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Abstract. The phenomenological theory of multi-mode surface wave propagation
is applied to a plane structure having a multi-mode discontinuity in impedance. The
resulting boundary-value problem is reduced to the solution of a Wiener-Hopf equation
whose factorization is given in terms of the factorization that occurred in the one-mode
case. Despite the complexity of the solution, the magnitudes of the surface wave excita-
tion coefficients are elementary functions, as is the cylindrical power flow.

On computing the power flow through the impedance surface, a definition of sub-
surface power flow "inside" the structure is suggested. The form can be taken so that
the concept of modal power flow separability is maintained wherever the associated
exterior field is primarily that of surface waves. It is further observed that without
consideration of this term, power flow coupling occurs. Analogous results appear in the
exact case of a dielectric slab having multiple simultaneously propagating surface
wave modes.

Lastly, conservation of power is verified by actual evaluation of the closed contour
integral used to define the various components of power flow (surface wave, cylindrical,
junction, and boundary). In fact, the following physical interpretation can be made for
the magnitudes of the respective power flow distributions: the incident surface wave
power (including the associated subsurface power) is equal to the excited surface wave
power (including the associated subsurface power) plus the cylindrically radiating power.

Introduction. Most exact problems of electromagnetic wave propagation are
intractable. As a result, numerous approximate methods have been devised to discuss
various aspects of the phenomena. In certain problems involving surface waves, it is
known that this feature may be investigated by replacing the details of the structure with
an impedance boundary condition.

The class of problems to which we direct ourselves is characterized by discontinuous
plane structures (infinite in extent) having the capability of supporting several surface
wave modes. The orientation and geometry are such that the electromagnetic field
produced is determined by solving a two-dimensional problem and all field components
are derivable from a single unknown scalar wave function u(x, y).

The plane structure will be replaced by the boundary conditions put forth by Karp
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and Karal [1], [2], These conditions have the form of generalizing the classical impedance
condition to products of this type. Furthermore, they are derivable by approximating
the reflection coefficient due to a plane incident wave (which may be known theoretically
or experimentally). Previously, these conditions were applied to continuous structures
in the papers [2], [3] and [4]. A discontinuity in the boundary condition for a two-mode
problem on a right-angled wedge was treated in [5]. This paper will be directed toward
solving the resulting mathematical problem of a two-mode discontinuity on a plane
structure. A similar single-mode discontinuity problem was discussed by Kay [6]. It is
interesting that despite the complexity of the solution, the physically important magni-
tude of the surface wave excitation coefficients is easily obtained (Kay observed this
in the single-mode case). We take as our incident field an appropriate surface wave,
and for simplicity, one half of the structure is allowed to be slightly thick (see [4]) while
the other half is perfectly conducting.

The various components of the power flow above the structure are computable by
choosing an appropriate contour in physical space. In particular, on computing the power
flow through the impedance surface, we are led to a definition of power flow inside and
down the structure. The form is such that the concept of modal power flow separability is
maintained wherever the associated exterior field is primarily that of surface waves.
It is well known that, in the exactly solvable case of an infinite dielectric slab having
simultaneously several propagating surface wave modes, surface wave modal power
flow separability results if the power flow across a plane perpendicular to the slab is
computed by including the associated power flow inside. Otherwise, there is in general
a coupling of power when it is computed only above the slab. This phenomenon is
observed also in our impedance model. For the case of the single real impedance, a con-
sideration of this type does not occur because power is not transferred across the imped-
ance surface and the model is one for which the power flowing inside the structure is
negligible. In the case of the dielectric slab mentioned above, this corresponds to a slab
of vanishing thickness. However, for a slab of finite thickness, the power flow inside
may be significant. Thus, by our model, we provide an approximation that accounts for
such power flow while the structure is also discontinuous. The exact problem of such a
discontinuous structure has not been solved. However, we point out that the phenomeno-
logical theory is broader in context than the problem of the dielectric slab. Thus, we
conjecture that our results herein are also.

