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Iron regulates Southern Ocean primary productivity and due to geographically restricted 22 

surface inputs (e.g. local dust supply), most dissolved iron (DFe) is supplied at a basin-scale to 23 

surface waters from subsurface reservoirs (remineralisation and sediment/hydrothermal 24 

inputs). The main physical processes are deep winter mixing (entrainment) and year-round 25 

diffusion across density surfaces (diapycnal diffusion). The relative importance of each 26 
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remains observationally poorly constrained, yet ultimately governs the climate sensitivity of 27 

regional productivity.  Here we show that winter entrainment determines the DFe supply to 28 

Southern Ocean phytoplankton to a greater extent than diapycnal diffusion, necessitating a 29 

strong seasonal reliance on biologically recycled iron. DFe observations are combined with 30 

hydrography from Argo floats and biological utilisation estimates to determine basin-scale, 31 

observationally constrained DFe fluxes. Weak vertical gradients reduce the importance of 32 

diapycnal diffusion to seasonal re-supply and instead, a ‘one off’ deep wintertime entrainment 33 

pulse annually replenishes surface DFe stocks. Following DFe depletion, biological 34 

observations from the sub-Antarctic sector suggest intense upper-ocean DFe recycling that 35 

sustains productivity. Accordingly, entrainment and recycling are likely important drivers of 36 

temporal variations in Southern Ocean primary production. Our results are underpinned by 37 

the nature of vertical DFe gradients, making these features important constraints on ocean 38 

models. 39 

 40 

The micronutrient iron (Fe) is an important regulator of primary productivity and therefore the 41 

strength of the biological carbon pump in the Southern Ocean
1,2

. This region is of key importance to 42 

both the global carbon cycle and air-sea carbon dioxide fluxes
3,4

 and the impact of future or past 43 

climate variability is mediated to a large degree by modifications to Fe supply to the biota
5
. Despite 44 

a marked expansion of DFe observations in the ‘GEOTRACES’ era
6
 and several investigations

7,8
 45 

into the magnitude of exogenous inputs of dissolved Fe (DFe, t<0.2µm), little attention has been 46 

focussed on the physical processes that supply DFe at the basin-scale from subsurface reservoirs, 47 

enriched in DFe from both external inputs
1,8

 and remineralisation
9
. In general, wintertime deep 48 

mixing (or entrainment), year-round vertical diapycnal diffusion and Ekman 49 

upwelling/downwelling are the major physical processes involved in the vertical supply of DFe to 50 

phytoplankton
10-12

. The maximum depth of mixing over the year (MLDMAX) and the DFe inventory 51 

within this stratum control the degree of DFe entrainment. Diapycnal diffusion depends on the 52 
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vertical diffusivity (kz) and the vertical DFe gradient at the base of the MLD (∂Fe/∂zMLD), while the 53 

Ekman upwelling/downwelling of DFe depends on the wind stress curl and the concentration of 54 

DFe at the base of the mixed-layer.  In terms of their drivers, entrainment is primarily controlled by 55 

air-sea surface buoyancy fluxes, while Ekman upwelling/downwelling responds to momentum 56 

forcing from winds, and near-surface diapycnal diffusion extracts its energy from a range of sources 57 

including winds and buoyancy. As each of these factors will be differentially altered by climate 58 

change
5,13

, understanding the climate sensitivity of vertical DFe supply to Southern Ocean 59 

phytoplankton depends upon the relative role played by different physical input pathways.  Despite 60 

prior attempts
10,11

, the importance of each physical pathway is poorly quantified due to historically-61 

sparse data coverage and this shortcoming hampers efforts to constrain the response of Southern 62 

Ocean biogeochemical cycling to climate change.  63 

 64 

A key influence on the vertical input of DFe to the mixed-layer is exerted by its water column 65 

profile and in particular, the location and magnitude of vertical concentration gradients (∂Fe/∂z). 66 

The depth at which ∂Fe/∂z is maximal is termed the 'ferricline' (hereafter: ZFe, supplementary figure 67 

1), and as for nitrate (and the 'nitracline'), is critical in understanding how changes in winds and 68 

buoyancy fluxes will impact physical DFe supply processes.  Like nitrate stocks in the North 69 

