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Abstract—Large ultrasensitive detector arrays are needed for
present and future observatories for far infrared, submillimeter
wave (THz), and millimeter wave astronomy. With increasing ar-
ray size, it is increasingly important to control stray radiation inside
the detector chips themselves, the surface wave. We demonstrate
this effect with focal plane arrays of 880 lens-antenna coupled mi-
crowave kinetic inductance detectors (MKIDs). Presented here are
near field measurements of the MKID optical response versus the
position on the array of a reimaged optical source. We demonstrate
that the optical response of a detector in these arrays saturates off-
pixel at the ∼−30-dB level compared to the peak pixel response.
The result is that the power detected from a point source at the
pixel position is at a similar level to the stray response integrated
over the chip area. With such a contribution, it would be impossible
to measure extended sources, while the point source sensitivity is
degraded due to an increase of the stray loading. However, we show
that by incorporating an on-chip stray light absorber, the surface
wave contribution is reduced by a factor >10. With the on-chip
stray light absorber, the point source response is close to simula-
tions down to the ∼ −35-dB level, the simulation based on an ideal
Gaussian illumination of the optics. In addition, as a crosscheck,
we show that the extended source response of a single pixel in the
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array with the absorbing grid is in agreement with the integral of
the point source measurements.

Index Terms—Antenna, kinetic inductance detector (KID),
low-temperature detector, microwave kinetic inductance detector
(MKID), surface wave, submillimeter wave, terahertz, twinslot.

I. INTRODUCTION

P
resent and future observatories for far infrared (FIR,

∼1–10 THz), submillimeter wave (0.3–1 THz), and mil-

limeter wave (50–300 GHz) astronomy need increasingly large

arrays of ultrasensitive power (“direct”) detectors [1]. This re-

quires a CCD-like approach in which large-scale monolithic

detector chips are combined with a multiplexed readout. Cur-

rent imaging arrays for the FIR and the submillimeter regime

are based upon transition edge sensors [2] or microwave kinetic

inductance detectors (MKIDs) [3]. In both cases, the detector

arrays are based upon large, monolithic chips, where radiation

coupling is achieved using planar absorbers, lenses, or horns.

With ever increasing array size, it becomes critically important

to control stray radiation inside these detector chips. Even in

the best cases, the radiation absorption in a single pixel is not

perfect: Part of the radiation can be reflected and rescattered

into the dielectric of the detector chip. This confined radiation

is commonly referred to as a surface wave. Typical chip ma-

terials such as Si have a high refractive index, increasing the

probability of total internal reflection. To illustrate the effect,

we show in Fig. 1(a) the spatial response of a central pixel of an

880 pixel array of lens-antenna-coupled MKIDs as a function

of the position of a small calibration source in the image plane

of the chip, the system beam pattern. We observe a localized

peak response, the main beam, at the pixel position. However,

we also observe a low level of response over the entire chip area,

which we will refer to as the pedestal response in the remainder

of the text. The pedestal response consists of power coupled

to the chip at a position spatially far away from the measured

pixel: It is detected at the pixel under test due to scattering of

radiation inside the detector chip. Normalizing the system beam

pattern to its maximum response, the pedestal response is seen

at a level of∼−30 dB. In this particular case, the total integrated

stray power in the pedestal at −30 dB is similar to the power in

the main beam. This will render imaging of extended sources

impossible and results in excess power loading when using this

array for ground based astronomy. In this paper, we study this

problem in detail by comparing two large imaging arrays, which
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Fig. 1. Position dependent response in decibel of one pixel to a point source
placed in a reimaged focal plane with a magnification of 3. The −3-dB and
−27-dB contours are shown. The circles show the fitted 3-dB beams of all
found pixels, shown to show the extent of the array. Two arrays are shown: (a)
without on-chip stray light absorbing mesh; (b) with absorbing mesh. Note the
large area response at the ∼ −30-dB level without the mesh disappears on the
array with the on-chip absorbing mesh.

are based upon lens-antenna-coupled MKIDs. Both arrays are

identical with the exception of an absorbing mesh layer designed

to absorb rescattered radiation propagating through the detec-

tor chip, with the resultant pedestal-suppressed spatial response

shown in Fig. 1(b). We discuss in detail the design, fabrication,

and testing of these two systems and demonstrate that the afore-

mentioned problem can be reduced very significantly by using

a stray-light absorbing layer.