As a partial verification of our computations, conservation of power is checked for
the contour used to define the various component field power distributions (i.e., surface
wave, cylindrical and boundary). It is shown that the surface wave power (including
that amount associated with flow inside the boundary) exactly cancels out the cylindri-
cally radiated flow. The remaining boundary terms give zero power flow. As a result,
we can state the following physical theorem for the magnitudes of the power flow distri-
butions: the incident surface wave power flow (including "inside" term) is equal to the
excited surface wave power flow (including "inside" term) plus the cylindrically radiated
power flow.

The boundary-value problem formulation is modeled after that used previously in
proving uniqueness for a multi-mode right-angled wedge problem [11]. In addition, the
junction condition assumed arises naturally upon reducing the problem to the solution
of a Wiener-Hopf equation. Here the factorization is given in terms of the factorization
that occurred in the one-mode case.
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1. B.V.P. formulation and solution. The problem (see Fig. 1) we shall solve is
posed by the following conditions:

(i) (A + k)u{x, y) = 0, all x, y > 0
(ii) (d/dy + Xi)(d/dy + X2)w = 0, x < 0, y = 0,

where Xi , X2 are taken as real positive constants.
(iii) u = 0, x > 0, y = 0.
(iv) u and its derivatives satisfy

d'u(a) X) Z dx' ' dy'
< M for r > R0 ,

where M is independent of r and 8 and R0 is some positive constant,
(b) d2u/dy2 is integrable at the origin.

(v) 11 ^incident *~i~ Wexcjted ~i~ Wradiftted

winc. = A exp I — \^y + i(k2 + X?)1/2a:], x < 0, y > 0,

= 0 , x > 0, y > 0,
and

2

w«=ited = X) Cm exp [-X„2/ - i{k2 + X2)1/2z], x < 0, y > 0,
m -1

= 0 , x > 0, y > 0.

Here A represents the given incident surface wave amplitude and the C„ are
constants that must be determined.

(vi) wauled = u — wiD0. — uCTc,ted obeys the radiation condition

lim \/r (dWrad.M" — ikurlli) = 0
r—*co

uniformly in 6, 0 < 6 < tr.
Following a method employed by Kane and Karp [7] and Kane [8], the solution is

reduced to solving a Wiener-Hopf problem. The critical factorization required is that
of the function

x, , x.) - f[ [l + ^ i->y,] (l.l)

Fig. 1.
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into the quotient

a*(v) X, , \2)/o~(v, Xi , X2) (1.2)

where cr+(c; X, , X2) and <r~(v; X, , X2) are respectively analytic in the region Im v > —
Im k and Im v < + Im k. In principle, the factorization can be done. However, the
resulting expressions are exceedingly complicated. Fortunately, the factorization of

a(v; X) = [l + — (1-3)

has been given by a number of writers including Fock [9], Bazer and Karp [10] and Kay
[6]. Thus, the required factorization may be written in terms of products of the above
factors.

The solution is given in the following form:

u(x, y) = A exp [ —X,j/ + iQc + \2)1/2a:]

+ iA({k* +2XJ)1/2 * k) *\(k2 + x;)1/2, x1)a,+((fc2 + x?)"2, X2)

exp [ivx + i{k2 — i'2)I/2y]

(, - (/c2- x:)172)

(v — lc) dp
(•i(k2 — v2)1/2 + Xj)(z(/c2 — v2)1/2 + X2)<t (y, X])tT (v, X2) '

dv

x < 0

(f + k)<r+(y, Xi)a+(v, X2)
re > 0

(1.4)

The decomposition for x > 0 and x < 0 is strictly for convenience, while the functions
u (v, X) and a~(y, X) are the factors of (1.3), i.e.

o(v, X) = <T+(v, \)/o~(v, X), (1.5)1

where X) is analytic in the upper v-plane Im v > — Im k and a~(v, X) is analytic
for Imp< Im lc. Furthermore, in their respective domains of analyticity, they have been
shown to be zeroless and bounded above and below by positive constants for |^| —> <=o.
We follow the procedure of [10] with regard to the branch cut necessary in the definition
of (fc2 — x2)1/2 to ensure convergence of the integral. Furthermore, we observe that (1.4)
may be differentiated freely under the integral providing y > 0. To guarantee conver-
gence in computing {d2u/drf)\v,a , we deform the contour at =t slightly so that the
term exp ivx is exponentially damped. This will cause slight variations in the solution
representation for x > 0 and x < 0 in the case of d2u/dy2.

