 14 13 12	$\begin{array}{r} -23 \text{ to } +35 \\ -20 \text{ to } +34 \\ -19 \text{ to } +34 \\ -18 \text{ to } +31 \\ -17 \text{ to } +28 \end{array}$	

TABLE 13.—Multiple-regression equations and associated statistics for high flows of various durations at selected recurrence intervals

¹ Where Q_T =Discharge, in cubic feet per second, corresponding to recurrence interval of T years; A=Drainage area, in square miles; P=Mean annual basinwide precipitation, in inches; a, b, and c are constants.

Ο