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Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction, or to

cultivate cells in suspension, the “swirling” (or orbital shaking) of a container ensures

good mixing and gas exchange in an efficient and simple way. Despite being used

in a large range of applications this intuitive motion is far from being understood

and presents a richness of patterns and behaviors which has not yet been reported.

The present research charts the evolution of the waves with the operating parameters

identifying a large variety of patterns, ranging from single and multiple crested waves

to breaking waves. Free surface and velocity fields measurements are compared to

a potential sloshing model, highlighting the existence of various flow regimes. Our

research assesses the importance of the modal response of the shaken liquids, laying

the foundations for a rigorous mixing optimization of the orbital agitation in its

applications. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4874612]

I. INTRODUCTION

The “orbital shaking” is the displacement of a container, maintaining a fixed orientation with

respect to an inertial frame of reference, along a circular trajectory at a constant angular velocity. This

motion is used in many applications, ranging from wine swirling for tasting purposes to biological

and chemical industrial applications, e.g., bacterial1 and more recently cellular cultures.2 Cells are

cultivated in suspensions of liquid medium, where they multiply and produce the required protein.

The motion of the liquid guarantees the suspension and homogenizes the concentration of cells

consumables (oxygen and nutrient) and products (proteins and carbon dioxide). Although at large

scale this is usually achieved using stirred tanks, where the agitation is provided by an impeller and

the aeration by oxygen spargers from the container bottom,3 it was found that bursting of bubbles

at the free surface4 and excessive shear stresses5, 6 may damage the cells. These reasons kindled

the interest in the use of large scale orbital shaken devices up to thousand liters.7–9 Thus, a large

number of researches have been performed on the gas exchange,10–13 mixing,14–17 and volumetric

power consumption18 of the bioreactors. In some cases, correlations have been proposed in order to

quantify the variation of those quantities during scale-up of the culture size. Although few studies

focused on the measurement of the velocity fields,19, 20 no significant effort has been dedicated so

far to the understanding of the motion of the liquid carrying the cells, and of its influence on the

scaling of the cultures.

On the other hand, the physics of free surface liquids in laterally shaken containers has been

extensively studied, especially from the analytical point of view, with potential flows theory (inviscid,

incompressible, and irrotational).21 Early works focused on sloshing of spacecraft propellent in

cylindrical,22, 23 conical24 or rectangular tanks,25 while more recent investigations involved the

transport of liquids in naval carriers.26, 27 Moreover, swirling and unsteady flow regimes have been

observed in linear forced sloshing at shaking frequencies close to the first natural frequency.28, 29

1070-6631/2014/26(5)/052104/11/$30.00 C©2014 AIP Publishing LLC26, 052104-1
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Extensive study determined the stability regions of those flows,26, 30, 31 while the persistence of

swirling regime due to orbital shaking has also been investigated.32 Surprisingly, the hydrodynamics

generated by orbital excitation and its application for mixing and oxygenation purposes received

little attention so far. This work bridges the gap between the biological and hydrodynamic fields of

investigation, explicitly establishing a potential model for the case of orbital shaken liquids. We also

conducted an extensive experimental survey of the free surface and liquid motion to asses the limits

of validity of the potential model.

II. ANALYTICAL POTENTIAL MODEL

We consider the traditional case of a potential flow (inviscid, irrotational, and incompressible)

within a circular cylinder with upright wall. The velocity is therefore described as the gradient of

a potential �, solution of the Laplace’s equation with impermeability conditions at the container

walls, and kinematic and dynamic boundary conditions at the free surface. Following the resolution

method used for linear forcing21 we solve this equations for orbital shaking. The origin of the

cylindrical reference system is at the container revolution axis, at the unperturbed height of

the liquid. The parameters characterizing each shaking configuration are the inner diameter of

the cylindrical container D, the diameter of the circular shaking trajectory ds, the height of the liquid

at rest H0, and the shaking frequency � (Fig. 1). The orbital shaking motion may be described

as a combination of two sinusoidal translations with π /2 phase shift, which expressed in terms of

velocity leads to the following equations for the motion of the wall:

Ẋ0(t) =

{

−
ds�

2
sin(�t − θ )er

ds�

2
cos(�t − θ )eθ .