Atlantic, DFe concentrations are typically depleted (not necessarily to zero) in Southern Ocean 70 

surface waters during spring/summer
6
 due to biological consumption and prevailing DFe 71 

limitation
14

, with greater subsurface concentrations from organic matter remineralisation. However, 72 

unlike nitrate, Fe is also lost from the dissolved pool due to particle scavenging, has important 73 

subsurface inputs from ocean sediments and hydrothermal vents
1,8

 and is likely remineralised more 74 

slowly
15,16

, such that ZFe can be deeper than both the nitracline and MLD
15,17-19

. However, the 75 

nature of the depth offset between ZFe and MLD across the wider Fe-limited Southern Ocean and its 76 

relation to physical DFe supply processes remains uncertain. If ZFe were to be consistently deeper 77 

than the MLD at basin scales, this would have important implications for the magnitude of vertical 78 
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DFe supply and its seasonal variability, highlighting the unique nature of Fe cycling. Here we use a 79 

novel approach that synthesises recent DFe observations (including recent GEOTRACES field 80 

campaigns)
6
, co-localised MLDs from the Argo float archive

20
 and satellite phytoplankton Fe 81 

utilisation estimates
7
 (see Methods) to quantify the processes responsible for the seasonal supply of 82 

DFe in the Southern Ocean for the first time. Our goals were to document ZFe depths, their relation 83 

to MLDs and to quantify the spatial variability in the supply of DFe from entrainment, diapycnal 84 

mixing and Ekman upwelling/downwelling across the Southern Ocean.  85 

 86 

Ferricline Depth and Quantifying Vertical Iron Supply 87 

 88 

Due to its fundamental role in regulating DFe inputs, we first determined ZFe across the Southern 89 

Ocean. The mean depth of ZFe was 333m (median of 350m) across the 140 unique determinations 90 

(Figure 1a).  Much of the variability in ZFe in absolute depth is eliminated when the potential 91 

density anomaly (σθ, kg m
-3

; referenced at the ocean surface) at the depth of ZFe is plotted 92 

(determined from Argo profiling floats; Figure 1b). Consistent across all sampled Southern Ocean 93 

sectors, we find that ZFe is typically associated with denser waters south of the Polar Front (σθ > 94 

27.5 kg m
-3

) and with lighter waters (σθ < 27.5 kg m
-3

) further north, with a striking decline in σθ at 95 

ZFe from south to north (Figure 1b). Since σθ declines at any depth from south to north, 96 

modifications to isopycnal depths likely drive a large part of the variability in the absolute depth of 97 

ZFe (Figure 1, especially at relatively adjacent locations) probably following some ‘preconditioning’ 98 

from Fe-specific biogeochemical processes (encapsulated by longer remineralisation length 99 

scales
15

). The vertical gradient at ZFe (∂Fe/∂zZFe) is generally much greater than that at the MLD 100 

(∂Fe/∂zMLD), which indicates that ZFe is the most significant vertical gradient in the upper 1000m 101 

(Supplementary Figure 2). Moreover, ∂Fe/∂zZFe is greatest (meaning a ‘sharper’ ferricline) in the 102 

south Atlantic sector, illustrating the signature of DFe subsurface lateral transfer from numerous 103 

regional islands
1,7

 in the DFe profiles.  On average, ZFe is deeper than the co-located MLD by 245m 104 
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(median = 210m, Figure 2a), with no seasonal bias where data are available (Figure 1c). As a 105 

measure of MLD variability, the offset changes to 199m or 288m using MLDs at +2σ or -2σ, 106 

respectively (see methods for details on the computation of the standard deviation, σ). Thus 107 

irrespective of the time of year, we demonstrate that ZFe is robustly and significantly deeper than the 108 

MLD across much of the Southern Ocean. That nitracline and phosphocline depths are more closely 109 

coupled to the MLD illustrates unique behaviour of DFe in this regard (Supplementary Figure 3).  110 

 111 

That ZFe is almost always much deeper than the concomitant MLD indicates limited input of DFe 112 

from diapycnal diffusion due to weak ∂Fe/∂zMLD (supplementary Figure 2b). For example, applying 113 

typical Southern Ocean kz values
18,21-23

 of 10
-5

 to 10
-4

 m
2
 s

-1
 results in 1.6-15.7 nmol DFe m

-2
 d

-1
 114 

from diapycnal diffusion input. Across all combinations of MLD and kz (i.e. ±2σ for MLD and 10
-5

