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SUMMARY 

 

For testing ships and offshore structures in hydrodynamic laboratories, the sea and ocean states should be represented as 

realistic as possible in the wave tanks in which the scaled experiments are executed. To support efficient testing, 

accurate software that determines and translates the required wave maker motion into the downstream waves is very 

helpful. This paper describes an efficient hybrid spatial-spectral code that can deal with simulations above flat and 

varying bottom. The accuracy of the code will be illustrated by presenting comparisons of simulations with experimental 

data for various different type of non-breaking waves, from dispersive focussing waves to irregular wave fields with 

freak waves; the very broad-band spectra of such waves provide the main challenge.  

 

 

NOMENCLATURE 

 

[Symbol]  [Definition] [(unit)] 

η  Surface elevation ( m ) 

ω  Frequency ( rad s-1) 

Ω  Dispersion relation ( rad s-1) 

f   Frequency (s-1) 

k   wave number ( rad m-1) 

g  Gravitational acceleration ( m s-2 ) 

x  spatial coordinate ( m ) 

t  time ( s ) 

 

1. INTRODUCTION 

 

The efficiency of wave tank operations is very much 

determined by the possibility to simulate accurately 

beforehand the waves that result from a given wave 

maker motion. Or, conversely, to determine the wave 

maker motion from an inverse simulation of a desired 

wave field at a specified position in the wave tank. In this 

contribution we describe a wave model and its 

implementation that can perform the task to calculate the 

surface elevation in the tank that results when the time 

signal of the elevation is given at a specific position. 

Using a linear or nonlinear transfer method that relates 

the wave maker motion and the surface elevation at the 

wave maker position, the main aim can then be achieved. 

Characteristic for the dynamics of waves in the coastal 

area are the interplay of different physical effects, 

namely dispersion, nonlinearity and effects of 

bathymetry. For irregular, wind generated waves the 

spectra are broad; this naturally leads to high 

requirements to model the dispersion correctly over a 

large interval of wave lengths. But even for rather 

narrow-banded wave spectra, nonlinear effects can lead 

to short waves of double or triple the peak frequency that 

contribute to the wave heights of large waves. The 

calculation of long waves by nonlinear and bathymetric 

effects is important, for instance to detect waves that 

have frequencies for which ships, such as moored LNG-

carriers, are resonant (typically 50-150 seconds).  

To show the performance of the AB-wave model 

introduced by Van Groesen & Andonowati [1] and its 

implementation that will be described in Section 2, we 

will compare simulations with well recorded experiments 

performed at MARIN. In Section 3 details of the 

measurements are given. In section 4 we will compare 

simulations and measurements of four different wave 

cases. The first case is a well-designed focussing wave 

group above flat bottom, which test both the dispersive 

quality over a broad range of wave lengths, as well as 

nonlinear short wave generation in a narrow area near the 

focussing point. The second case above flat bottom is the 

well-known Draupner wave, one of very few recorded 

freak wave in natural surroundings. Two other cases 

concern waves running from deep to shallower depth via 

a straight slope; a bi-chromatic wave shows substantial 

short and long wave generation, while an irregular wave 

shows freak-like waves. In the conclusion section we 

comment on various related topics. 

 

2. WAVE MODEL AND IMPLEMENTATION 

In this section we describe the basics of the wave model 

and after that the hybrid spatial-spectral implementation. 

 

2.1 VARIATIONAL WAVE MODELLING 

 

Classical Mechanics deals with dynamical systems with a 

finite number of degrees of freedom and shows that when 

friction is absent, the equations can be formulated in 

canonical ways as a Lagrangian or Hamiltonian system. 

Characteristic is that such systems are solely determined 

by the total energy, and that such systems can be derived 

from a variational principle, the Lagrangian or action 

principle. Remarkably, the same holds true for surface 

waves on a layer of inviscid fluid, when the motion is 

restricted to irrotational flows. This basic property 

follows from Luke’s variational principle [2], and the 

Hamiltonian structure was described by Zakhorov [3]; 

see also Broer [4] and Miles [5]. It turns out that this 

fundamental property can be used in a practical way for 

the design of wave models, by approximating the total 

energy to various degrees of accuracy. This is detailed 



for uni-directional waves in the first subsection; a 

practical implementation described in the second 

subsection will respect this basic structure.  

 

2.1 (a) The AB-model for waves above flat bottom 

The Hamiltonian structure mentioned above requires to 

write the total energy as an expression in the surface 

elevation η=η(x,t) and the fluid potential at the surface. 

