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Abstract. A study of surface wave propagation in a fluid-saturated incompress-
ible porous half-space lying under a uniform layer of liquid is presented. The dis-
persion relation connecting the phase velocity with wave number is derived. The
variation of phase velocity and attenuation coefficients with wave number is pre-
sented graphically and discussed. As a particular case, the propagation of Rayleigh
type surface waves at the free surface of an incompressible porous half-space is
also deduced and discussed.
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1. Introduction

Porous media theories play an important role in many branches of engineering including
materials science, petroleum industry, chemical engineering, biomechanics, soil mechanics
and other such fields of engineering. Most of the modern engineering structures are generally
made up of multiphase porous continuum and the classical theory, which represents a fluid-
saturated porous medium as a single-phase material, is inadequate to study the mechanical
behaviour of such materials especially when the pores are filled with liquid. In this case the
solid and liquid phases have different motions. Due to these different motions, the different
material properties and the complicated geometry of pore-structure; the mechanical behaviour
of a fluid-saturated porous medium becomes more difficult. So researchers from time to time
have tried to overcome this difficulty and a considerable work is available in the literature. For
more detailed and for the historical review on the subject of multiphase continuum mechanics,
the reader is referred to the work of de Boer & Ehlers (1988) or recently published monograph
de Boer (2000).

Based on the work of von Terzaghi (1923,1925), Biot (1941) proposed a general theory of
three-dimensional deformations of fluid-saturated porous elastic solids. Subsequently, Biot
(1956a,b,1962) did the dynamic extension of his theory and proposed the propagation of two
dilatational and one rotational elastic waves in fluid-saturated porous solids. Biot theory is
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based on the assumption of compressible constituents and till recently, some of his results have
been taken as standard references and basis for subsequent analysis in acoustic, geophysics and
other related fields. Different authors have investigated the relating problems by considering
different theories of wave propagation (Levy 1979, Auriault 1980, Prevost 1982, Zienkiewicz
& Shiomi 1984).

Based on the Fillunger model (1933), (which is further based on the concept of volume
fractions combined with surface porosity coefficients), another interesting theory in which
all the constituents of a porous medium are assumed to be incompressible was developed and
used by (Bowen 1980, de Boer & Ehlers 1990, Ehlers 1993). There are reasonable grounds
to assume that the constituents of many fluid-saturated porous media are incompressible.
For example, taking the composition of soil; solid constituents are incompressible and liq-
uid constituents which are generally water or oils are also incompressible. Moreover, in an
empty porous solid as a case of classical theory, the change in volume is due to the change
in porosity during the propagation of a longitudinal wave. The assumption of incompressible
constituents does not only meet the properties appearing in many branches of engineering
practice, but it avoids the introduction of many complicated material parameters as considered
in the Biot theory. So, this model meets the assumptions and requirements of further scientific
developments. Based on this theory de Boer & Ehlers (1993) and recently Kumar & Hun-
dal (2002,2003,2004a,b) have studied the problems of wave propagation in fluid-saturated
incompressible porous media.

Many studies have discussed the surface wave propagation in elastic media and a com-
prehensive review is available in the standard texts, e.g., Ewing et al (1957) and Achenbach
(1976). The surface waves discussed in these texts are within the scope of single-phase mod-
els, but the presence of fluid in the pores of an elastic porous solid might have affected the
motion of solid particles. As far as the multi-phase systems are concerned; there is con-
siderable work concerning the surface wave propagation in fluid-saturated porous media
at the present time, and a brief review is available in (Kumar & Miglani 1996, Kumar
& Deswal 1966, Liu & Liu 2004, Edelman 2004). But all this is based on the classical
Biot’s model where the constituents of a fluid-saturated porous medium are assumed to be
compressible.

In this paper, propagation of surface waves in a half-space of a fluid-saturated incompress-
ible porous medium lying under a uniform layer of a liquid is investigated. The fluid-saturated
porous material is modelled as a two-phase system composed of incompressible solid and
fluid phases. Frequency equation relating the phase velocity with the wave number is derived.
As a particular case, the propagation of Rayleigh type surface waves at the free surface of an
incompressible porous half-space is also discussed and equations of trajectories of medium
particles are derived.

2. Basic equations

Within the framework of modern porous media theories de Boer & Ehlers (1990), the equations
governing the deformation of an incompressible porous medium are:

div.(ηSẋSẋSẋS + ηFẋFẋFẋF ) = 0, (1)

div.T SET
S
ET
S
E−ηSgrad.p + ρS(bbb − ẍSẍSẍS)−PFEPFEPFE = 0, (2)

div.T FET
F
ET
F
E −ηFgrad.p + ρF (bbb − ẍFẍFẍF )+PFEPFEPFE = 0, (3)
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where ẋiẋiẋi and ẍiẍiẍi (i = F, S) denote the velocities and accelerations of solid and fluid phases
respectively and p is the effective pore pressure of the incompressible pore fluid. ρS and ρF

are the densities of the solid and fluid phases respectively and bbb is the body force per unit
volume. T SET

S
ET
S
E , T FET

F
ET
F
E and PFEP

F
EP
F
E are called the extra quantities for which the constitutive equations

must be formulated and ηS, ηF are the volume fractions satisfying

ηS + ηF = 1. (4)

If uSuSuS and uFuFuF are the displacement vectors for solid and fluid phases then

ẋSẋSẋS = u̇Su̇Su̇S, ẍSẍSẍS = üSüSüS, ẋFẋFẋF = u̇Fu̇Fu̇F , ẍFẍFẍF = üFüFüF . (5)

