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Abstract  

The climate over the North Indian Ocean (NIO) is one of the most dynamic in the world due to 

seasonally reversing monsoon winds. In this study, we analyze the climate of the NIO and the variability 

of its surface waves using the European Centre for Medium Range Weather Forecast (ECMWF) global 

atmospheric re-analysis product (ERA-Interim) for the period 1979-2012. Annual average significant 

wave height (SWH) of NIO ranges from 1.5 to 2.5 m and the seasonal average is highest (3 to 3.5 m) 

during the monsoon (JJAS). Swells propagating from the southern hemisphere are present in the NIO 

during the pre-monsoon (FMAM) and post-monsoon (ONDJ). We separate the waves into wind seas and 

swells based on the wave energy statistical method. The results show that the NIO is swell-dominated 

and that wind sea heights are lower compared to the swell heights. Higher wind sea and swell heights 

are observed during the monsoon in the western NIO due to strong cross-equatorial winds of the Somali 

(Findlater) Jet. In the post-monsoon period, the eastern NIO shows a higher swell height than the 

western NIO shows. SWH shows an annual increasing trend in the western NIO. On a seasonal scale, 

the trends are increasing significantly in the monsoon compared to the post-monsoon period in a major 

part of the NIO, whereas the pre-monsoon period shows a decline in SWH. In NIO, monsoon is the 

dominant mode of variability and it covers 92 % of the total variability. Wave climate is also influenced 

by the annual and inter-annual variability in monsoon wind and rainfall.  
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1. Introduction 

Climate change, a topic that is widely discussed worldwide, certainly has an impact on the oceans. The 

Indian Ocean is the third largest ocean in the world and covers approximately 20% of the water on the 

earth's surface (Rais 1987). The northern hemisphere of this basin, the North Indian Ocean (NIO), has a 

large influence on the scientific, industrial, engineering and commercial grounds of the countries on its 

rim. The NIO has a decisive role in the climate of the countries surrounding it and influences the rainfall 

of the densely populated coastal areas of south Asia (Clark et al. 2000). The unique geography of the 

NIO (Figure 1), being bounded to the north by the Asian continent, leads to a complex annual cycle 

associated with substantial seasonal reversals of the annual monsoon winds (Slingo et al. 2005). Wind 

waves are the prominent feature of the ocean surface and play a major role in planning activities in the 

open ocean and in coastal zones. Hence, a change in wave climate influences coastal and offshore 

activities. Waves in the NIO undergo large seasonal variations [monsoon (JJAS), pre-monsoon (FMAM) 

and post-monsoon (ONDJ)] due to the reversal of the large-scale wind field over the NIO between the 

boreal summer and winter (Kumar et al. 2012). The Indian subcontinent divides the NIO into two semi-

enclosed seas: the Arabian Sea (AS) and the Bay of Bengal (BoB). Both of these seas encroach onto the 

equatorial regime of the basin (Shankar and Shetye 2001). The NIO, particularly the BoB region, is an 

area generally prone to cyclone events, and these events can result in large inter-annual variations in 

wave parameters. 

Many regional studies have been conducted on the change in wave climate, especially in the North 

Pacific and North Atlantic regions (Carter and Draper 1988; Allan and Komar 2000; Caires and Swail 

2004; Gulev and Grigorieva 2004; Parise and Farina 2012; Vanem and Walker 2013). Simmonds and 

Keay (2002) observed that the increase in wave height in the North Atlantic and North Pacific is due to 

the increase in cyclone numbers and the corresponding increase in the mean rate of mechanical energy 

input into the oceans. Vethamony et al. (2000) studied the wave climate of the Indian Ocean using 

altimeter and model data for the period 1986-1989. Young (1999) studied the seasonal variability of the 

global ocean wind and wave climatology based on a data set spanning a period of 10 years obtained 

from a combination of satellite remote sensing and model predictions. Based on the satellite altimeter 

and scatterometer data, Chen et al. (2002) presented swell and wind sea climate over the global ocean. 

As a part of the global study, Young et al. (2011) examined long-term trends in significant wave height 

(SWH) in the NIO from 1985-2008 based on satellite altimeter data. Semedo et al. (2011) presented a 

global view of the wind sea, and swell climate and variability based on the 45-yr European Centre for 
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Medium-Range Weather Forecast (ECMWF) wave reanalysis product (ERA-40). Sajiv et al. (2012) 

studied variations in wave characteristics during a 3-year period at a shallow water location in the 

eastern AS, and Shanas and Kumar (2014a) examined changes in wind speed and SWH at this location 

for 34 years. Using altimeter data, Kumar et al. (2013) studied changes in SWH and wind speed over the 

Indian Ocean for the period 1993-2010 by categorizing the area into six zones. Recently, Shanas and 

Kumar (2014b) analyzed trends in surface wind speed and SWH in the Central BoB. However, in these 

studies, the wave climatology and the long-term variations for the entire NIO are not well documented, 

and the need remains for a detailed analysis of the regional wave climate of the NIO. Hence, we analyze 

the wave climate of the NIO and its variability over different seasons and years. 