II. ARRAY DESIGN

The arrays discussed in this paper are based upon NbTiN-

Aluminum lens-antenna-coupled MKIDs, similar to the device

discussed by Janssen et al. [4]. A micrograph of a sin-

gle MKID of the array is given in Fig. 2(a). The device is

fabricated on a 350-µm-thick Si < 100 > FZ wafer with a

resistivity ρ > 10 kΩ · cm. Additionally, both sides of the wafer

are coated with a 0.5-µm layer of low-pressure chemical vapor

deposition SiN. Each detector consists of a meandering coplanar

waveguide (CPW) with an open end near the readout line and a

shorted end at the location of the antenna. The MKID is made

out of a 500-nm thick film of NbTiN, deposited using reactive

magnetron sputtering in an argon-nitrogen plasma [5], [6]. The

device has a wide section with a central line width = 14 µm and

a central line to ground plane gapwidth = 24 µm made from

NbTiN. Here, the SiN layer is removed prior to the NbTiN de-

position to reduce excess device noise due to two level systems

associated with the amorphous SiN [7]. The last ∼1.5-mm sec-

tion of the MKID is narrow and here the central line of the CPW

is made out of 55-nm sputter deposited aluminum (linewidth =

1.6 µm, gapwidth = 2.2 µm) to enhance the device response

and optical efficiency. The SiN is present here to increase the

device yield at the Al/NbTiN interface [8]. The MKID is read

out by using a readout signal via the CPW through line at a sin-

gle frequency corresponding to the first distributed resonance

occurring at a frequency F0 = c
4L

√
ǫeff

. Here L is the resonator

length, c the speed of light, and ǫeff the effective dielectric con-

stant of the CPW. Radiation coupling to the devices is achieved

by a twin-slot antenna [9], [10], coupled to the shorted end of

the resonator as shown in Fig. 2(b). The antenna is optimized

for radiation coupling in a 60-GHz band around 350 GHz [11].

The geometry of the antenna, impedance matching stub, and

transformer [11] are indicated by the insets Fig. 4, where the

parameters shown are: L = 240 µm; W = 137 µm; d = 12 µm;

S = 25 µm; lstub=26 µm; and ltrans = 40 µm. Additionally, the

CPW in the stub and transformer have a central line of width

2 µm with a gap to the ground plane of 2.2 µm; this transitions to

a CPW of width 1.6 µm with a gap of 2.2 µm for the Al section of

the MKID. The angular dimension of the lens is designed such

that 82% of the power is captured by the lens. This efficiency

estimates how much is the power launched into the surface wave

from a single double slot antenna. However, the MKID CPW

line will itself directly weakly couple to the surface wave, and

therefore, increase the contribution to the detector from the sur-

face wave. Radiation coupled to the antenna is transferred to the

narrow NbTiN-Al CPW line of the MKID and absorbed only in

the aluminum central strip of the MKID: The gap frequency of

NbTiN does not allow for radiation absorption below 1.1 THz,

whereas aluminum absorbs radiation for frequencies in excess

of 90 GHz. The consequence is that there is no radiation loss in

the device, and thus, there is a very high detector efficiency [4].

The result of the radiation absorption is that the MKID reso-

nant frequency shifts to lower frequencies and that the MKID

resonance feature broadens [see Fig. 2(c)].