-115 

10
-4

 for kz), diapycnal diffusion is 0.25-7.7 µmol DFe m
-2

 yr
-1

 (Figure 2b; consistent with estimates 116 

from occasional in situ studies
14,16,17,24

). The highest rates of diapycnal diffusion DFe input are 117 

found near the Antarctic Peninsula and are comparable to recent regional observations
24

. However 118 

such values do not appear generally representative of the offshore Southern Ocean, where diapycnal 119 

diffusion inputs of <0.2 µmol DFe m
-2

 yr
-1

 generally prevail (Figure 2b).  120 

 121 

In contrast to diapycnal diffusion, the winter entrainment pulse can supply much more DFe. 122 

Entrainment is quantified using winter mixed-layer depths (MLDMAX) from ARGO profiles, 123 

alongside estimated winter ZFe (ZFeMAX, see methods). While winter mixing depths exceed ZFeMAX 124 

more often, the mean offset remains 212m (median = 143m, Figure 2a), similar to the sole winter 125 

DFe section
25

. At ±2σ on MLDMAX, mean offsets are 114m and 311m. To correctly compute net 126 

entrainment inputs also requires a consideration of the DFe stocks that are detrained during 127 

springtime mixed-layer shallowing, which can be estimated using Argo profiling data at each DFe 128 

profile location. Ultimately, the mean entrainment Fe input is 21.1 µmol DFe m
-2

 yr
-1

, or 9.5-33.2 129 

µmol DFe m
-2

 yr
-1

 at ±2σ on MLDMAX. This is more than 10-fold greater (on average) than the 130 
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annual diapycnal diffusion inputs estimated above. Spatially (Figure 2c), entrainment inputs are 131 

higher than average around the Antarctic Peninsula and some parts of the Indian and Pacific sectors 132 

of the Southern Ocean. Much lower entrainment fluxes are present in many other regions due to 133 

weak vertical gradients in DFe persisting down to MLDMAX. That appreciable entrainment fluxes 134 

DFe arise despite ~200m offsets persisting between ZFeMAX and MLDMAX highlights the smaller 135 

vertical gradients in DFe at the top of the ferricline (but shallower than ZFeMAX) that are captured by 136 

winter mixing.  137 

 138 

Ekman upwelling and downwelling is computed using DFe concentrations at the mixed-layer base 139 

and the wind stress curl (Figure 2d). Ekman fluxes are strongly latitude-dependent, switching from 140 

net losses to gains of DFe as the sign of the wind stress curl changes across the atmospheric 141 

subtropical jet (Figure 2d). In general, Ekman fluxes are comparable to those associated with 142 

diapycnal diffusion, rather than entrainment, and on average are a slight net loss of DFe from the 143 

system (-0.7 µmol DFe m
-2

 yr
-1

 or a median of -0.4 µmol DFe m
-2

 yr
-1

), although this is likely 144 

sensitive to the sampling frequency north and south of the atmospheric subtropical jet. Finally, 145 

transient MLD deepening during the phytoplankton growth season might entrain additional Fe, but 146 

using the rate of change in the MLD from Argo floats 10 days either side of the sampling date, we 147 

found this process to be negligible. 148 

 149 

Additional regional or localised sources of DFe to the mixed layer are provided from dust 150 

deposition
26

 and melting of sea ice
27

 or icebergs
28,29

 and glaciers
29,30

. Estimates of their supply rates 151 

are difficult to generalise as they are usually derived from models or point-source observations that 152 

are not easily extrapolated to basin scales. Upper limits
7
 for dust deposition, sea ice melting and 153 

icebergs are on the order of 20 µmol DFe m
-2

 yr
-1

, making them comparable to entrainment. 154 

However, it is notable that many of these additional DFe fluxes are extremely localised
7
 and these 155 

upper limits will only be realised close to sources (i.e. nearshore waters). Therefore over much of 156 
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the offshore Southern Ocean that is the focus of this study, their contribution to DFe supply will be 157 

greatly reduced. The major basin-scale role we find for entrainment is similar to a recent study 158 

conducted at one station in the, oceanographically very different, western North Pacific
31