2. Data and method 

The present study is based on the global atmospheric reanalysis product of the ECMWF known as ERA-

Interim (Dee et al. 2011). ERA-Interim is the latest global reanalysis product of ECMWF and is 

available from 1979 onwards. Based on an improved atmospheric model and assimilation procedures 

used in ERA-40, ERA-Interim uses a two-way coupled atmosphere–wave model system. The wave 

model (WAM) has also received some improvements, including a revised formulation of the ocean wave 

dissipation scheme and the introduction of a new scheme to parameterize unresolved bathymetry (Bidlot 

et al. 2007). A four-dimensional variational data assimilation scheme is used in ERA-Interim. 

Kumar et al. (2013) compared wind stress estimates from ERA-Interim against in-situ observations in 

the tropical Indian Ocean and found that the data captured good temporal variability with better 

performance than other reanalysis data (the correlation coefficient was  0.86). In the shallow waters of 

the eastern AS, Shanas and Kumar (2014a) found that ERA-Interim SWH data showed good 

correspondence with the measured wave rider buoy data. For the central BoB, Shanas and Kumar 

(2014b) found that ERA-Interim SWH data compared well with buoy data for mean values, but that 

ERA-Interim data under-predicted the measured SWH data up to 15% for high waves (SWH > 2.5 m). 

Durrant et al. (2013) found that a negative bias in modeled SWH has its origins primarily in the forcing; 

however, the reduction of systematic wind biases does not result in universal improvement in modeled 

SWH. In the present study, we use 34-year data (1979- 2012) of SWH at 6-h temporal and 1° X 1° 

spatial resolutions. We also use ERA-Interim wind speed at a 10 m height of the same temporal and 

spatial resolution to separate waves into wind seas and swells. 

Generally, the sea state is either wind seas dominated or swells dominated. We carry out the separation 

of wind seas and swells using wind speed and SWH based on the method proposed by Chen et al. 
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(2002). If U is the surface wind speed at 10 m above the sea surface, then the wind wave relation for a 

fully developed sea is (Chen et al. 1991), 

SWH = 1.614×10
−2 

U
2 
                   for   0 ≤  U < 7.5 m s

 −1    
 (1)

 

SWH = 10
−2

 U
2
+8.134×10

−4 
U

3        
for 7.5 ≤ U < 50 m s

−1     
(2)

 
 

Chen et al. (2002) introduced two probability indices for quantifying the frequency of occurrence of 

swell and wind seas: Ps = Ns ⁄ N and Pw = Nw ⁄ N, where Ns and Nw are the numbers of swell 

dominated and wind sea dominated events at the study area, N = Ns+Nw, and Ps and Pw are statistical 

descriptions of the proportion of swell and wind sea dominances. Using these statistical proportions, we 

can separate the wind sea and swell energy from the total energy of the sea state based on the method 

suggested by Jiang and Chen (2013). The equations for estimating wind sea height (Hw) and swell 

height (Hs) from SWH are: 

Hw = SWH Pw          (3) 

Hs = SWH Ps               (4)          

The assumptions are not strict and the statistical method does not work well for studies of short duration 

(such as 1 day). However, this method is helpful in obtaining a view of the wind sea and swell 

climatology. 

Monthly average rainfall data provided by IITM (Indian Institute of Tropical Meteorology) obtained 

from rain gauges in various part of India from 1979 to 2012 is also used in the study (available at 

http://www.tropmet.res.in/static_page.php?page_id=53). We obtain the wave climate trend based on the 

slope of the linear best-fit curve to the annual mean SWH and the seasonal mean SWH for 34 years. The 

statistical significance of trends in the SWH is estimated by applying Kendall’s Tau–Sen test (Sen 1968; 

Burkey 2006; http://www.mathworks.com/matlabcentral/fileexchange). Empirical orthogonal function 

(EOF), wavelet and cross wavelet methods (Torrence et al. 1998; Grinsted et al. 2004) are used to 

analyze the SWH, wind speed and rainfall data. 

In order to know how the wave height is influenced by the tropical cyclone (TC), we have considered 

the TC events in AS for the period 1979-2012 using the position and intensity estimates reported in the 

JTWC best-track dataset (Chu et al. 2012). Classified the TC in different category; i) tropical 

depressions to cyclonic storms (wind speed ~ 17-47 knots), ii) severe cyclone category (wind speed ~ 

48-63 knots) and iii) very severe cyclonic storms to super cyclones (wind speed > 64 knots). Also we 
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analyzed the distribution of the locations where maximum intensity of TC observed and finally 

considered a box of latitude 17.5-22.5
0
N and longitude 60-65

0
E (Box A in Figure 1) to analyze the link 

between the severe cyclone events and SWH. 