The two arrays we consider in this paper both consist of 880

pixels hexagonally packed with a pixel spacing of 2 mm, cov-

ering an area of 55.7 × 56 mm on a 62 × 60.8 mm chip. In

Fig. 2(d), we show a combined micrograph of part of the array

front side and back side. Across the array, the MKID length

L is changed systematically from 6.6 to 3.5 mm, resulting in

F0 ranging from 4.2 to 7.8 GHz. Note that all devices are cou-
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Fig. 2. (a) Optical micrograph of a single pixel of the array, artificial coloring is used to highlight the different metals. (b) Zoom in to the antenna structure of
panel (a). (c) Transmission of the readout line around a single MKID, measured at two different values of the power absorbed by the device, showing the response
mechanism of the MKID. (d) Optical micrograph of the array, with the front side (top) and backside (bottom) showing the detectors on the front side and the
Ta absorbing mesh on the backside, implemented on only one of the two arrays discussed in the text. (e) Assembled detector holder with lens array and SMA
connector for contacting the readout circuitry. The top panel shows schematically the assembled cross section.

Fig. 3. Calculated mesh performance: (a) Frequency dependence of the absorption of the transverse electric (TE) and transverse magnetic (TM) modes at 40º
incidence to the mesh. Insert, the mesh unit cell design, blue mesh, white the substrate. Values used of P = 120 µm and g = 3.5 µm; (b) Angular dependence at
350 GHz. (c) Reflection of the mesh in the MKID readout band.

pled to a single readout line; electrical contact to the chip is

achieved by just two bond pads. The SiN layer is present be-

low the central conductor of the readout line to allow electrical

measurements of the readout-line integrity at room tempera-

ture during the fabrication process; without this layer, the Si

wafer will short-out the series resistance of the NbTiN line. The

presence of the SiN below the readout line does not change

its loss tangent: it is measured to be tan δ ∼ 5 × 10−5 using

a test resonator, allowing a good signal coupling to the low-

noise amplifier. We use aluminum bridges with lithographically

defined polyimide supports to balance the two grounds of the

readout line. Additionally, we spatially encode the pixels such

that neighboring pixels are separated sufficiently in readout fre-

quency. Both techniques reduce MKID–MKID crosstalk [12].

Residual crosstalk is now limited by resonator overlap [1], [13],

[14], limited in our case by the NbTiN film flatness [6], and the

MKID Q-factors under operation. Efficient radiation coupling

to the MKID antennas is achieved by using a Si lens array of

spherical lenses fabricated using laser ablation from a separate

Si wafer. The lens array and chip are mounted together using

a dedicated alignment and bonding technique where the lens

array and chip are pressed together using a silicone-based press

system before a semipermanent bond is made using Locktite

406 glue. This method guarantees a glue gap below 5 µm over

the entire chip area. Alignment is achieved by markers in the

SiN layer on the detector chip backside that were etched in the

first step of the device fabrication [see see Fig. 2(d)]. The large

area of the chip requires the lens array and the detector chip to

be made from the same material to guarantee reliable bonding

during thermal cycling of the detector assembly. The detector

chip is mounted in a dedicated holder and wire bonding is used

to contact the two bond pads to standard SMA co-ax connectors,

the finished assembly is shown in Fig. 2(e).

The second array is equipped with a stray radiation absorbing

layer, on the backside of the detector chip, fabricated from a

40-nm-thick Ta layer deposited using dc magnetron sputtering
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Fig. 4. Calculated far-field detector beam pattern, with and without absorbing
mesh absorber. Ep is the E plane, perpendicular to the antenna slots; while Hp is
the H-plane, parallel to the antenna slots. Inset (a) shows the antenna geometry
and (b) and zoom on the antenna feed, transformer and stub, see text or [11] for
details.

at room temperature. Under these growth conditions, Ta grows

in its β-phase [15], characterized by a high resistivity and low

critical temperature [16]. For our film, we measure a sheet re-

sistance Rs = 61 Ω/� and Tc = 0.65 K; it is noteworthy that

this observed sheet resistance gives the maximum radiation ab-

sorption for a metal layer in between two Si substrates (i.e.,

the lens array and the chip). The gap frequency of the Ta layer

is approximately 50 GHz, that is, at the readout frequency, the

material is superconducting and at 350 GHz, it is resistive with

a resistivity very close to the normal state resistance. Using a

parametric sweep over parameters P and g (see Fig. 3(a), inset),

the mesh design is optimized for maximum radiation absorption

upto large angles for both the TE and TM mode at 350 GHz and

for maximum transmission at the MKID readout frequency of

4–8 GHz; the optimized curves are shown in Fig. 3 together with

a zoom of the mesh structure. The transparency from 4–8 GHz

is needed because the mesh is only 350-µm distance from the

MKIDs, and therefore, close enough to couple to the device.