. (1)

It is usual to separate the potential function � into a liquid motion component �̄ and a container

motion component �0. Moreover, the free surface boundary conditions are linearized and the radius

r, appearing in the forcing terms, is expanded in a Bessel-Fourier series. The solution of this set of

equations has the form of a series of modes in the tangential and radial directions. They are usually

identified by the number of nodal diameters m and nodal circles n, respectively. The orbital shaking

is likely to excite non-axysimmetric modes: we consider therefore the linear solution formed by the

m = 1 modes, having the following form:

�̄(r, θ, z, t) = −
ds

2
� [sin �t cos θ − cos �t sin θ ]

×

∞
∑

n=1

[ D

(ε2
1n − 1)

�2

(ω2
1n − �2)

J1(2ε1nr/D)

J1(ε1n)
(2)

cosh(2ε1n(z + H0)/D)

cosh(2ε1n H0/D)

]

,

ds

D

H0

Fixed vessel 
orientation

Circular shaking trajectory

g

FIG. 1. Schematic illustration of the operating parameters of the shaking configurations.
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where J1 is the Bessel’s function of the first kind and first order, ε1n are the n roots of the derivative

of J1, and ω1n are the natural frequencies calculated according to

ω2
1n =

2gε1n

D
tanh

(

2ε1n H0

D

)

. (3)

The corresponding free surface elevation ξ (r, θ , t) has the following form:

ξ (r, θ, t) =
ds�

2

2g
cos(�t − θ )

×

{

r +

∞
∑

n=1

[

D

(ε2
1n − 1)

�2

(ω2
1n − �2)

J1(2ε1nr/D)

J1(ε1n)

]

}

. (4)

Equation (4) may be rewritten in a scale independent way by introducing the following dimensionless

quantities: r̃ = r/D, z̃ = z/D, and ξ̃ = ξ/D. We define the Froude number Fr2
= ds�

2/g. Accord-

ingly, we define the following dimensionless operating parameters: d̃s = ds/D and H̃0 = H0/D.

Those dimensionless parameters ensure therefore the hydrodynamic similarity between different

scales. The free surface height is hence defined as

ξ̃ (r̃ , θ, t) =
Fr2

2
cos(θ − �t)

×

{

r̃ +

∞
∑

n=1

[

1

(ε2
1n − 1)

Fr2

(Fr2
1n − Fr2)

J1(2ε1n r̃ )

J1(ε1n)

]

}

, (5)

where Fr1n is found according to Eq. (3):

Fr2
1n = 2ε1n d̃s tanh(2ε1n H̃0). (6)

The weakly nonlinear solutions are obtained by expanding the free surface boundary conditions.

Those solutions allow a better estimation of the forces acting on the container and a better agreement

with the nonlinear behavior of the wave near the natural frequencies.28, 31 The traditional solution

for sloshing under longitudinal excitation consists in considering the (1, 1) mode as dominant, and

the (0, 1) and (2, 1) as the most relevant secondary modes, having an amplitude of the order of

O(a2
11) where a11 is the amplitude of the dominant mode.33 The free surface boundary conditions

are expanded in Taylor series around z = 0, and only the orders a11 and a2
11 are kept. The solution for

the free surface, obtained using a solving strategy inspired from linear forcing,29 has the following

form:

ξ (r, θ, t) = A11 cos(�t − θ )J1(λ11r )

− A01 J0(λ01r ) + A21 cos(2(�t − θ ))J2(λ21r ), (7)

where the amplitudes are calculated as

A11 =
ds D�2ω2

11

2g(ω2
11 − �2)(ε2

11 − 1)J (ε11)
, (8a)