3. Results 

3.1 Wave climatology of the North Indian Ocean 

3.1.1 Significant wave height climatology 

Figure 2 displays the annual mean SWH of the NIO and three seasonal SWH means. The range of the 

annual average SWH in the deep waters of the NIO is within 1.5 to 2.5 m (Figure 2a). The annual 

average SWH is higher (~ 2-2.5 m) off the south east coast of Sri Lanka, the west side of the Andaman 

and Nicobar Islands and the northeast coast of Africa. The annual average SWH in the coastal regions of 

the west and northeast coasts of India is 1 to 1.5 m. However, the annual average SWH is less than 1 m 

in the coastal region of the southeast coast of India due to the sheltering effect of the Sri Lankan land 

mass. 

The seasonal climatology of the SWH in the pre-monsoon period indicates that the waves over the NIO 

become low in height due to a lower wind speed over the basin. The NIO is calm with a SWH ranging 

from 0.5 to 1.5 m (Figure 2b). During this time, the southwestern and southeastern NIO show higher 

SWHs compared to other regions. The SWH is decreasing from south to north and southwest to 

northeast in the eastern and western NIO respectively. During the Asian summer monsoon, due to the 

strong cross-equatorial winds of the Findlater (Somali) Jet (Findlater 1969), wave heights are high in the 

AS. Consequently, the maximum average wave height (3 to 3.5 m) for the NIO during monsoon season 

occurs in the western AS as a result of the strong southwesterly winds caused by the East African 

highlands (Slingo et al. 2005). These southwesterly winds spread and wane in the northeast direction 

(Slingo et al. 2005), as do the waves (Figure 2c). Hence, high waves reach the northern part of the west 

coast of India before they reach the southern part. 

A study by Glejin et al. (2012) observed higher swells are present at the northern part of the NIO along 

the eastern AS compared to the southern part. The monsoon wind in the NIO splits into two branches 

from the southern part of the Indian sub-continent: (1) the AS branch and (2) the BoB branch. The 

monsoon winds in the BoB are weaker than the monsoon winds in the AS. The BoB branch generates 

surface waves in the southern BoB, but these waves do not reach the major part of the southeast coast 

due to the sheltering of the Sri Lankan island. The lower wave height in the western BoB, compared to 
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the wave height in the eastern AS during the monsoon season, is not only due to weaker BoB winds in 

the monsoon, but also due to the sheltering effect of Sri Lanka. 

Semedo et al. (2011) noted that the SWH seasonal mean maxima in the Southern Hemisphere are 

located in the Southern Ocean Indian sector. Extreme wave conditions occur at high southern latitudes 

due to the massive amounts of kinetic energy deposited into the Southern Ocean associated particularly 

with the transient meteorological systems (Simmonds et al. 2005). Young (1999) discussed the 

important role played by the intense wave generation systems of the Southern Ocean and confirmed it to 

be consistently the roughest ocean on earth. Alves (2006) reported that the waves generated along the 

Southern Ocean storm belt have a considerable impact on the global wave climate due to swell 

propagation. The wave height in the NIO during the post-monsoon period is higher than it is in the pre-

monsoon. During the post-monsoon period, high waves (Figure 2d) are observed in the southern NIO 

with a maximum SWH (~ 2-2.5 m) in the BoB rather than in the AS (~ 1.5-2 m) due to the closure effect 

of the Maldives land mass to the Southern Ocean swells. Due to northeast monsoon winds, the wave 

height in the BoB is higher than that in the AS during the post-monsoon period (Glejin et al. 2013). 

Spatial distribution of yearly and seasonal standard deviation (SD) of SWH from 1979 to 2012 is shown 

in the right panel of Figure 2. The annual SD shows that it is less than 0.05 m in most of the region 

(Figure 2e). Annual SD maximum is 0.07 m in western AS at northeast coast of Africa and it spread 

towards north through western NIO. During pre-monsoon SD is less than 0.1 m in most of the region 

and higher values are observed in the south western region of AS (Figure 2f).  In NIO, higher SD is 

observed during monsoon compared to other seasons (Figure 2g). During this period, the western and 

northern AS shows higher SD with northern AS as slightly higher value (~ 0.16 m) than western AS. 

During this time the BoB region also shows higher value (~ 0.11 m) compared to other seasons, but even 

during monsoon, the south to central east coast of India shows very small SD. This low SD could be due 

to the sheltering effect of Sri Lankan land mass.  The Sri Lankan land mass has a major role in the wave 

climate of major part of eastern shelf seas of India. In post-monsoon season the higher SD is observed in 

southeast of NIO and western AS (Figure 2h). 