Without this, the MKID will be sensitive to power absorbed in

the stray light absorbing layer and would additionally have an

enhanced coupling to the readout line. To efficiently couple the

radiation from the lenses to the antenna, a 1.1-mm diameter hole

is etched in the mesh; this is shown in Fig. 2(d) and the inset

of panel (e). The far-field lens-antenna beam pattern is simu-

lated [17], with and without mesh present and shown in Fig. 4.

This shows the mesh has a small perturbation on the beam pat-

tern, reducing the calculated lens-antenna aperture efficiency

from 0.75 to 0.74. To simulate the surface wave, the case of a

small 7-pixel array is taken, the electric field strength [17] is

shown in Fig. 5. From this calculation, we determine that the

mesh absorber reduces the amount of power in the surface wave

by absorbing about half the power within a distance of a single

lens (2 mm) from the antenna.

As a last fabrication step, we thermally evaporate a layer of

Ti-Cu-Au (5, 500, and 100 nm) layer at the chip edge, exactly

where it is pressed into the sample holder. The role of this

layer is to strongly increase the thermal contact between the

Fig. 5. Cross cuts of simulations [17] of the electric field strength (in decibel)
for the lens-antenna system including nearest neighbors pixels, showing leak-
age of power into the surface wave. (a) Without absorbing mesh and (b) with
absorbing mesh. With the mesh, the about half of the power in the surface wave
is absorbed within an distance of a single lens.

detector chip and the holder. With a thermalization layer, there

is no residual bath-T-dependent thermal response measurable at

240 mK.

III. SYSTEM BEAM PATTERN

The arrays were measured individually in a submillimeter

wave camera cryostat, with the arrays mounted on a thermal

isolation suspension connected to the 240-mK stage of a three

stage He3 /He3 /He4 sorption cooler. The two additional cold

stages of this three stage cooler are used to thermally buffer the

coaxial readout lines and thermal-mechanical suspension hold-

ing the detector assembly. The camera optics create an image

of the detector array at a warm focal plane outside the cryostat

using a seven mirror system with a system magnification of 3.

The optical design is based on two back-to-back optical relays,

each consisting two off-axis parabolic mirrors forming a Gaus-

sian beam telescope [19], shown in Fig. 6(a) and (b). One of the

optical relays is placed at 4 K and the other outside the cryostat.

The optical design is based on aberration compensation [20],

canceling the aberrations, and cross polarization of the optics

near the optical axis. To improve performance over the entire

(large) field of view, the mirror shape and angles are optimized,

giving a low distortion, diffraction limited performance with a

Strehl ratio of greater than 0.97 across the entire field view at

350 GHz and even at 850 GHz. Threefold mirrors are used to

minimize the total size of the optics system and give a horizon-

tal beam with a usable warm reimaged focal plane. This rotates

the focal plane, which is not corrected for in the presented data.