A01 = −
d2

s �6

8g(ω2
11�

2)2(ε2
11 − 1)J (ε11)2

[

n01,1 − n01,2

ω2
11 D2

g2

]

, (8b)

A21 = −
d2

s �4ω2
11ω

2
21

2g(ω2
11 − �2)2(ω2

21 − 4�2)(ε2
11 − 1)J (ε11)2

·

[

n21,1 + n21,2

�2

ω2
11

− n21,3

ω2
11�

2 D2

g2
− n21,1

(ω2
21 − 4�2)

ω2
21

]

, (8c)
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and the coefficients, obtained by numerical integration, are as follows:

n01,1 = 0.4046,

n01,2 = 0.0298,

n21,1 = 1.6362, (9)

n21,2 = 0.447,

n21,3 = 0.2631.

III. EXPERIMENTAL SETUP

To obtain a smooth and steady orbital motion, with minimum shocks and jerks, we used a

Kuhner Es-X shaker (420 × 420 mm, 25 kg of maximum load, 20 to 500 RPM), which we have

modified to allow for a continuous adjustment of the shaking diameter during operation.

We have carried out two sets of experiments. In the first one, we have measured the free surface

deformation at the wall for a wide range of shaking configurations. To this end, a high speed camera

(Photron SA 1.1) was used to record the motion of the free surface illuminated by a narrow beam

spot light (Figure 2(a)). The contrast was enhanced by adding a small amount of white dye to the

liquid (<1% of total volume). The periodicity of the wave motion in space and time, which is

imposed by the constant agitation frequency, was exploited to retrieve the water height, along the

container periphery using the high speed movies. A column of pixels was extracted from each frame

and processed to estimate the water height at a fixed location of the container wall by exploiting the

strong contrast between the illuminated liquid and the dark background. Setting side by side those

columns of pixels gives a snapshot of the wave pattern along the wall, which also represents the time

variation of the water height at a fixed angular position (Fig. 2(a)). The frame rate and the column

width (in pixels) were adjusted so that the reconstructed images have a total width of 1000 pixels for

each vessel revolution. The measurements were phase averaged over 3 rotations. Since the control

and data acquisition were made fully automatic, we could measure the wave height for over 6000

operating configurations, with D = 144 and 287 mm, ds ranging from 2 to 65 mm, H0 between 45

and 150 mm and shaking frequencies increasing stepwise from 20 to 200 rpm.

In the second experiment, we have measured the velocity field in the liquid phase with the

help of Stereoscopic Particle Image Velocimetry (SPIV) for a subset of operating conditions

(Fig. 2(b)). The setup is composed of a couple of Dantec FlowSense EO 4M cameras (resolu-

tion 2048 × 2048 pixels, 8 bits) and a Litron Dual Power 200-15 laser (pulse energy 2 × 200 mJ,

wavelength 532 nm). The cameras and the mirror were mounted on the shaken table, while the laser

source and the optics used to obtain the light sheet were kept still. The cameras were equipped with

0°

π/2π

3π/2

0 π/23π/2π

α

δ(α,θ)

θ

(a) (b)

Cylindrical lens

Left Camera

Measurement 
region

Mirror

Shaking Table

Laser beam

Right Camera

Photron SA 1.1
High Speed Camera

LED Spotlight

FIG. 2. (a) Procedure used to measure the surface displacement at the wall (δ(α)) and to retrieve a single image of the wave

from a series of frames taken from a fixed location by the high speed camera. (b) Stereo PIV setup. The cameras have been

equipped with Scheimpflug mounts not depicted here.
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the so-called Scheimpflug mounts (not depicted in the figure) to align the focal plane with the laser

plane. The deformation of the image due to the presence of a non-planar wall was mitigated using a