3.1.2 Swell and wind sea climatology 

The annual and seasonal climatology of wind seas and swells in the NIO are shown in Figure 3. It is 

clear from left panel of Figure 3 that swell SWH is always higher than wind sea SWH (right panel of 

Figure 3). The annual climatology of wind seas and swells indicates that the waves in NIO are 

dominated by swells (Figure 3a). The annual average of the wind sea height is less than 1 m in major 
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part of the NIO. Wind sea height of more than 1 m is observed in the south at the eastern entrance of the 

Gulf of Aden (off the northeast coast of Africa). In seasonal climatology, wind seas are very low during 

the pre-monsoon season (Figure 3b). During this time, swells are in the range of 1 to 1.5 m and swell 

height decreases from south to north in the NIO. Semedo et al. (2011) and Glejin et al. (2013b) found 

that the swell propagating from the southern hemisphere reaches the west coast of India during the pre-

monsoon period. Due to the calm condition (low wind seas) of the NIO during the pre-monsoon period, 

the propagation of swells from the southern hemisphere is more visible. These swells are absent during 

the monsoon season due to turbulence in the NIO created by strong winds (Glejin et al. 2013b). Chen et 

al. (2002) observed an enhancement of the wind sea generation in the AS in the boreal summer (JJA) as 

a consequence of the Asian monsoon. Semedo et al. (2011) also reported that the NIO, with the 

exception of the summer monsoon period (JJA), is the most swell-dominated area of the World Oceans. 

In the eastern AS, the average period of swells in the monsoon is less than that during the other two 

seasons (Kumar et al. 2012) because these swells are generated within the western NIO (Figure 3c) and 

reach the west coast of India from a southwest direction. The swells in the western NIO are due to a 

higher southwest wind condition in this region (average wind speed ~ 11 to 12 m s
-1

). Due to this higher 

wind speed, a wind sea height greater than 2 m is observed only during the monsoon season in the 

western NIO. Higher winds in this region pump energy mostly into shorter (high frequency), slowly 

moving waves. These waves transfer this energy across the continuous spectrum of waves of all scales 

towards longer (lower frequency) components, thus allowing the longer (lower frequency) waves to 

grow by means of non-linear interaction (Babanin 2011). The generated swells reach the west coast of 

India. 

In the BoB region, the southern BoB shows a higher swell height than other regions due to the 

propagation of swells from the South Indian Ocean. Chen et al. (2002) identified the southern BoB as 

one of the major swell pools in the world’s oceans. A surface wind speed (not shown) that is higher 

during the post-monsoon period than in pre-monsoon period generates relatively high waves in the NIO 

during the post-monsoon (Figure 3d). During this period, comparatively higher swell and wind sea 

heights are observed on the northeastern coast of Africa, but this wave system is weak during the pre-

monsoon season. Glejin et al. (2013b) observed that waves with  peak wave period 8 to 13 s reaches the 

central west coast of India during the post-monsoon period from southwest direction, whereas the 

occurrence of these waves is much less during the pre-monsoon season. 
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3.2 Variability of wave height 

3.2.1  Wave trend analysis 

The yearly and seasonal trends of SWH in the NIO are shown in Figure 4. Compared to the seasonal 

cycle, the linear trend in the SWH is relatively small. Trend of SWH with significance level greater than 

90% is only shown in Figure 4. The western part of the NIO shows a yearly increasing trend (Figure 4a), 

and in this region, the eastern entrance of the Gulf of Aden and the western equatorial Indian Ocean 

shows the maximum value (~ 0.4 cm yr
-1

). The western Indian Ocean shows an increasing wave height 

at the rate of 0.1 to 0.4 cm yr
-1

. The SWH in the waters of two semi-enclosed basins, the Red Sea and 

the Persian Gulf, also shows this increasing trend. These regions are important for the transport of cargo 

vessels carrying oils and goods. Hence, an increase in wave height can affect marine transport in this 

region. In a small area near the east coast of India, a decreasing trend of SWH is observed. 

We compared our estimated SWH trend with that reported by Young et al. (2011). Young et al. (2011) 

reported that the long-term trend of SWH in the NIO was in the range of 0 to 0.75 % (0 to 0.75 cm yr
-1

) 

during the period 1985-2008. During the same period, the present study shows a similar increasing trend 

in most of the regions. Some parts of the NIO show a decreasing trend similar to the trend observed in 

Young et al. (2011), but regionally, a slight difference is observed in both studies. For example, our 

study shows a decreasing trend in small area of central east coast of India whereas, the study of Young 

et al. (2011) show small increasing trend in that region. 

Two transects of width 10° of longitude and centred on 65.25 and 90°E were calculated from 53.25°S to 

20.25°N, with a view to examining the annual mean SWH trends in Indian Ocean. The trend of SWH 

decreases from south to north along both transects (0.86 to 0.04 cm y
-1

 along 65.25°E and from 0.79 to -

0.05 cm y
-1

 along 90°E) except at the northern most location. The northern location at both transects 

indicated a higher increasing trend (Figure 5). Statistical significance levels of the trends at locations 1, 

4, 5, 7, 11 to 14 are above 95%, at locations 6, 8 and 10 are above 90%, at location 3 is above 86% and 

at locations 2 and 9 are insignificant. Since the waves in the eastern AS are mainly the swells arriving 

from Southern Ocean (Semedo et al. 2011; Glejin et al. 2013b), the increase in SWH in NIO is due to 

the increase in swells in the Southern Ocean. Hemer et al. (2008) reported that the wave events are 

likely to increase in magnitude in the southern coast of Australia due to intensification of the storms. 