An angular limiting aperture “the pupil” limits the beam to a

focal length to beam diameter (f-number or f#) of f#=2 and

is placed between the 4 K active mirrors where all the differ-

ent pixel beams overlap. The designed beam truncation at the

pupil is ∼ −3 dB. The arrays sample the focal plane with 2-mm

pixels at 350 GHz, a spatial sampling of ∼1.2f#λ. The design

was simulated using the Zemax physical optics (POP) tool, [21]

shown in Fig. 8. Using these simulations, all mirror sizes were

designed with low spillover <−20 dB, to couple the designed

beam efficiently to the warm focal plane.
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Fig. 6. (a) Simplified schematic of an optical relay used in the measurement system, showing how a source is reimaged on the array to measure the position-
dependent response. The arrows give the mirror positions and the dotted lines indicate the optical beam. The full system has two such relays back to back, with
four active mirrors and threefold mirrors. Indicated is the pupil, which limits the angular range and sets the spatial sampling of the system diffraction pattern. Inset
lower left is the example MKID transmission and tones used to read them out using the “SPACEKIDs” readout [18]. (b) Cross section of hot source assembly.
(c) Actual ray trace showing positions of the main apertures and all mirrors.

The total power entering the cryostat window from room

temperature is 70 dB larger than the power admitted to the

detector chip. Part of this power is out-of-band radiation, mainly

infrared (IR), and part is due to the much larger throughput into

the cryostat window compared to the cold optics. We achieve

this 70-dB rejection by using the concept of a box-in-a-box,

where each later, colder and lower power part of the optics

is enclosed in a separate baffled light-tight box with a filtered

optical window. The large field of view requires filters that are

very large, with sizes up to ∼ ∅20 cm. The large angular optical

throughput and field of view give a very large IR thermal load,

which combined with the poor thermal conductance of these

filters results in significant filter heating [22]. To limit this, we

use a set of reflective and scattering IR filters at 300, 50, and

4 K. The transmission band is further reduced with low-pass

filters at 50 and 4 K. Even then, the 50-K stage low-pass filter is

expected [22] to be >150 K, while the 4-K low-pass filter was

measured to be 32 K in its center. Additional IR blocking, low-

pass and bandpass filters at 4 K, 800 mK, and 240 mK ensure

efficient absorption or reflection of this radiation. The bandpass

also defines the measurement band as the antenna itself has a

wider bandwidth than necessary here.

The arrays are read out using an in-house developed mul-

tiplexed readout system [18], which allows 2 GHz of read-

out bandwidth around a central local oscillator (LO) frequency

between 5 and 7 GHz to be measured. The MKIDs are de-

signed to have resonant frequencies in range 4–8 GHz with a

frequency spacing that also scales with frequency. Since the cen-

tral 50 MHz of the readout is not usable it takes four different

LO tunings to measure the entire array.

To measure the position-dependent response of the arrays, we

use a hot source placed in the reimaged focal plane and scanned

using a xy scanner. The hot source consists of a globar element

placed in the focus of an enclosing elliptical mirror, shown in

Fig. 6(b). The elliptical mirror produces an image of the source

Fig. 7. Beam pattern for the array with an on-chip stray light absorber mea-
sured using the phase and amplitude method, scaled in decibel. 3-dB contours
of all pixels are also shown so indicating the array size. The array is smaller
than the field of view (FOV), the FOV edge is seen where the signal drops into
the noise floor.

at its second focus, where a ∅2-mm beam-defining aperture is

placed. The output of the source is modulated at 80 Hz between

300 K and upto 1000 K by means of a rotating mirror to elimi-

nate MKID 1/f noise and system thermal drifts. The hot source

has been previously characterized to have a wide response with

an effective spot size smaller than the beamsizes to be mea-

sured. To maintain a constant background on the MKIDs and to

eliminate reflections, a blackened sheet significantly larger than

the reimaged chip size is mounted around the source aperture.

The response of the MKID as a function of the source posi-

tion is measured using a step-and-integrate strategy. The typical

step size of the source is chosen to be close to spatial Nyquist

sampling (2.5 mm) to enable an efficient sampling of the entire
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Fig. 8. (a) Radial mean of beam pattern. Shown is the median of ∼20 pixels from the array center. (b) Zoom on the radial mean. (c) Encircled energy, the integral
of the beam pattern to a given radius centered on each pixel. The encircled energy is the median value of ∼20 central pixels, normalized to the total power of the
POP simulation and corrected for slightly different beam radii (see text for details).

field of view. For each xy point, typically 1 s of data is recorded.