. 159 

 160 

Iron Supply and Utilisation 161 

 162 

We now consider how diapycnal diffusion and entrainment DFe sources can meet estimates of 163 

biological Fe utilisation. Basin-scale quantifications of phytoplankton Fe utilisation rely on 164 

combining estimates of net primary production with algal Fe utilisation from laboratory culture 165 

experiments
7
. Direct comparison with our physical input terms is complicated as much of the Fe 166 

utilisation is met from recycled Fe, illustrated by fe-ratios (proportion of Fe uptake from ‘new’ 167 

sources
17

) that range between 0.06 and 0.5 from low to high DFe waters
14,16,17,32

. Moreover, 168 

phytoplankton only represent about half of total Fe utilisation associated with microbial and 169 

metazoan assemblages
1
. Lastly, the quantification of diapycnal diffusion and entrainment are 170 

sensitive to assumptions regarding kz and (to a lesser extent) the degree of detrainment, 171 

respectively. Nevertheless, by exploring the plausible parameter space for the fe-ratio, kz and 172 

detrainment we can assess the capacity for diapycnal diffusion and entrainment to meet 173 

phytoplankton Fe utilisation (where DFe data are presently available). When kz is low, diapycnal 174 

diffusion cannot match utilisation in >50% of locations, regardless of fe-ratios (Figure 3a). Even 175 

when kz approaches its upper limit of 10
-4

 m
2
 s

-1
, diapycnal diffusion meets utilisation in >50% of 176 

cases only when the fe-ratio reaches unrealistically low levels (i.e., minimal reliance on new Fe, 177 

Figure 3a).  In contrast, it is only when the detrainment term is greatest (~3-fold higher than the 178 

Argo float data average of 3.1) and the fe-ratio is maximal (i.e. greatest reliance on new Fe) that 179 

entrainment cannot meet utilisation in >50% of cases (Figure 3b). As more DFe data are collected 180 

in the offshore Southern Ocean then the importance of diapycnal diffusion would likely further 181 

decline. When examined spatially, even in locations where diapycnal diffusion is strong (e.g. near 182 
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the Antarctic Peninsula, Figure 2b), it only provides ~10-20% of total DFe inputs from physically-183 

mediated fluxes (Figure 3c). In contrast, entrainment always provides >60% of total DFe input 184 

(Figure 3d) and is often able to offset regional losses of DFe due to Ekman downwelling (Figure 185 

2d). Thus it seems diapycnal diffusion is rarely a significant component of seasonal DFe supply in 186 

the Southern Ocean, which we suggest is dominated by a ‘one-off’ pulse of new DFe via winter 187 

entrainment. It is noteworthy in this context that entrainment can always match available estimates 188 

of iron utilisation (supplementary material). 189 

 190 

Our results permit an illustration of the key processes involved in the supply and cycling of DFe 191 

over the Southern Ocean phytoplankton growth season (Figure 4). Deep winter mixing maximises 192 

access to subsurface DFe reservoirs and re-stocks the mixed-layer. During spring, this inventory is 193 

depleted rapidly (days to weeks) by both the upper ocean biota
14

 and abiotic scavenging onto 194 

settling particles. Diapycnal diffusion will therefore become the major DFe supply term from late 195 

spring onwards, but its low rates (~7-21 nmol DFe m
-2

 d
-1

) cannot be reconciled with measured 196 

mixed-layer phytoplankton utilisation
14,16,17,32,33

 of ~2-6 µmol DFe m
-2

 d
-1

. Phytoplankton are 197 

therefore heavily reliant on DFe from pelagic recycling, with fe-ratios declining accordingly over 198 

summer
14

. This highlights the importance of the ‘ferrous wheel’
33

 in late spring and summer when 199 

DFe inputs to the mixed-layer are weak. Indeed, measured Fe regeneration rates of 5-10 µmol m
-2

 d
-

200 

1
 more closely match phytoplankton requirements

14
.  We suggest that an increasing importance of 201 

recycled Fe due to low diapycnal diffusion inputs would cause a shift from initially high fe-ratios to 202 

lower fe-ratios over the year. This may prove disadvantageous to larger phytoplankton such as 203 