The actual solution technique employed the mathematical convenience of Im k > 0.
Consequently, we must now pass to the limit of Im k = 0. We observe that in this limit
u is continuous at the origin and that uz and u„ are bounded. This latter fact follows
after obtaining asymptotic expansions for the Weiner-Hopf factors appearing in the
integrand of the solution representation. The forms are easily found using the exact
expressions given in Kay's paper.

1 This is the factorization that appears in the single impedance case (see Kay [6]).
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Finally, we note that the incident field is exactly cancelled out by the residue at
v = (/c2 + X2)I/2 when x is positive, in fulfillment of condition (v).

2. Discussion of the solution. In the present section we discuss the solution given
in Eq. (1.4). It has certain notable features, namely surface wave terms and a cylindrical
far field, which will be discussed separately below.

Surface wave modes A. We note that for x < 0 the poles of the integrand determine
the excited surface wave contributions and occur at v = — (k2 + X2)1/2, j = 1, 2.3 Thus,
writing the excited modes as

c, exp [—Xiy — i(k2 + X?)1/2x] + c2 exp [—X2i/ — i{k2 + X2)1/2x], (2.1)

we find that

, A\i(k + (k2 + X?)1/2)2 A q*((/c2 + X?)1/2, X,)
Cl " 2(X2 - \)(k2 + X2) M «7"(-(fc2 + X?)1/2, X{) ( J

and

, AX2(fc + (k2 + X2)1/2)(fe + (fc2 + X2)1/2) fj g+((k2 + X2)1/2, X.) , '
" (x, - X2)(fc2 + x2)1/2((fc2 + X2)1/2 + (Jc2 + X22)i/2) M a~(-(k2 + X2)1/2, X,.)'

Then, using the formulas given by Kay [6]3, we obtain |ci|2 and |c2|2 in the following
elementary forms:

, m2 x?((fc2 + x?)i/2 + (fc2 + x2)i/2)2
1 l! (Xx - X2)2(/c2 + X2) ' {2A)

2 _ 4ni2x2(fc2 + x?r
1 2' _ (x, - X2)2(fc2 + X2)1/2 { )

Cylindrical far field B. In the usual way, we make the assumption that uc„i
(e+,ir/(/cr)I/2)/(0) and apply the method of steepest descent to obtain

Ml«\* U\' (k2 + Xi)1/2((fc2 + X2)'/2 + (fc2 + Xp1/2)fc2sin2 6
imi - r(k cos e - (ft2 + \iy/2)\k cos e + (k2 + X2)1/2)(fc cos e + (k2 + x2)1/2)

uniformly in 0,0 < 0 < tt. We observe that (2.6) vanishes for 0 = 0 and ir. For the latter
angle, this represents an example of the lemma, that the radiated far field vanishes to
order (kr)~1/2 on the impedance surface that supports surface waves (see [12]).

3. Power distributions. Aside from a proportionality factor, the real time-average
power flow per unit width in the z-direction provided by the various components of the
field is identifiable by considering the line integral

-Im j>u^ds (3.1)*

a These modes will appear respectively for > 6 > 6c(\j), j = 1, 2. Here 0C(X,-) is defined by 8e =
arc cos(—k/{ki + X*)1'1). A more complete discussion of this property is found in [3].

' In effect, we apply the observation of J. Lurye that by considering the physically more important
magnitudes of Ci and Cj a great simplification results. This was done by Kay to give
|r+((fc2 + x?)1", Xy)l» = l/k-(-(fc» + Xj)>«, X,)I* = ((*» + Xj)»« + (*» + X?)>«)/(fc + (fc» + X?)»«).