The hot source temperature is adjusted so the maximum sig-

nal during the measurement matches the MKID instantaneous

dynamic range. This is taken in MKID phase readout [3], [23]

as ∼1 rad. with respect to the MKID resonance circle in the

complex plane. In postprocessing, the data are calibrated to an

effective frequency shift via the MKID phase signal using the

strategy outlined in [24]. This linearizes the signal with respect

to the optical power and removes responsivity changes due to

drifts in the optical loading. This results in reproducible beams

for different source powers, MKID readout tone frequencies and

powers. The position-dependent response is determined by ap-

plying a flat-top windowed fast Fourier transform (FFT) to each

second of MKID frequency response and taking the FFT ampli-

tude at the chopper frequency. Since the chopper is not locked,

it has a slight frequency drift. To correct for this, we modulate a

few off-KID readout tones using analogue electronics with the

exact chopper frequency. This gives the exact chopper frequency

in the measured data, enabling drift correction in postprocess-

ing. This was implemented only for the array with absorber. For

the array without absorber, we use the sum of all MKIDs for this

purpose: The pedestal response ensures that a signal is present

independent of the source position.

The position-dependent responses is shown in Fig. 1(a) for

the array without absorbing mesh, and in Fig. 1(b), for the ar-

ray with absorbing mesh. In both figures, we give the corrected

response Pc , given by Pc =
√

P 2 − P 2
n , where P 2

n is the mean

value of the signal with the hot source outside of the field of

view of the cryostat optics. The square is needed because the

KID noise, readout noise, and photon noise contributions all add

in P 2 , with P the measured signal. We observe a significant re-

duction ( 10 dB) in the pedestal response for the array with mesh

absorber. To make this even clearer, we show in Fig. 8(a) and (b),

the radial mean of the beam pattern. The radial mean averages

the beam pattern over a circle centered on the pixel position, so

improving on the signal to noise of the beam pattern. The solid

(blue) line, representing the data without a mesh absorber, is

10 dB above the (red) dashed line, representing the data with an

absorber, for radii in excess of 20 mm.

The measured beam pattern, as shown in Fig. 1(b), has a noise

floor at ∼−35 dB. This is not sufficient to measure the residual

response for the array with absorber. For these reasons, we have

performed an additional measurement using a harmonic source

and a multiplier chain in a heterodyne configuration giving

the phase and amplitude (P&A) beam patterns [25], similar to

the method presented in Davis et al. [26]. The multiplier chain

is used as a stationary local oscillator that is coupled to the

entire the array with a thin mylar beam splitter. The harmonic

mixer is scanned in the reimaged focal plane. The sources are

operated at a small, ∼424 Hz, offset modulating the signal. The

magnitude and phase of this modulation gives the amplitude and

phase of the system beam pattern, with only the amplitude pre-

sented here. The scanned positions in xy plane are chosen to be

every 1 mm, less than FWHM/4, the full-width half-maximum

beamwidth, to resolve the beam shape in more detail. Due to

the dual-source modulation, the P&A measurement measures

the amplitude of the beam pattern whereas the hot source gives

the power [25]. This means the P&A measurement dynamic

range is square of that with the hot source for the same mod-

ulation level, giving a noise floor of � −60 dB, as shown in

Fig 7. Additionally the harmonic mixer uses a thin-walled open

waveguide to launch the radiation; so it is a single-mode, single-

polarization, and a single-frequency point source with an near

isotropic beam pattern. The pattern measured with this source

can therefore directly be compared to simulations. With this

extra dynamic range, we clearly observe in the 2-D beam pat-

tern that even with an on-chip absorber, a residual large area

response is still visible at a −40 to −50-dB level.