diatoms and favour smaller phytoplankton cells
14

.  The relative magnitudes of winter DFe 204 

replenishment of the mixed-layer by entrainment and on-going diapycnal diffusion is mediated by 205 

the degree of coupling between ZFe and the MLD over the year (e.g. Figures 1c, 2a).  However, due 206 

to the persistent offsets between ZFe and the MLD (Figure 2a), winter entrainment dominates DFe 207 

supply over much of the Southern Ocean (Figure 3d), with little vertical DFe input to the biota from 208 
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spring onwards (Figure 4). This emphasises the role of Fe recycling by herbivory, bacterivory and 209 

virally-mediated microbial mortality in regulating the mixed-layer DFe pool until the mixed-layer 210 

deepens again in autumn. Accordingly, better understanding the dynamics of DFe turnover rates 211 

and the associated bioavailability of recycled DFe would be an important future focus.  212 

 213 

Our conceptual model posits that because ZFe is so deep, recycling is crucial in maintaining mixed-214 

layer DFe stocks following the pulse of DFe from entrainment (Figure 4). The detailed biological 215 

rate data supporting this view has been obtained from detailed process studies conducted in the Sub 216 

Antarctic Zone of the Southern Ocean
15-17,32,33

. Turning to the silicate-rich waters of the Antarctic 217 

Zone, our analysis suggests that the paradigm of significant winter entrainment input of DFe 218 

followed by little subsequent ‘irrigation’ from diapycnal iron supply is also true (Figure 3c d). But 219 

in addition to Fe recycling, it is also plausible that additional biological factors might influence the 220 

seasonal cycle of biological productivity south of the Polar Front in the Antarctic Zone. For 221 

example, heavily-silicified diatoms are more common here and their ‘luxury uptake’ of DFe
34,35

 222 

early in the spring (when mixed layer DFe stocks remain high) may help sustain diatom cell 223 

division once this wintertime DFe pulse has been depleted. Nevertheless, any region-specific 224 

additional processes, such as luxury uptake of iron, would only serve to complement recycling as a 225 

key determinant of phytoplankton growth once the influence of entrained iron ceases in 226 

spring/summer (Figure 4). 227 

 228 

Implications for Southern Ocean Carbon Cycling 229 

 230 

DFe regulates phytoplankton growth throughout the Southern Ocean
1,2

, hence basin-scale 231 

fluctuations in Southern Ocean primary productivity
36

 should be linked to changing DFe inputs. 232 

Our initial results would suggest an important role for entrainment, as mediated by winter mixing in 233 

this context (Figure 3d). Indeed, using a scale analysis we find inter-annual variation in DFe supply 234 
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from entrainment is 9.1-33 µmol m
-2

 yr
-1

, as compared to 1.2-3.6 or -1.9-0.4 µmol m
-2

 yr
-1

 from 235 

diapycnal diffusion or Ekman, respectively. Inter-annual modifications to dust deposition
37,38

, or the 236 

melting of sea ice
39

 might also be important locally (perhaps ranging 2 to 8 fold
7
), but these inputs 237 

cannot readily be extrapolated to basin scales. Inter-annual basin-scale changes in Southern Ocean 238 

primary production presently can only be assessed by satellite and are estimated
36

 at ~ ±11% (from 239 

1997-2006). This variability is relatively small in contrast to the large changes in wintertime DFe 240 

inputs we estimate and the widely demonstrated role DFe supply plays in setting regional 241 

productivity
2
.  Robust attribution of causality to the driver(s) of observed fluctuations in remotely-242 

sensed basin-scale primary productivity is so far lacking for the Southern Ocean
36

.  Such attribution 243 

may be further masked by the unique bio-optical properties of Southern Ocean waters that likely 244 

hinder the utility of remotely-sensed productivity datasets
40

. Satellite estimates may be further 245 

confounded by the complicated inter-play between physical DFe supply, external DFe inputs and 246 

physiological plasticity in phytoplankton DFe utilisation
7
. Nevertheless, our results show winter 247 

entrainment is pivotal to regional DFe supply and must be part of a future appraisal of the 248 

sensitivity of Southern Ocean productivity to basin-scale environmental fluctuations, which has 249 

been overlooked in previous assessments
36,41

.  250 

 251 

Properly accounting for the role of winter entrainment DFe inputs requires the parallel 252 

consideration of winter mixing depths and their connection to subsurface DFe reservoirs (Figure 253 