PMMA (Polymethyl-Methacrylate) container with square external and cylindrical internal walls. To

avoid the effects of light scattering by bubbles, free surface, and walls, the tracking polyamide parti-

cles (polyamide particles, 5–35μm diameter, density 1.03 kg/m3) have been coated with a fluorescent

dye (Rhodamine B), which emits orange light at 620 nm when excited at 540 nm.34 The cameras

were equipped with long pass filters, which cut wavelengths shorter than 570 nm. As predicted by

the potential model, and suggested by visual observations of the wave, the velocity field is constant

in a reference frame rotating at the shaking frequency. Therefore, the measurements were performed

on a vertical plane whose position is fixed with respect to the container. Measurements taken at

different time steps within the shaking cycle give the velocity field of the entire liquid volume.

IV. RESULTS

The observation of the free surface shapes for a large number of shaking configurations reveals a

remarkable richness of wave patterns. Although single crested waves, with one crest and one trough

(Fig. 3(a)) are the most common, more complex shapes featuring multiple crests and troughs are also

observed: double (Fig. 3(b)), triple (Fig. 3(c)), and quadruple crest waves (Fig. 3(d)). Under specific

conditions, the wave may “dry” a portion of the vessel bottom (Fig. 3(e)) or break (Fig. 3(f)).

Figure 4 shows the dimensionless crest-to-trough amplitude of waves measured at the wall

( Ãδ ≡ max(δ̃(θ, t)) − min(δ̃(θ, t)), where δ̃(θ, t) = δ(θ, t)/D) as a function of the shaking frequency

� normalized by the first natural frequency ω11, for five values of the shaking diameter d̃s . The

measurements are compared to the amplitudes predicted by the linear solution of the potential model,

which are computed according to Eq. (5) and depicted as a solid line for each shaking diameter in

Fig. 4. The color of the marker distinguishes between the single crested breaking waves (black),

the waves showing multiple crests (red), multiple crested breaking (blue), and the single crested

breaking/splashing (green).

Despite the strong hypothesis leading to the linear solution of the potential model, we observe

that the experiments and the model agree remarkably well as long as the wave remains single crested

and does not break. For example, the multiple crested waves appearing at �/ω11
∼= 0.5 display

amplitudes larger than predicted, but the agreement with the potential prediction is resumed as the

shaking frequency is increased and the wave returns to single crested shape.

0 2π 2π0 Ωt

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Wave patterns reconstructed from high speed movies, depicting two revolutions of the vessel. All waves are travelling

from right to left. (a) Single crested wave, the most usually observed. (b) Double crested wave. (c) Triple crested wave.

(d) Quadruple crested wave. (e) Wave drying a portion of the vessel bottom. (f) Breaking single crested wave.
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FIG. 4. Measured crest-to-trough amplitudes for H̃0 = 0.52 and five values of d̃s , as a function of the shaking frequency

� normalized by the first natural frequency ω11. The kind of wave is indicated by the color of the marker. The prediction

of the linear solution of the potential model are depicted as solid lines, while the limiting amplitude at which waves break

(Eq. (11)) is depicted as a dashed line.

Multiple crested waves are observed at fractions of the natural frequencies, and are therefore

likely to be the sub-harmonic waves of the natural modes. For example, the nonlinear solution of

the potential model (Eq. (7)) predicts an increase of the amplitude at a shaking frequency equivalent

to half of the secondary natural frequency ω21 (see Eq. (8c)), leading to a double crested wave.

To determine the modes and sub-harmonics contributing to the multiple crests occurrence we have

decomposed the waves height measured at the wall δ(θ , t) into a single crested part ξ 1n(D/2, θ , t),

according to the linear prediction (i.e., Eq. (5)), and a secondary contribution: δsh(θ , t), fitted (in the

least squares sense) with the following generic wave expression:

δsh(θ, t) =
Ash,p

2
cos

(

p(�t − θ ) + φsh,p

)

, (10)

where p is an integer, the number of crests, and troughs of the wave. The fitting determines the

value of p best approximating the experimental data (smallest value of fitting residuals), and the

corresponding amplitude Ash,p and phase shift φsh,p. The results for the amplitude are depicted in