Hemer et al. (2010) observed increasing trend in SWH for Indian Ocean sector of Southern Ocean. 
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During pre-monsoon, a large area in the northeastern AS, northwestern BoB and southern region of the 

AS shows a decreasing SWH (Figure 4b). The region near the Andaman and Nicobar Islands also shows 

a decreasing SWH. However, during monsoon, the SWH shows a strong increasing trend in almost all 

areas (Figure 4c). It has increased more than 1 cm yr
-1

 in the northern AS and is at the highest value this 

season. The second maximum is observed in the western equatorial Indian Ocean. During this season, 

the eastern NIO and the northern BoB show an increasing trend. In the post-monsoon season, a strong 

increasing trend in SWH is observed in the southwestern NIO (Figure 4d). A greater increasing trend is 

observed in the eastern entrance of the Gulf of Aden (> 0.5 cm yr
-1

). The region around Sri Lanka (the 

southern region of the Indian subcontinent) shows an increasing SWH in the range of 0.2 to 0.3 cm yr
-1

. 

To explore the influence of local winds on the waves, the trend of wind speed is examined (Figure 4e-h). 

Western AS shows a positive trend in wind speed similar to the trend of SWH. Similar to the 

observation of Shanas and Kumar (2014a) annual mean wind speed shows a statistically significant 

decreasing trend of 1-2 cm/s/year in the central eastern AS. 

3.2.2 Modes of variability of SWH 

The empirical orthogonal function (EOF) method is used in this section to represent different modes of 

variability of SWH in NIO. We have carried out the analysis using the monthly average SWH and wind 

speed. The first EOF mode of SWH (EOF1 (SWH)) covers 92% of total variability in NIO (Figure 6a) 

and all other modes are degenerate (~8%). EOF1 (SWH) exhibits maximum value at the west of the 

study area and it mainly spread and wane towards the north and northeast. Weak branch of it enters the 

BoB through the southern part of India. The first mode of variability of wind speed is shown in Figure 

6b and it covers 70% of the total variability. Since the waves are mainly generated in the ocean surface 

by the wind stress acting on water and this stress is directly proportional to the square of wind speed, the 

climatology of square of wind speed for the monsoon months from 1979 to 2012 is presented in Figure 

6d. Figures 6a and 6b show same pattern of Figure 6d and hence, we can say that first EOF mode of 

SWH and wind speed in NIO is due to the monsoon wind. The BoB branch of monsoon is also visible in 

these figures.  

The correlation of principal component time series of SWH (PC1 (SWH)) and that of wind speed (PC1 

(WS)) are 0.94 with significance level above 95%. The PC1 (SWH) and PC1 (WS) are shown in Figure 

6c which shows the annual oscillation of monsoon. From the above factors, it is clear that the wave 

climate variability in NIO is influenced by the monsoon wind. Modes of monthly anomaly of SWH are 

shown in Figure 6e. From the figure it is clear that strong negative variability in AS is similar to the 
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EOF1 of SWH and wind speed. It is spreading and waning to northwest direction. The EOF1 of SWH 

anomaly covers 51% percentage of total variability of SWH anomaly in NIO. The PC1 of first mode of 

SWH and wind speed anomaly are shown in Figure 6f. The correlation between wind speed and SWH is 

0.54 with significance level greater than 99%.  From the time series of EOF1 of SWH anomaly (Figure 

6f), it can be seen that some extreme events during the monsoon period occur from 1979 to 2012. 

To identify the influence of inter-annual variability of monsoon on NIO wave climate, we used the PC1 

(SWH) and that of wind speed with monthly average rainfall data for central west coast of India (Goa 

and Konkan region) and all India. In the case of central west coast of India, the annual rainfall is 

predominantly during the monsoon. For all India rainfall data, the monsoon contributes 60 to 90% of 

annual rainfall (Rameshkumar et al. 2004). The yearly oscillation of monsoon and wave climate is well 

known so that in this study we focused on the inter-annual oscillation of monsoon and its relation to 

SWH. Here, we selected one box in central AS (10 to 15 °N and 60 to 65 °E, Box B in Figure 1), where 

higher variability of SWH is observed in EOF1 (SWH). Correlation of  monthly and spatially averaged 

SWH over Box B in central AS (Figure 1) with the rainfall over the central west coast and all over the 

India are high (correlation coefficient of 0.93 and 0.91 respectively; both are statistically significant at 

99%). Time series plot of monsoon mean SWH and wind speed within the Box B at central AS and 

monthly average rainfall data during monsoon in central west coast of India indicate that in some years 

the increase/decrease in SWH is linked to rainfall (Figure 7). But in some years (e.g. 1986, 1994, 2001 

and 2012) even though the SWH was high similar increase in rainfall was not observed and also when 

the rainfall was high, lower SWH is observed in some years (e.g. 1985, 1987, 1997, 2000 and 2011). 