2a).  An improved understanding of the distribution of ferricline depths across the Southern Ocean, 254 

as part of the GEOTRACES programme, and how they change on seasonal scales would permit a 255 

more widespread identification of regions where entrainment dominates. This would, in turn, 256 

highlight locations where primary productivity might be more sensitive to variability in buoyancy 257 

fluxes rather than winds. In addition, appraising the sensitivity of Fe recycling to environmental 258 

factors on seasonal scales is also crucial since it is clearly the major resupply process over spring-259 

summer once entrainment ceases, with probable implications for ecosystem structure (Figure 4). 260 
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Finally, climate models seeking to represent the evolution of the Southern Ocean carbon cycle or 261 

productivity
42-46

 must pay careful attention to their representation of vertical distributions of DFe. 262 

The degree of coupling between ZFe and the MLD in the model will dictate the relative role played 263 

by different physical DFe supply mechanisms, as well as the importance of mixed-layer recycling 264 

of Fe in sustaining productivity over seasonal and inter-annual periods.  265 

 266 

Methods Summary 267 

A global DFe database
6
 was re-gridded into 1° x 1° longitude and latitude bins (south of 40°S) by 268 

month of sampling and on a depth axis with a 25m resolution in the upper 1000m. The compiled Fe 269 

profiles were scrutinised in a number of ways. We firstly required there to be at least one 270 

observation shallower than 50m, one observation deeper than 500m and at least five observations in 271 

total per profile. The remaining profiles were then interpolated on the vertical axis (see 272 

supplementary material) to determine ZFe. We decided on the most objective definition possible for 273 

ZFe, i.e., the depth at which the ∂Fe/∂z gradient was maximal (see also:
18

), which avoided assigning 274 

a subjective threshold concentration. Alternative methods might be imagined that would allow the 275 

capturing of the ‘top’ and ‘bottom’ of the ferricline using deviations in ∂Fe/∂z from zero 276 

(Supplementary Figure 1), however they are not easily applied with confidence to such a large 277 

dataset. As such our work identifies the ‘core’ of the ferricline. To avoid deep ocean gradients 278 

associated with point sources (e.g., hydrothermal vents) being misidentified as the upper ocean 279 

ferricline we restricted our analysis to the upper 1000m where hydrothermal tracers show minimal 280 

gradients
8
. Finally, since in coastal systems ZFe might be very close to the seabed due to sediment 281 

input, we decided to remove data where ZFe was more than 80% of the bottom depth. The total 282 

number of unique determinations was 140 or by month: 25 in January, 18 in February, 14 in March, 283 

46 in April, 10 in July, 2 in October, 20 in November and 5 in December. The DFe dataset used in 284 

this study is archived and updated here: http://pcwww.liv.ac.uk/~atagliab/LIV_WEB/Data.html. 285 

 286 
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We calculated the MLD for every Southern Ocean profile with a surface-density difference 287 

criterion of Δσθ ≤ 0.03 kg m
−3

 
47,48

 (Supplementary Figure 1d). The correspondence between ZFe 288 

and MLD was then examined by co-locating MLDs from either in situ CTD profiles and/or Argo 289 

profiles
20

 (Supplementary Figure 2d) for the same month and year within 2.5 degrees of a ZFe 290 

determination and weighted by 1/d
4
 (where d is the distance from the ZFe determination). We also 291 

use the maximum MLDs associated with each location for the specific year. Uncertainty in each 292 

MLD determination is assessed using a climatology at ±2 standard deviation. 293 

 294 

Diapycnal input is calculated by taking ∂Fe/∂z at the MLD (Supplementary Figure 2b) from Argo 295 

and multiplying by an estimate of vertical diffusivity (kz, see main text). Winter entrainment is 296 

computed by integrating DFe down to the MLDMAX from Argo. The proportion of the DFe stock 297 

entrained in the ML during winter that is detrained during springtime mixed-layer shallowing can 298 

be estimated using the MLDMAX:MLDMIN ratio from Argo at each DFe profile location (average = 299 