Fig. 5(a), where the shaking frequencies corresponding to fractions of the natural modes are high-

lighted. We notice that not only the sub-harmonic of the mode (2, 1) is excited, but also those of the

dominant mode (1, 1) and, to a less extent, those of the (1, 2) mode. In several cases, subharmonics

of two or more natural frequencies are close to each another (e.g., ω11/3 ∼= ω21/4). We notice that the

amplitude of the lowest natural frequency is dominant: at � ∼= ω11/3 ∼= ω21/4 the best fitting value

of p is 3, and the wave is triple crested. Both sub-harmonics are nevertheless excited, although the

(2, 1) with lower amplitude. We notice in Fig. 5(b) that the phase shift φsh,p is subject to a change by

π as the shaking frequency crosses one of the sub-harmonics frequencies, as expected in resonant

systems. On the other hand, the phase of primary waves is not affected. The non-linear solutions of

the potential model predicts therefore only one between several surface perturbation: the one having

the largest amplitudes.

The measured occurrence of sub-harmonic waves is compared to the predictions of the non-

linear model in Figures 5(c)–5(j), for the first sub-harmonics of the (2, 1) mode, Eq. (7). We observe

that at low shaking diameters the nonlinear model correctly predicts the amplitude of the sub-

harmonic wave at shaking frequencies below and above ω21/2. On the other hand, as d̃s is increased

and � > ω21/2, the wave displays a persistence of double crested shape, the sub-harmonic do not

shift its phase as predicted by the potential model (Fig. 5(j)). The validity of the nonlinear prediction

is therefore limited by the shaking diameter.

The resolution of the gravity waves equations at orders higher than the first one demonstrates

the existence of a limiting steepness, beyond which no gravity wave can exist, thus introducing a

threshold for the wave breaking.35, 36 As research on wave breaking progressed, it was found that
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FIG. 5. (a) Amplitude Ash,p and (b) phase shift φsh,p of the sub-harmonics contribution δsh(θ , t) according to the best fitting

value of p (see Eq. (10)) normalized by the amplitude of the wave predicted by the linear solution of the potential model, as

a function of the shaking frequency (scaled by the natural modes ω11 below the graph, by the modes ω21 and ω12 above).

H̃0 = 0.52, d̃s = 0.01 to 0.4 in steps of 0.01. (c)–(f) Comparison between the dimensionless wave height measured at the

wall δ̃(θ ) (depicted as black dots, while the standard deviation is shown as the gray surface) and the linear (dashed line) and

nonlinear (solid line) solution of the potential model, H̃0 = 0.52, d̃s = 0.1. (g)–(j) Same as (c)–(f), with H̃0 = 0.52, d̃s= 0.2.

Note that in (i) the nonlinear prediction has a very large amplitude, therefore only four nearly vertical lines are visible.

several instabilities are liable to develop before this limit is reached.37 For gravity waves, the limiting

steepness is H/λ ∼= 0.1412, where H is the crest-to-trough amplitude and λ is the wavelength.38 In

the specific case of orbital shaken containers, H = max (δ) − min (δ) and λ = πD, therefore the

threshold amplitude is as follows:

max(δ̃) − min(δ̃) ∼= 0.443. (11)

This is the upper limit at which waves should break, and it is depicted as a dashed line in Fig. 4. We

also observe in Fig. 4 a change of the wave behavior when the wave breaks, at amplitudes between

0.35 and 0.45. Both single and multiple crested breaking waves were observed. If the double crested

waves generated at � = ω21/2 persists long enough as � is increased, the wave breaks as double

crested. According to our investigation, the discriminant shaking diameter above which waves breaks

as double crested may be empirically determined as

d̃s,ω21/2 = 0.1349 · tanh2(2.5H̃0). (12)