To approximate the kinetic energy, which is the energy 

of the internal fluid motion, it turns out to be easier to use 

the fluid potential at the still water level. Then for small 

amplitude waves in the linear theory the energy can be 

found explicitly using Airy theory. In [1], a further 

restriction to uni-directional waves was imposed by 

relating the still water level potential to the surface 

elevation in the linear approximation. The governing 

equation then becomes a first order equation in the 

elevation only, and is of the form  

(1)  ∂t η = -A δH(η) 

where ∂t η denotes the partial time derivative, and δH(η) 

is the variational derivative of the functional H. This 

functional is the approximate total energy, the 

Hamiltonian, and is given by  

(2) H(η)=1/(2) ∫[ η2+η {g(Bη)2-(Aη)2 /g}/2 ] dx 

The first term under the integral sign is the sum of the 

potential energy and the kinetic energy of the linear 

evolution. The other two terms are nonlinear 

contributions of second order; the terms in curly bracket 

are the difference of the squares of the horizontal and 

vertical velocity at the still water level. The linearized 

equation (1) reads ∂t η = -A η. 

A and B are (pseudo-) differential operators, related by 

AB = ∂x. Explicitly, the operator A is skew symmetric 

and its action on a spatial function η is defined after 

Fourier transform as a multiplication with iΩ: 

(3)   A η(x) =∫ i Ω(k,D) η(k) eikx dk 

Here Ω denotes the dispersion relation ω=Ω(k,D) such 

that the harmonic mode exp i(kx - Ωt) is a solution of the 

linear equation. For exact dispersion,  

(4)   Ωex(k,D)= sign(k). sqrt (g k tanh (kD)) 

where D is the depth. Exact dispersion describes the 

correct linear evolution of modes of any wave length. 

Approximate dispersion relations, for instance rational 

approximations of (4) that can be implemented in finite 

difference or finite elements, will give deviations in 

phase speed related to the difference with (4). The 

operator B is the inverse of the phase velocity. 

The cubic terms in the Hamiltonian lead to dispersive 

correct quadratic terms in the equation (1).  

 

2.1 (b) Generalization to waves above bathymetry 

Waves travelling above varying bottom will have 

different phase and group speed depending on the depth 

at the actual position. For rather slowly varying bottoms, 

this motivates the use of a quasi-homogeneous 

approximation, in which the dispersion relation is taken 

locally. In the expression (3) for the operator A, for 

instance, this would mean to change the depth D by the 

space dependent function D(x). However, in order not to 

violate the variational structure behind the equation (1), 

we need to replace the operator A by its skew-symmetric 

part, and similarly the operator B by its symmetric part. 

More details can be found in Van Groesen & 

Andonowati [7].   

 

2.2  SPATIAL-SPECTRAL IMPLEMENTATION 

 

As stated in the introduction, for broadband spectra it is 

essential that the dispersion is sufficiently accurate. For 

long waves (the shallow water limit) the relation is linear 

while for short waves (deep water) it is a square root 

relation. Finite difference, finite elements or volume of 

fluid methods cannot deal with non-rational relations, 

which therefore require approximations of the dispersion.  

By using a hybrid spatial-spectral code, problems with 

approximating the dispersion can be avoided. Indeed, for 

the equation Fourier transformed from physical to 

wavenumber space, the operator A in (3) can be applied 

exactly, so that the phase speed is accurate for all wave 

lengths. As is common in pseudo-spectral methods, 

products in physical space are calculated in physical 

space using back and forth fast Fourier transforms. 

In case of varying bottom, an application of the operator 

A would require n2 fast Fourier transforms. To reduce 

this to order n transforms, we interpolated the dispersion 

relation between the extreme values of the depth, 

requiring the frequency and phase speed to be exact at 

the peak frequency.  Full details of the implementation 

will become available in [8]. 

 

3. EXPERIMENTS  

 

3.1  BASIN 

 

The experiments where all carried out in MARIN’s 

shallow water basin, which has a length of 220 m, a 

width of 15.8 m and a maximum water depth of 1.1 m. 

The water depth can be controlled by pumping in or out 

water. The basin is equipped with a piston-type wave 

maker on the short side, controlled with a second-order 

control algorithm. On the opposite short side, a beach is 

installed to minimize wave reflections. 

 

 

 

 

 

 

 

 

Figure 1: Top view of shallow water basin. 

 

3.2 INSTRUMENTATION,DATA ACQUISITION 

 

In order to measure the wave elevation, a large number 

of portable electric resistance type wave probes was used. 

These probes measure the increase of resistance due to 

the change in wetted part of the wire and based on a 

careful pre-calibration, this is related to the change in 
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wave elevation. A potentiometer was used to measure the 

motions of the wave maker. A sampling frequency of 

200Hz (model scale) was used. Prior to sampling, the 

measured signals were filtered using an analogue anti-

aliasing filter. 

 

3.3 SETUP 

 

Two types of experiments were carried out, waves 

propagating over a flat bottom and waves propagating 

over a sloped bottom. For the first test, the standard basin 

setup could be used. For the second test, a temporary 

concrete sloped floor was built into the basin; the plot 

below shows the configuration in geoscale 1:50. The 

depth above the deep part is then 30m, and above the 

shallow part 15m. 