3.16±1.86, see Supplementary Figure 2c for a representation of this term). Finally, the Ekman 300 

upwelling/downwelling of DFe requires the mean mixed layer DFe from DFe observations and 301 

Argo alongside the wind stress curl. For windstress we used the Quick Scatterometer Mean Wind 302 

Field (QuickSCAT MWF) gridded product (this global half degree-resolution product is processed 303 

and distributed by the Centre European Remote Sensing Satellite (ERS) d’Archivage et de 304 

Traitement (CERSAT); available online at http://www.ifremer.fr/cersat/). We used weekly maps of 305 

wind stress between 1999 and 2009 to produce monthly mean maps over a period consistent with 306 

the Argo data. The stated error of the product is less than 7x10
-3

 Pa over the area studied.  307 

 308 

To estimate ZFeMAX, we used the robust relationship between ZFe and density (Figure 1b) and since 309 

ZFe is below the diabatic surface layer for most profiles we determined ZFeMAX by assuming that ZFe 310 

conserves its density. Thus the change in the density profile between the time of measurement and 311 

the time of MLDMAX drives the ‘winter’ DFe profile. The resulting profiles are illustrated for four 312 
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case study regions in Supplementary Figure 4.  313 

 314 

The iron utilisation estimates combine regionally optimised NPP determinations from ocean 315 

colour
36

 with combination with estimates of the biogeography in algal Fe/C ratios to arrive at 316 

annual Fe utilisation estimates (1996 to 2007). The algal Fe/C ratios are applied using laboratory 317 

data from Southern Ocean isolates
7,49

. For reference, the median annual Fe utilisation map from 318 

ref(7) is reproduced in Supplementary Figure 5a.  319 

 320 
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Figure Legends: 480 

 481 

Figure 1. Depths and potential density of the ferricline and its seasonal evolution. a) The depth 482 

of the ferricline (m, black and grey triangles denote the mean and median, respectively), b) the 483 

potential density anomaly (σθ, kg m
-3

) associated with the ferricline depth and c) box and whisker 484 

plots of the seasonal cycle in MLD, ZFe and ZFe-MLD (the size of the box represents the 1st to 3rd 485 

quartiles, with the vertical bar corresponding to the median and the whiskers representing 1.5 times 486 

the inter-quartile range). While calculations for panels a and b are performed on a 1° grid, they are 487 

shown using a 3° grid for clarity, the 3000m isobath and the mean Polar Front position (black line
6
) 488 

are also displayed. 489 

 490 

Figure 2. The relationship between the ferricline and mixed layer depths and calculations of 491 

physically-mediated iron fluxes. a) A histogram of the offset (m) between the depth of the 492 

ferricline and the mixed layer depth (blue and red for concomitant and winter MLDs, respectively), 493 

b) annual diapycnal diffusion flux of Fe across the mixed-layer (mmol m
-2

 yr
-1

), c) annual 494 

entrainment flux of Fe (mmol m
-2

 yr
-1

) and d) annual Ekman DFe term (mmol m
-2

 yr
-1

), with a 495 

negative/positive values indicating downwelling/upwelling of DFe. In panels b-d black and grey 496 

triangles denote the mean and median, respectively. Gridding for panels b-d as for Figure 1a. 497 

 498 

Figure 3. Assessments of how different physically-mediated iron supply mechanisms compare 499 

to utilisation and their contribution to total iron fluxes. The percentage of locations where a) 500 

diapycnal diffusion and b) entrainment can match iron utilisation over different scenarios regarding 501 

the fe-ratio and kz (panel a) and detrainment (panel b). The proportional contribution of c) diapycnal 502 

diffusion and d) entrainment to total physical DFe supply (see supplementary Figure 3b). Gridding 503 

for panels c and d as for Figure 1a. 504 

 505 
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Figure 4. A schematic representation of the seasonal variability in Southern Ocean Fe cycling. 506 

We emphasise seasonal changes in the physical supply of Fe (blue arrows), mixed layer depth and 507 

the mixed layer DFe inventory, as well as the magnitude of recycling (orange-red arrows) and 508 

pelagic community composition. The dominant physical processes over the season is conceptualised 509 

at the bottom of the figure. We note that some recycling likely occurs below the mixed-layer and 510 

can be entrained the following winter. 511 

 512 

 513 
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