IV. COMPARISON TO OPTICAL SIMULATION

To further assess the measured performance and to compare it

to the theoretical performance, we take a POP simulation of the

camera cryostat optics and compare this to the radial mean of
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the measured response. This is shown in Fig. 8. The POP model

approximates the optics, using the 3-D designs of the mirrors,

and in particular, taking as the detector beam a Gaussian beam

with a beamwaist of 0.72 mm. This is the radius at the 1/e2

value of the beam pattern fitted from simulations of the lens-

antenna system. Note that the measured and simulated far-field

beam patterns of an similar lens-antenna-coupled MKID are

in excellent agreement [8]. For the array with an absorber, the

P&A measurement is in good agreement to the POP simulation

down to the∼−35-dB level. Further away from the beam center,

the measured signal is higher and we observe a clear low-level

extended feature on the beam pattern. This is the case also for

the array with an absorbing mesh, however, here it even extends

beyond the chip area as shown in Fig. 7. This deviation we

refer to as a residual error beam. Given the fact that part of

the residual error beam extends beyond the chip edge, we can

imply that part of this signal is not from the surface wave in the

chip, but from contributions from the measurement setup such

as: reflections in the optical path, for example, from the optical

window and filters; additional Ruze [27] scattering from optical

surface roughness and errors; residual diffraction, not in the

simulation due to simulation sampling errors or off components

near the beam. Such effects will give contributions to the beam

pattern over the optical field of view, matching what is observed

for the array with absorber as seen in Fig. 7. It is important to

note that the accuracy of the POP simulation at such low levels,

off axis may be degraded due to simulation sampling and the

POP algorithm itself.

To illustrate the difference between arrays, we show in

Fig. 8(c) the encircled energy, which is the integral of the beam

pattern over a circle centered on the pixel position. Note, the

encircled energy is normalized to the simulation (POP) and cor-

rected for small variations in the FWHM between the curves.

The FWHM, and hence, its integral vary between measurements

on the order of ∼10% due to the finite source size for hot source

measurements, defocus, slight optical misalignments, and slight

difference between measurements and simulation. Noting that

the main beam response dominates up to a radius of 10 mm, the

power inside this radius is used to normalize the encircled en-

ergy to the POP beam pattern. The encircled energy shows that

without an absorber, there is almost 1.6 × the response of the

array with an absorber, and that this extra power is distributed

away from the pixel center.

V. EXTENDED SOURCE RESPONSE

To cross check the beam pattern measurements, we measured

the response of a few single pixels as a function of load size

for the array with an on-chip absorber. To test this, the source

[see in Fig. 6(a)] is replaced with a variety of 300-K sources

sizes, while the rest of the field of view is allowed to pass

onto a large 77-K liquid nitrogen load. Two source types are

presented: large sources from Eccosorb AN absorber [28], with

sizes corresponding to the full field of view and smaller shown

in Table I; subbeam size sources using metal balls mounted to

12-µm mylar strip of width ∼20 mm. The mylar strip is almost

fully transparent, giving a small, ∼5-K constant background

that can be clearly distinguished from the more localized metal

TABLE I
NORMALIZED OPTICAL RESPONSE VERSUS LOAD SIZE, COMPARED TO

INTEGRATION OF BEAM PATTERN

Load Measured Integral of Beam Pattern

300 K 1 1
30 mm strip 0.92 0.93
25×25 mm 0.89 0.85

Fig. 9. Normalized peak response versus source size, compared to encircled
energy of simulation, POP, and Gaussian beam equations [19].

ball signal. The metal balls block the nitrogen load and reflect

into the beam 300 K from the room environment, with the

effective load temperature seen by the detector dependent on

the beam filling fraction. For large sources the signal from the

loads was larger than the designed dynamic range (∼50 K), so

as a crosscheck the frequency sweep of the MKID was used

to determine the actual shift of the resonant frequency versus

different loads. The small sources are linearized to an effective

frequency from the f-sweep as in [24].

For small sources, the result is shown Fig. 9 showing a close

match to integrals of the POP simulation and the Gaussian beam

equations [19]. For large sources, the result is summarized in

Table I. The response is normalized to 1 on 300 K and 0 on 77 K.

We observe that there is good agreement between the response

and the integration of P&A beam pattern. These results show

the beam pattern to be a complete description of the detector

response, from point sources to extended sources.