4 Here the normal is taken as positive into the enclosed region. It then follows that the power
flow is positive for flow into this region.
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around an appropriate contour. The contour chosen is depicted in Fig. 2. There we take
0(22) suck that as 22 —> <», 22 sin 0(22) —> °° while 0(22) —> 0. Also, we assume that cp —> 0.
Consequently, zero power flow occurs at the junction through this contour because of
the boundedness of u and its first derivatives.

Cylindrical power flow A. The cylindrical radiated power is defined to be

f /•*-»<*> T7. \
+ ImSlim / u 75 Rddf- (3.2)

v22-«co J o fJli J

As m ~ (e+'kr/(kr)U2)j(0), 0 < 0 < x, we have the usual form

-fT\M\2de. (3.3)
Jo

Thus it is necessary to evaluate the integral

t _ f  sin 6 dd 
Jo ((k2 + xj)1/2 + k cos 6)((k2 + \IY/2 + k cos 0)(fc cos 0 - (k2 + X;)'/2)2 { )

This can be done in standard fashion by introducing the transformation z = exp (id)
and using the evenness of the integrand about 0 = x to give

,.r   (3.5)
II ('' + 2(1 + + W ~ 2(1 + + 1)*
J-l

We note that there are two simple poles inside the unit circle at

z = -(1 + (\Jk)Y2 + X,/i (3.6)

-0

and

2 = -(1 + (X2//c)2)"2 + \,/k, (3.7)



SURFACE WAVE INCIDENCE ON A PLANE STRUCTURE 305'

while a double pole occurs at

z = (1 + (Xx/7c)2)1/2 - \i/k. (3.8)

Consequently, on applying residue theory, we obtain

lo i/(e)|2 d6 = [i Xo(l + xl)1'2 + Z„(l + xT2 + X,(l + xl)1'*] |A,a' (3-9)

where x0 = Xx/fc and xx = \2/k.
Modal surface wave power flow B. The exact case of multi-mode surface wave pro-

pagation over a grounded dielectric slab will be used to suggest the form of our definition
MSWPF. Here it is known that the power flow across a plane perpendicular to the slab
may be computed as the sum of the power flows due separately to each mode, providing
that the integrations are carried out above and below the slab (otherwise a coupling
effect results) (see Fig. 3). In this regard, it is easily observed that the corresponding
phenomenological model of two-mode surface wave propagation over the above exact
structure exhibits analogous properties. Since our problem is essentially an exterior one,
the question arises as to the definition of the power flow so that analogy with such modal
power flow separability results. Physically speaking, what can we use to play the part
of the flow inside the slab? Specifically, let us consider such a two-mode problem. Then,
for this infinite continuous structure, the solution is given by

u(x, y) = A, exp [—\y + i(k2 + + A2 exp [—X2?/ + i(k2 + X2)I/2x], (3.10)

where Ax and A2 are given. Here no other fields are excited and the incident fields simply
propagate down the structure. Now the power across a plane perpendicular to the
impedance plane is given by

T f° du , | , 12 (k2 + Xi)I/2 . | , |2 (k2 + Xa)I/2ImLu3id!>- |A'! —al—+ |x>l ——

+ WL ± W" + f + x')'"> Re i A, A, exp + + a5"' - ft' +
(l + X2) (3.11)

Thus it is easily observed that a coupling of power flow occurs between the modes as,
in general, the bracketed term does not vanish. Also, it is easily shown that the integration
giving the power flow across any two-mode impedance surface between the arbitrary
points (x0 , 0) and (x: , 0) simplifies to

~im Lu § Ldx=+im {u(x°'o) S (x° -o) ■u(xi'o) i(xi'o)}-

(3.12)
Thus, if one extends the vertical contours through the impedance surface into a virtual
structure at x = xa and x = xt (see Fig. 4), conservation of power suggests that inside
the structure the power flow across x = x0{P-(x„)) and x = «1(P_(a;l)) respectively
satisfies the following condition:

P-(x0) = P-fa) — Ira f u ~-J i. oy
dx. (3.13)

v-o

(This equation also holds in the case of a slab.) Substituting (3.12) into (3.13), we have
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Fig. 4. The vertical contours used in the calculation of the surface wave power flow above the impedance
structure are extended "beneath" the impedance surface at (x0, 0) and (xi, 0). Then conservation
of power about the contour depicted by the arrows within this virtual structure is used to suggest a

form of the power flow (P~(x)) through the extended portion of the contour.