Whereas the monsoon mean SWH has a correlation with the monsoon mean wind speed (correlation 

coefficient 0.77). The study shows that simple correlation or lag correlation analysis is insufficient for 

understanding the influence of inter-annual oscillations of monsoon on SWH. 

To remove the oscillations in period range of one year and less than one year, the time series data is low 

pass filtered using butterworth filter. This filtered and non-filtered data is analyzed with wavelet and 

wavelet coherence analysis (Torrence et al. 1998; Grinsted et al. 2004) and shown in Figures 8 and 9 

respectively. In the case of SWH, we can see two bands of oscillations; one in the 4 to 6 year band and 

the other one in 7 to 10 year band (Figure 8a). Among these two bands, the 7 to 10 year band is 

continuous, whereas 4 to 6 year band is observed till 1997 and after that it shifted gradually to 5 to 10 

year band and became a combined one. Similar pattern of oscillations are observed in case of PC1 of 

surface wind (Figure 8b) and monthly average rainfall on central west coast (Figure 8c) of India and all 
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over India (Figure 8d) also. The rainfall data of central west coast region shows large similarity with 

PC1 of SWH than compared to all India rainfall, because the all India rainfall is influenced by the 

northeast monsoon (OND) also (Kripalani et al. 2004). 

By separating the modes of SWH using EOF, we found that the monsoon covers 92 % as first mode of 

variability. The phase relation between the SWH within the Box B (Figure 1) and rainfall in central west 

coast of India (monsoon rainfall) is identified with help of cross wavelet coherence analysis (Grinsted et 

al. 2004).  Figure 9 shows cross wavelet of SWH in spatial and monthly averaged within the box with 

monthly rainfall in central west coast of India. From the figure, it is clearly visible that the SWH and 

monsoon rainfall is related with phase angle 0⁰ indicating that in a yearly cycle, both of them are in 

phase. In case of inter-annual cycle we already discussed about two bands of oscillation which was 

observed from filtered data and this band is also visible here. Among this phase angle, 7 to 10 year band 

is 0⁰ as one year band, but phase angle 50⁰ is observed in the case of 4 to 6 year band up to the year 

1997. The 50⁰ upward phase angle indicates that the monsoon rainfall leads SWH by 50⁰ phase for this 

period. 

3.3 Influence of Tropical cyclones on wave height over the NIO 

A detailed climatology of tropical cyclones (TCs) in AS is reported by Evan and Camargo (2011). Evan 

et al. (2011) reported an increase in intensification of tropical cyclones during the pre-monsoon season. 

For the study period, we have observed around 60 TCs over the NIO of which  i) 50% are observed as 

tropical depression to cyclonic storms (wind  speed 17-47 knots), ii) 23 % comes under the severe 

cyclone category (wind speed 48-63 knots), and iii) 27%  as very severe cyclonic storms to super 

cyclones (wind speed >64 knots) (Figure 10a). 

If we consider the maximum intensity of TC during the whole study period, there is a clear 

intensification of stronger events after 1996 (Figure 10b). Evan et al. (2011) reported that the early 

development of the monsoon may be caused by enhanced land-ocean thermal contrast between the 

Asian landmass and the equatorial Indian Ocean, which can reinforce the northward pressure gradients 

that in turn strengthen the monsoon and associated cyclonic shear vorticity. We considered the 

distribution of the locations where maximum intensity of TC is observed in AS and found that the 

occurrences of stronger events such as severe cyclones and super cyclones of maximum intensity are 

mostly in the area covering 17.5-22.5
0
N and 60-65

0
E. Hence, we have considered a box area (latitude 

17.5-22.5
0
N and longitude 60-65

0
E, Box A in Figure 1) to analyze the link between the severe cyclone 

events and SWH. The analysis showed about 16 cyclones passed through the box and out of which the 
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most severe events were selected for the study. The details of the cyclones date and their maximum 

intensity locations are presented in Table 1. 

The selected cyclone events are during 1993, 2007 and 2010 and the strongest was the super cyclonic 

storm Gonu, which formed in early June 2007. We have extracted the time series data of SWH for each 

year at the location where the maximum cyclone intensity is observed. The encircled peaks in SWH 

(Figure 11b) in all three years are due to the cyclone activity and the SWH and wind speed observed 

during the maximum cyclone intensification for the study domain is presented in panel 3 and 4 of Figure 

11. Increase in wind speed and associated wave height is observed all throughout the events. The 

unusual intensification of SWH is directly related to the TC activity. As the TC moves the local wind 

speed becomes higher, which could generate higher wind seas. About 90% of the pre-monsoon TC in 

AS occurs from mid-May to mid-June, during which the mean vertical wind shear over the TC 

intensification zone increases approximately from 12 m s
-1

 to 25 m s
-1

 (Evan et al. 2011). Evan et al. 

(2011) also reported that the lifetime maximum intensification date of TCs also increased during the 

recent decade to around 13 days confirmed with higher confidence level. Since the intensity of cyclones 

increased and are mostly occurred in latitude greater than 15
0
 N the trend of SWH is higher in the north-

eastern part of NIO (Figures 4a and 5). 