VI. CONCLUSION

In this paper, we have shown that a large, monolithic array

of lens-antenna-coupled MKIDs can respond to radiation, on a

−30-dB level, over the entire chip area. This pedestal response

is associated with radiation scattered inside the dielectric of the

array substrate, it is commonly referred to as a surface wave. The

integrated response of the pedestal approaches the main beam

response. Such a response destroys the imaging properties of

the array, particularly for extended sources. We have shown that

the surface wave can be suppressed effectively by including a

matched absorbing layer in between the detector chip and the

lens array, leading to a beam pattern response close to the ex-

pected spatial response from a POP model down to the −35-dB

level. The absorbing layer reduces the surface wave by at least

10 dB. A remaining extended beam pattern feature has response
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TABLE II
FILTER STACK OVERVIEW

Name Position and Nominal T Size

HDPE window Window 300 K ∅170 mm
Scatterer 300 K 140 × 150 mm
Shader 15 µm 50 K ∅200 mm
Scatterer 50 K ∅200 mm
Shader 15 µm 50 K ∅200 mm
LP 3 THz 50 K ∅200 mm
Shader(×2) 30 µm Window 4 K ∅210 mm
LP 1.1 THz Window 4 K ∅210 mm
HDPE 8-mm thick Pupil 4 K ∅160 mm
LP 400 GHz 800 mK 110× 110 mm
BP 350 GHz 240 mK 75 × 75 mm

outside the chip area so is, therefore, at least partly due to im-

perfections in the setup, and not associated with the detector

assembly. The measured array now meets the requirements of

sensitivity and beam pattern for both point and extended sources

as is needed for future FIR, submillimeter wave (THz), and

millimeter-wave astronomy, such as reviewed in [1].

While lens-antenna-coupled MKIDs are presented, the prob-

lem of surface waves is common for any detector system on a

monolithic transparent substrate. This is a low-level effect that

will become more important for large focal plane arrays or any

large array requiring low pixel–pixel on-chip optical crosstalk.

For example, a spectrometer on-chip applications [29]–[31] also

require high on-chip rejection of out of band and stray radia-

tion, so similar solutions to absorb surface wave contributions

are required [32].

APPENDIX

OPTICAL-THERMAL DESIGN ISSUES

A. Chip Thermalization

The chip itself can suffer from thermalization issues due to the

incident absorbed optical and readout power. At the used optical

loading thermal effects are measurable, but small at 260 mK.

Without a gold layer, there is a small parasitic thermal response

due to changes in loading applied to the entire array of order of

∼10% of the single pixel response with a time constant of 18 s.

This is associated with a chip heating from 260 to 277 mK in the

middle of the array, which was measured in a separate cooldown

with a thermometer mounted on center an array without a ther-

malization layer. The addition of a thermalization layer reduced

the ∆T to below that measurable. At 240 mK, used in the pre-

sented measurements, with the gold thermalization layer there

is no measurable residual parasitic thermal response associated

with changes in the full array optical loading.

B. Optical and IR Filtering

The optical measurement band is defined by a set of optical

filters and requires >60-dB rejection of out of band radiation. A

particular problem is that the filters are large and made of plas-

tic (typically mylar) so are poorly thermalized. This requires

additional filters to block the reradiated heat from the hot fil-

ters [22]. The total filter stack [33] consists of (see Table II): IR

scatterers, that scatter near-IR radiation and are used to reduce

window condensation; IR shaders, thin film reflective near to

mid-IR low-pass filters, defined by their low-pass wavelength,

these reflect most of the out of band radiation power back out

of the cryostat window; metal mesh low-pass filters (LP), that

reflect far-IR and out of band submillimeter wave radiation,

but absorb mid-IR; a bandpass (BP) filter to define the measure-

ment band; an 8-mm thick high-density polyethylene (HDPE)

sheet is used as the cryostat optical window; an additional 8-mm

HDPE sheet is used to absorb residual reradiated IR radiation

inside the cryostat.
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