the following difference equation:

"Imsr+fjI<*• ■0) -p-m ~ fx•°>- (3-u>
This has for its solution

(3-15)

C a constant. That is, the power flow across this extension of the vertical contour for any
value of a; is given by

p-(l)-+Im(?+wl(l'0) + c- (3J6)
We observe that the first part of this expression, in addition to contributing to the

power flow calculation, serves to remove the coupling term when the total power flow
across the entire extended contour is considered to be

— Im f u ~ ds = Im f dy + P-(x)•> dn J+a> dx

-Im{/,°.»£■"y + j^+)bs<*• °>} +c- <317>
For convenience, we will let this extended power flow be denoted by PB[u; «]. (We will
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sometimes write this as PE(u), suppressing the x-dependence.) It will be shown that
modal power flow separability will result only if we take C to be zero.

Let us first observe that the boundary condition (ii) permits propagation of four
different surface wave modes. For reference, we label them as follows:

ui± = A1'' exp [—X,y ± i(k2 + X*)1/2x], j = 1, 2. (3.18)

In addition, the power flow calculations will be simplified by defining the following form:

(„, v) - Im {/t_ w | dy + | (*, 0)} (3.19)

and observing that certain identities hold. Specifically, they are

(u,± , ui±) = 0, j± ^ h
(iij+ , UjJ) -f* (w,-_ , w,+) = 0 ^2 20)

(«,* , «lt) = |Ai'T (ic + X2,-r - X,±

for j — 1,2 and I = 1, 2. With these preliminaries, we will now compute the power flow
of a field consisting only of modes of the type given in (3.18). Such a field is valid every-
where over a uniform two-mode structure. However, for the discontinuous problem of
this paper, this field would hold only near the impedance plane at infinity. Thus, on setting

u = Ui+ + Mi_ + «2+ + m2- (3.21)

and applying (3.20), we find that

Pe[u] = (u1+ , Ui+) + (u\~ , zii-) + (u2+ , u2+) + (w2- , «2-) + C. (3.22)

On the other hand, the modal power flow for each mode is given by

Pjf(wmode) (Wmode 1 ^mode) (3.23)

We now apply modal power flow separability. By definition it holds if and only if

Pe(u 1+ + Ml- + W2+ + W2_) = Ps(Ui +) + Pe(,Ui-) + Pe(u 2+) + P*M.
(3.24)

Thus, with (3.23) and (3.24) in mind, we are led to the conclusion that

C = 4C (3.25)

or C vanishes. Furthermore, as (3.16) holds for all x < 0, we are now able to represent
the power flow everywhere within the multiple-impedance section of the discontinuous
structure by the formula

(3'26)

The reader is referred to [13] for another application of this point.
Allowing R —» oo in the contour integration results in the following modal surface
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wave power flows:

incident power flow:

w + x;»"" <3-27>

excited power flow:

~t |Cm|2 (2^ - ^r^)(&2 + m - 1,2 (3.28)

where |Cm|2 are given by (2.4) and (2.5). Note that the term involving Xt + X2 represents
a modification of the usual power flow formula for the incident and excited surface wave
power terms. Also, we remark that it is easily observed that the total surface wave power
is identical with (3.9). This latter fact will be exploited in the following section.

Power balance C. Conservation of power requires the integral given in (3.1) to be
zero when evaluated around the closed contour of Fig. 2. As a partial check on our com-
putations, this integral can be evaluated using the results previously stated for the surface
wave and cylindrical radiated power under the special case of R —» 0°, 0(R) —* 0,
R sin 6(R) —> co, and p —> 0. Here the vertical integration contributes to the surface
wave power and the integration over the circular contour R = (x2 + y2)W2 becomes
the radiated power. It was previously stated (in effect) that these two terms are absolutely
equal but opposite in sign. On the other hand, the contribution due to C„ is zero (as p —> 0)
because of the boundedness of u and du/dp. Thus the only term that remains as a possible
contributor is that of the boundary term limp_0 Im [(1/(Xx + X2))w(—p, 0)(du/dx) ( —p, 0).
However, it easily follows from the boundedness of du/dx and the continuity of u that
this term is identically zero. Thus, our results satisfy conservation of power. Furthermore,
we can interpret these results to imply the following physical theorem: the incident
surface wave power (including incident subsurface power flow) is equal to the excited
surface wave power (including excited subsurface power flow) plus the cylindrical radiated
power.