4. Summary and conclusions 

The climatology and variability of surface waves in the NIO region is investigated using ERA-interim 

reanalysis data. This study focuses on the period 1979-2012 and includes the analysis of significant 

wave height, swell and wind sea height. Wind sea and swells are separated from the wave data using the 

wave energy statistical method. The variability of the SWH for 34 years is studied by trend analysis and 

EOF analysis and role of tropical cyclones on the SWH variability are also examined. In the trend 

analysis, the western NIO shows a strong increasing trend and the increase in wave height in this area 

can affect the eastern coastal region of Africa. A higher annual increasing is observed in the western 

equatorial NIO and east of the eastern entrance of the Gulf of Aden. An annual decreasing SWH is 

observed in a small area along the east coast of India. During the pre-monsoon period, the NIO is 

relatively calm and shows a decreasing trend in SWH. A higher increasing SWH is observed during the 

monsoon season. The northern NIO shows an increasing trend of greater than 1 cm yr
-1

. The swells from 

the southern hemisphere are present in the NIO during the pre and post-monsoon seasons. The 

increasing and decreasing SWH in NIO depends on the southern hemispheric swells and local wind 

system. The intermediate period waves generated off the northeast coast of Africa are propagated in a 
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northeast direction and are observed in the eastern Arabian Sea. The EOF analysis indicates that the 

SWH variance is strongly dominated by the first mode and is associated with the monsoon wind in the 

NIO. A higher variability in the SWH is observed in the western AS region and is spreading and waning 

in the northeast direction. The unusual intensification SWH in NIO is directly related to the tropical 

cyclone activity. And also there is a clear intensification of stronger events after 1996. Since the 

intensity of cyclones are increasing it will have much influence on the seasonal characteristics of SWH 

of the region.Wave climatology and trends in the NIO require further investigation in order to determine 

the role of the Southern Ocean swell in their modulation and the influence of inter-annual variation in 

monsoon on SWH.  
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Figure captions 

Figure 1. The map showing the area studied (North Indian Ocean). The shadings are the depth in m. 

Map is plotted using ocean data viewer. The area (17.5-22.5
0
 N and 60-65

0
 E) to analyze the link 

between the severe cyclone events and SWH is shown as A. The area in AS (10-15 °N and 60-65 °E) 

used to study the phase relation between the SWH and rainfall in central west coast of India is shown as 

B.  

Figure 2. North Indian Ocean wave climatology based on data from 1979 to 2012. Left panel shows the 

mean significant wave height a) annual, b) pre-monsoon, c) monsoon and d) post-monsoon. Right panel 

shows the standard deviation of significant wave height in NIO; e) annual, f) pre-monsoon, g) monsoon 

and h) post-monsoon. All the values are in meter. 

Figure 3. Mean swell (left panel) and wind sea (right panel) height in NIO by wave energy statistical 

method (a. Annual, b. Pre-monsoon (FMAM), c. Monsoon (JJAS) and d. Post-monsoon (ONDJ). All the 

values are in meter.  

Figure 4. Left panel shows the trend of significant wave height (cm yr
-1

) (a. Annual, b. Pre-monsoon, c. 

Monsoon, d. Post-monsoon). Right panel shows the trend of wind speed (m s
-1

 yr
-1

) (e. Annual, f. Pre-

monsoon, g. Monsoon, h. Post-monsoon). White patches in oceans indicate values which fail to achieve 

statistical significance. Statistical significance more than 90% only is presented in this figure. 

Figure 5. Trend of annual mean SWH along two transects in Indian Ocean. The left panel is along 65.25 

°E and the right panel is along 90 °E. Statistical significance levels of the trends at locations 1, 4, 5, 7, 

11 to 14 are above 95%, at locations 6, 8 and 10 are above 90%, at location 3 is above 86% and at 

locations 2 and 9 are insignificant. 

Figure 6. First EOF mode of monthly averaged (a) SWH (92%) and (b) wind speed (70%) of NIO. (c) 

PC1 of SWH and wind speed from1979 to 2012. (d) The climatology of wind speed square (m
2
/s

2
) of 

NIO. (e) First mode EOF of monthly anomaly of SWH (51%) and (f) PC1 of monthly anomaly of SWH 

and wind speed. 

Figure 7. Time series plot of monsoon mean SWH and wind speed within the box 10 ⁰N to 15 ⁰N and 60 ⁰E to 

65 ⁰E at central AS and monthly average rainfall data during June to September in central west coast of 

India 

Figure 8. Wavelet analysis of monthly PC1 of (a) SWH, (b) wind speed. Monthly average rainfall data 

in (c) central west coast of India and (d) all over the Indian mainland. Oscillations with period one year 

and less than one year are removed from all data using low pass filter. 

Figure 9. Wavelet coherence of spatially and monthly averaged SWH within the box 10 ⁰N to 15 ⁰N and 

60 ⁰E to 65 ⁰E at western and central AS with monthly average rainfall data in central west coast of 

India. 