Moreover, we have observed that multiple crested waves break at lower amplitudes compared to

single crested ones. Indeed, the slope at the front crest of double crested waves is steeper than the

one of single crested waves having similar crest-to-through amplitude. The wave breaking is initially

visible only at the wave crest, in the form of a splash of water at the wall (Fig. 6). In multiple crested

waves the breaking appears at the steepest crest, usually the front one (Fig. 6(b)). The breaking then
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FIG. 6. Reconstructed snapshots of waves from shaking frequencies slightly below the breaking inception of breaking to

larger shaking frequencies; H̃0 = 0.52. (a) d̃s = 0.04, (b) d̃s = 0.2.

becomes more generalized, and we observe spilling breakers, with entrainment of air bubbles into

the liquid. As � is further increased the “white water” at the crest spreads down over the front slope

and the wave loses its symmetry. The breaking starts at the wall, where the wave is steeper, and

propagates to a limited extent (usually less than one third of the radius) toward the inner part of the

container.

As the shaking frequency is increased above the breaking inception, the liquid motion becomes

more similar to a jet impinging at the wall than a wave. The liquid is mostly at the wall, and the free

surface near the container axis is depressed. Moreover, the sub-harmonic wave giving the double

crests gradually disappears, and completely vanishes before reaching ω11. As the shaking frequency

increases, the morphology of single and multiple crested waves becomes similar notwithstanding

the number of crests at the breaking inception, and the amplitude increases almost linearly with the

shaking frequency (as we observe in Fig. 4).

Concerning the liquid flow, the PIV measurements confirm the agreement between the observed

flow behavior and the potential prediction of non-breaking waves, while large discrepancies are

observed as the wave approaches the breaking inception. The motion of the liquid is best highlighted

by computing the Lagrangian trajectories followed by liquid particles released into the flow at the

initial location x0 = (r0, θ0, z0). The positions are calculated iteratively at each successive time t as

follows:

r (t + dt) = r (t) + vr

(

r (t), θ (t), z(t), t
)

· dt,

θ (t + dt) = θ (t) +
1

r (t)
vθ

(

r (t), θ (t), z(t), t
)

· dt, (13)

z(t + dt) = z(t) + vz

(

r (t), θ (t), z(t), t
)

· dt,

where dt is the time interval, whose value (1/600 of the shaking period) is small enough not to

influence the result. The values of vr , vθ , and vz are estimated at each time step by linear interpolation

of the velocity fields measured by PIV. The path of several liquid particles are depicted in Fig. 7(a)
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FIG. 7. Lagrangian trajectories of liquid particles reconstructed from PIV measurements, for H̃0 = 0.5, d̃s = 0.1 (a)–(c) and

0.2 (d)–(f), at � = 0.59ω11, � = 0.83ω11, and � = 1.1ω11. An X marks the locations where particles exit the measurements

domain. The wave shapes at the wall are also depicted. (a) d̃s = 0.1, starting points z0/H0 = 0.5, r0/D = 1/15, 1/5, 1/3, and

7/15. (b) d̃s = 0.1, starting points z0/H0 = 2/15, 2/5, and 2/3, r0/D = 1/3. (c) d̃s = 0.1, z0/H0 = 2/15, 2/5, and 2/3, r0/D

= 7/15. (d) d̃s = 0.2, z0/H0 = 0.5, r0/D = 1/15, 1/5, 1/3, and 7/15. (e) d̃s = 0.2, z0/H0 = 2/15, 2/5, and 2/3, r0/D = 1/3. (f) d̃s

= 0.2, z0/H0 = 2/15, 2/5, and 2/3, r0/D = 7/15. (g) Average tangential velocity v̄θ normalized by the synchronous rotation

velocity � · r, for d̃s = 0.1 (on the left) and d̃s = 0.2 (on the right), the shaking frequencies are given.

for d̃s = 0.1 and in Fig. 7(d) for d̃s = 0.2, for three shaking frequencies each. The wave patterns

corresponding to the operating configurations for which the trajectories are computed are also shown.