 

 

 

 

 

Figure 2: Setup of tests with sloped bottom. A: Deep part. 

B: slope. C: shallow part. 

 

4. TEST CASES 

 

In this section we illustrate the accuracy of the model and 

its implementation for four different wave fields, 2 above 

flat bottom and 2 above a varying bottom that illustrates 

the change from deep to shallow water in the coastal area. 

 

4.1 FOCUSSING WAVE 

 

The first case is a focussing wave above flat bottom,  

depth 1m, MARIN experiment 202002. Short, slow, 

waves are generated before longer, faster, waves, as 

suggested by Longuet-Higgins [6]. The wave group is 

designed in such a way that they collide at one point 

downstream, the focussing point, at which all phases 

vanish so that all waves contribute to maximize the 

amplitude. The surface elevation measured at 10m form 

the wave maker, are used as influx data for the 

simulations. Although the large crest height is mainly 

due to the dispersive focussing, close to the focussing 

point the spectrum broadens due to nonlinear effects; this 

is well captured by the simulations, just as the wave 

profile.    

 

 

 

 

 

 

 

 

Figure 3: Upper plot: Spectra at 49.5m (blue dashed-dot 

for experiment, red dot for simulation) and the 

broadening at 50m (blue dashed for experiment, solid red 

for simulation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Upper plot: Time signal of the measurement 

(blue dashed) and of simulation (red solid) at (focussing) 

position 50m, with the initial elevation at 10m as inset.   

Lower plot: Showing the focussing phenomenon by the 

graph of the maximal wave height at each position; blue 

solid for linear equation and red dashed for the nonlinear 

model. 

 

4.2 DRAUPNER WAVE 

 

The other case above flat bottom is a short signal 

(MARIN case 204001) that models the well-known freak 

wave that was recorded at the Draupner platform in the 

North Sea at 1 January 1995.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Upper plot: Time signal of the measurement 

(blue, dashed) at position 40m after the influx position, 

near the position of maximal crest height, and the signals 

of simulation (red, solid).  

Lower plot: Spatial plot with the maximal (black, upper 

curve) and minimal (cyan, lower curve) elevation over 

the full simulation time-interval, and the wave profile 

(red, solid) at the time of maximal crest height.  

 

 



4.3 BI-CHROMATIC WAVES 

 

In order to show the interaction of waves with varying 

bottom, and in particular to investigate the generation of 

long and short waves, we compare the spectra from 

simulation with measurements (MARIN case 305002) 

for a bichromatic wave group. The bathymetry, scaled 

1:50 to geophysical dimensions, changes from a depth of 

30m to a depth of 15m through a straight 1:20 slope.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Spectrum of the initial signal above 30m depth 

(black dot), and of the signal above 15m depth of the 

simulation (red solid) and measurement (blue dashed). 

Observe the significant short wave generation of second 

and third order.  

  

4.4 IRREGULAR WAVES  

 

The last example is a simulation of more than 1000 

irregular waves of JONSWAP-type. The bathymetry is 

the same as in the previous case. In geo-scale, the peak 

period is 12s, and significant wave height is 3 m 

(MARIN case 103001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Shown are in three panels time signals of 200s 

length, and in the fourth panel the spectra computed for 

the full time trace of 3.5hrs; the measurement (blue, 

dashed) and simulation (red solid) at a position in the 

shallow area, 5930 m after the influx position. The 

results are presented here in geo-scale 1:50 compared to 

the MARIN-measurement.  

 

5. CONCLUSIONS 

 

The present paper includes a short description of the AB-

model and a hybrid spectral-spatial implementation and 

shows the performance of the code for wave cases that 

have been measured accurately at MARIN.  

Three cases have in common that the spectra are very 

broad, while the higher order effects in the bi-chromatic 

wave also require that waves over a long spectral range 

are modelled correctly. Our experience with the 

commercial software package MIKE21 BW [9] and with 

the free software SWASH [10] is that this broad range 

causes serious problems for these codes because the 

dispersion is poorly (or not) resolved for short waves (see 

[8]). The code presented here produces accurate results, 

and can be used to support the generation of such waves 

in hydrodynamic laboratories.  

The performance has been illustrated graphically above. 

To quantify the performance, a rather stringent measure 

is the value of the ‘cosine-correlation’ between the 

measurement and the simulation, i.e. the L2 innerproduct 

of the normalized signals. For all cases shown above this 

value is above 0.85.  

The calculation (cpu) time for all cases is below 75% of 

the physical time at the laboratory scale; for simulations 

on geo-scale in the coastal area of 1:50, this implies that 

the calculation time is more than a factor 7 shorter. These 

times are for a code programmed in Matlab, so that 

simulations with a compiled program will be even faster.  

It should be stressed that the present code is only 

applicable for non-breaking waves, in contrast to the 

other codes mentioned above, which limits its 

applicability for other coastal wave applications or for 

wave run-up and down calculations. 
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