Conclusion. In this paper, we used a multiple impedance boundary condition to
represent multi-mode surface wave diffraction by a discontinuous plane structure that
is not amenable to an exact solution. Despite the complexity of our solution, which was
obtained by a dual integral equation technique, we are able to determine the physically
meaningful power flows as elementary functions of the impedance parameters.

A new feature of tliis paper is that it is shown how such multiple real impedance
conditions may be used to model the power flow carried inside the structure itself. For
problems modelled by the usual impedance condition, one never encounters this power
flow because such problems usually represent zero power flow inside. However, it is
well known that there are actual structures that exhibit substantial subsurface or internal
power flows. In fact, the property of maintaining modal power flow separability for
such exact structures requires that this power flow be taken into account. Interestingly,
this same phenomenon was observed in this paper for the multiple impedance presented
herein.

As a check on our various determinations of the power flow distributions, we verified
that conservation of power holds around an appropriate contour. Additionally, this
led us to state the following physical theorem for the magnitudes of the respective power
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flow distributions: incident surface wave power (including the associated subsurface
power) equals the excited surface wave power (including the associated subsurface power)
plus the cylindrically radiated power.

References

[1] S. N. Karp and F. C. Karal, Phenonenological theory of muliti-mode surface wave structures, in
Quasi-optics symposium, Brooklyn Polytechnic Institute, John Wiley, New York, 1964.

[2] F. C. Karal and S. N. Karp, Phenomenological theory of multi-mode surface waves for plane structures,
Res. Rep. EM-198, Courant Institute of Mathematical Sciences, New York University, New
York, 1964; condensed version, Quart. Appl. Math. 24, 239-247 (1966)

[3] R. C. Morgan, S. N. Karp, and F. C. Karal, Solution to the phenomenological problem of a magnetic
line source above a plane structure that supports N excited modes, SIAM J. Appl. Math. IS, 1363-1377
(1967)

[4] S. N. Karp and F. C. Karal, Generalized impedance boundary conditions with applications to surface
wave structures, in Proc. URSI, Comm. VI Conference, Delft, The Netherlands, 1965.

[5] R. C. Morgan, S. N. Karp and F. C. Karal, Multi-mode surface wave diffraction by a right-angled
wedge, Quart. Appl. Math. 24, 263-266 (1966)

[6] A. F. Kay, Scattering of a surface wave by a discontinuity in reactance, IEEE Trans. Antennas
and Propagation AP-7, 22-31 (1959)

[7] J. Kane and S. N. Karp, Radio propagation past a pair of dielectric interfaces, Res. Rep. EM-154,
Courant Institute of Mathematical Sciences, New York University, New York, 1960.

[8] J. Kane, Surface waves on a reactive half plane, Res. Rep. EM-159, Courant Institute of Mathe-
matical Sciences, New York University, 1960.

[9] V. Fock, Sur cerlaines equations integrates de physique mathematique, Recueil Math. Nouvelle
T.A. 56 (1944)

[10] J. Bazer and S. N. Karp, Propagation of plane electromagnetic waves past a shoreline, J. Res. Nat.
Bur. Standards. 66D, 319-334 (1962)

[11] R. C. Morgan, Uniqueness theorem for a multi-mode surface wave diffraction problem, Quart. Appl.
Math. 26, 601-604 (1969)

[12] R. E. Collin and F. J. Zucker, Antenna theory, pt. 2, McGraw-Hill, New York, 1969, p. 304.
[13] R. C. Morgan and S. N. Karp, Multi-mode surface wave phenomena, to appear.