At small shaking frequency (� = 0.59ω11) the liquid particles follow trochoidal paths, while

the amplitude of their motion depends on the shaking diameter d̃s and decreases with the depth,

as predicted. However, the trajectories reveal discrepancies between these potential predictions

and the measurements as the shaking frequency � is increased: the liquid rotates in the direction of

propagation of the wave. This transition is comparable to the one observed in linear forced sloshing.28

Since the liquid is advected by the rotation, it remains in regions of overall upward or downward

motion, hence giving the large vertical displacements depicted in Figs. 7(b), 7(c), 7(e), and 7(f). On

the other hand, the radial motion gradually disappears.

The evolution of the rotation motion is highlighted by averaging the tangential velocity over

one revolution:

v̄θ (r, z) =
1

2π

∫ 2π

0

vθ (r, θ, z) dθ. (14)

Only the regions having a valid measurement over a complete revolution are taken into account

to compute the average: i.e., all the portions of the velocity fields that are not in the liquid phase

for a part of the vessel motion do not contribute to the computation of the average. The average
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velocity is normalized by the wave propagation celerity at each radius: r�, and represent therefore

the fraction of synchronous rotation. The results are shown in Fig. 7, for wave breaking as single (d̃s

= 0.1) and double crested (d̃s = 0.2). The maximum observed rotation takes place in single crested

waves slightly before the breaking inception (d̃s = 0.1, � = 0.83ω11), from the container revolution

axis to a distance of the order of the shaking diameter d̃s , whereas it diminishes approaching the

external wall. The rotation is less pronounced in multiple crested waves, and the maximum is

not observed at the breaking inception (� = 0.692ω11) but close to the first natural frequency.

Therefore, as the shaking frequency is increased after the breaking inception, a different flow regime

becomes dominant, where the inner portion of the liquid rotates rapidly around the vessel axis, the

vertical motion remains significant and the radial motion has completely disappeared (as suggested

by the trajectories shown in Figs. 7(a) and 7(d)). This transition is quite abrupt at the breaking of

single crested waves, while it is more gradual for breaking of multiple crested ones, as the wave

shape evolves from breaking double to breaking single (see also Fig. 6(b)). It is interesting to notice

that the maximum flow velocity at the container wall is 40%–50% of the propagation velocity of

the wave, while other experiments reported 10% for swirling waves in linear forcing31 and 25% in

orbital shaking.32

Finally, we observe that the transition to the rotational regime is not univoque as the shaking

frequency is increased: we have observed that for d̃s≤ 0.02 the persistent high amplitude wave and

rotating flow disappear before reaching the second natural frequency, as observed in Fig. 4 for d̃s

= 0.02. This transition is subject to hysteresis: depending on the increase or decrease of the shaking

frequency we may observe it at different values, as reported for sloshing due to linear forcing.31

V. CONCLUSIONS

We have investigated the motion of free surface liquids within orbital shaken container with the

help of a potential model, wave height, and velocity measurements, for a wide range of operating

parameters. A large variety of wave patterns were identified, ranging from single and multiple crested

waves to spilling breaking waves and liquid impinging at the wall. The potential theory correctly

predicts the velocity fields and the free surface deformations for single and for specific multiple

crested non-breaking waves. We have demonstrated that the occurrence of multiple crested waves

is due to the excitation of sub-harmonics of particular modes. On the other hand, a generalized

swirling motion of the liquid bulk is observed at the inception of the breaking, with the entire liquid

rotating in the direction of propagation of the wave. While we may observe single or multiple crested

waves breaking depending on the value of the shaking diameter, the maximum rotation is noticed for

single crested waves at shaking frequencies slightly below the breaking inception. Since the regimes

that we have illustrated affect the mixing and the oxygenation of the liquid, our research lays the

foundations for the optimization of orbital shaking for different applications.
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