Figure 10. a) Number of cyclones and b) maximum cyclone intensity in NIO from 1979 to 2012 

Figure 11. a) Very severe cyclone tracks b) time series significant wave height at the maximum cyclone 

intensified location c) observed significant wave height during peak events d) observed wind speed at 

the peak events 
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Table 1. Details of the cyclone dates and the location of maximum intensity 

Number Date of occurrence

(start and end date) 

Maximum 

cyclone 

speed 

(Knots) 

Latitude 

(Deg) 

Longitude  

(Deg) 

1 06/16/1979-06/20/1979 50 18.2 62.0 

2 09/16/1979-09/25/1979 55 19.5 63.5 

3 09/08/1983-10/08/1983 45 20.8 60.2 

4 04/06/1987-12/06/1987 50 16.1 63.5 

5 07/06/1989-06/13/1989 35 21.4 65.7 

6 09/29/1992-04/10/1992 55 17.9 61.3 

7 05/11/1993-11/16/1993 80 20.9 64.2 

8 05/06/1994-09/06/1994 45 18.9 62.9 

9 11/10/1995-10/18/1995 50 17.1 68.3 

10 09/06/1996-12/06/1996 40 18.6 58.7 

11 09/28/1998-01/10/1998 35 18.2 65.7 

12 11/12/1998-12/17/1998 65 16.8 65.8 

13 09/24/2001-09/28/2001 35 18.2 66.6 

14 05/31/2007-08/06/2007 145 19.9 64.1 

15 05/30/2010-07/06/2010 125 18.2 60 

16 11/25/2011-01/12/2011 35 14.6 68.7 
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Figure 1. The map showing the area studied (North Indian Ocean). The shadings are the depth in m. Map is plotted using ocean data viewer. 

The area (17.5-22.5
0
 N and 60-65

0
 E) to analyze the link between the severe cyclone events and SWH is shown as A. The area in AS (10-15 

°N and 60-65 °E) used to study the phase relation between the SWH and rainfall in central west coast of India is shown as B.  
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Figure 2. North Indian Ocean wave climatology based on data from 1979 to 2012. Left panel shows the 

mean significant wave height a) annual, b) pre-monsoon, c) monsoon and d) post-monsoon. Right panel 

shows the standard deviation of significant wave height in NIO; e) annual, f) pre-monsoon, g) monsoon 

and h) post-monsoon. All the values are in meter. 
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Figure 3. Mean swell (left panel) and wind sea (right panel) height in NIO by wave energy statistical 

method (a. Annual, b. Pre-monsoon (FMAM), c. Monsoon (JJAS) and d. Post-monsoon (ONDJ). All the 

values are in meter. 
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Figure 4. Left panel shows the trend of significant wave height (cm yr
-1

) (a. Annual, b. Pre-monsoon, c. 

Monsoon, d. Post-monsoon). Right panel shows the trend of wind speed (m s
-1

 yr
-1

) (e. Annual, f. Pre-

monsoon, g. Monsoon, h. Post-monsoon). White patches in oceans indicate values which fail to achieve 

statistical significance. Statistical significance more than 90% only is presented in this figure. 
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Figure 5. Trend of annual mean SWH along two transects in Indian Ocean. The left panel is along 65.25 

°E and the right panel is along 90 °E. Statistical significance levels of the trends at locations 1, 4, 5, 7, 

11 to 14 are above 95%, at locations 6, 8 and 10 are above 90%, at location 3 is above 86% and at 

locations 2 and 9 are insignificant. 
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Figure 6. First EOF mode of monthly averaged (a) SWH (92%) and (b) wind speed (70%) of NIO. (c) 

PC1 of SWH and wind speed from1979 to 2012. (d) The climatology of wind speed square (m
2
/s

2
) of 

NIO. (e) First mode EOF of monthly anomaly of SWH (51%) and (f) PC1 of monthly anomaly of SWH 

and wind speed. 
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Figure 7. Time series plot of monsoon mean SWH and wind speed within the box 10 ⁰N to 15 ⁰N and 60 ⁰E to 

65 ⁰E at central AS and monthly average rainfall data during June to September in central west coast of 

India.  
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Figure 8. Wavelet analysis of monthly PC1 of (a) SWH, (b) wind speed. Monthly average rainfall data 

in (c) central west coast of India and (d) all over the Indian mainland. Oscillations with period one year 

and less than one year are removed from all data using low pass filter.

 

Figure 9. Wavelet coherence of spatially and monthly averaged SWH within the box 10 ⁰N to 15 ⁰N and 

60 ⁰E to 65 ⁰E at central AS with monthly average rainfall data in central west coast of India. 
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Figure 10. a) Number of cyclones and b) maximum cyclone intensity in NIO from 1979 to 2012 
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Figure 11.a) Very severe cyclone tracks b) time series significant wave height at the maximum cyclone 

intensified location c) observed significant wave height during peak events d) observed wind speed at 

the peak events 