The investigations to follow are restricted to a linear isotropic, elastic porous medium filled
with an inviscid liquid. So the constitutive equations for extra stresses and extra momentum
are given by de Boer et al (1993) as

T SET
S
ET
S
E = 2μSESESES + λS(ESESES.III )I, (6)

T FET
F
ET
F
E = 000, (7)

PFEP
F
EP
F
E = −SV (u̇F − u̇S−SV (u̇F − u̇S−SV (u̇F − u̇S), (8)

where λS and μS are the macroscopic Lame’s parameters of the porous solid and ESESES is the
linearised Langrangian strain tensor defined as

ESESES = 1

2
(grad uSuSuS + gradTuSuSuS). (9)

In the case of isotropic permeability, the tensorSVSVSV describing the coupled interaction between
the solid and fluid is given by de Boer & Ehlers (1990,1993) as

SVSVSV = (ηF )2γ FR

KF
III , (10)

where γ FRis the effective specific weight of the fluid and KF is the Darcy’s permeability
coefficient of the porous medium.

3. Formulation of the problem and its solution

Consider a half-space of a fluid-saturated incompressible porous medium lying under a uni-
form layer of liquid of thickness H . The motion of the materials is considered in x− z
plane, where x-axis is taken along the interface, and the z-axis is taken along the direction
of increasing depth. Hence the fluid-saturated incompressible porous medium occupies the
region z > 0, whereas the region – H < z < 0 is occupied by the liquid layer with z = 0
as the interface between the liquid layer and the half-space as shown in figure 1. Also, in the
scope of infinitesimal deformations, all the terms of higher orders are neglected. Moreover,
the small variation in volume fractions is also neglected. So taking the body forces to be absent
and after some simplification the equations (1) to (8) for the half-space of a fluid-saturated
incompressible medium can be expressed in the following form:

(λS + μS)
∂θS

∂x
+ μS∇2uS − ηS

∂p

∂x
− ρS

∂2uS

∂t2
+ SV

(
∂uF

∂t
− ∂uS

∂t

)
= 0, (11)
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Figure 1. Geometry of the investigated problem.

(λS + μS)
∂θS

∂z
+ μS∇2wS − ηS

∂p

∂z
− ρS

∂2wS

∂t2
+ SV

(
∂wF

∂t
− ∂wS

∂t

)
= 0,

(12)

ηF
∂p

∂x
+ ρF

∂2uF

∂t2
+ SV

(
∂uF

∂t
− ∂uS

∂t

)
= 0, (13)

ηF
∂p

∂z
+ ρF

∂2wF

∂t2
+ SV

(
∂wF

∂t
− ∂wS

∂t

)
= 0, (14)

ηS
(
∂2uS

∂x∂t
+ ∂2wS

∂z∂t

)
+ ηF

(
∂2uF

∂x∂t
+ ∂2wF

∂z∂t

)
= 0, (15)

where

θS = ∂uS

∂x
+ ∂wS

∂z
. (16)

For the layer, equations governing the motion of a liquid are given by Ewing et al (1957) as

λL∇(∇uLuLuL) = ρL
∂2uLuLuL

∂t2
, (17)

τLmn = λL∇uLuLuLδmn ,m, n = 1, 2, 3. (18)

In these two equations uLuLuL is the displacement vector, λL is the bulk modulus of the liquid ρL

is its density and τLmn are the components of the stress in the liquid. For the present problem,
the displacement vector uLuLuL = (uL, 0, wL), so (17) and (18) are simplified as

λL
(
∂2uL

∂x2
+ ∂2wL

∂x∂z

)
= ρL

∂2uL

∂t2
, (19)
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λL
(
∂2uL

∂x∂z
+ ∂2wL

∂z2

)
= ρL

∂2wL

∂t2
, (20)

τLzz = τLxx = λL
(
∂uL

∂x
+ ∂wL

∂z

)
. (21)

Again following Ewing et al (1957), for the liquid pressure pL we have:

pL = −τLzz (22)

For further considerations, it is convenient to introduce, (11) to (22), the dimensionless quan-
tities defined as:

x ′ = ω′

c1
x, z′ = ω′

c1
z, t ′ = ω′t, u′S =

(
λS + 2μS

E

)
ω′

c1
uS,

w′S =
(
λS + 2μS

E

)
ω′

c1
wS, u′F =

(
λS + 2μS

E

)
ω′

c1
uF ,

w′F =
(
λS + 2μS

E

)
ω′

c1
uF , p′ = p

E
, τ ′

xz = τxz

E
, τ ′

zz = τzz

E

u′L =
(
λS + 2μS

E

)
ω′

c1
uL, w′L =

(
λS + 2μS

E

)
ω′

c1
uL,

p′L = pL

E
, τ ′L

zz = τLzz

E
. (23)

In these relationsE is the Young’s modulus of the solid phase, ω′ the characteristic frequency
of the medium, and c1 is the velocity of a longitudinal wave propagating in a fluid-saturated
incompressible porous medium (de Boer et al 1993) and is given by

c1 =
√

(ηF )2(λS + 2μS)

(ηF )2ρS + (ηS)2ρF
. (24)

If the pore liquid is absent or gas is filled in the pores, then ρF is very small as compare to
ρSand can be neglected. So the equation (24) reduces to

c0 =
√
λS + 2μS

ρS
. (25)

This gives the velocity of the longitudinal wave propagating in an incompressible empty
porous solid, where the change in volume is due to the change in porosity and is a well-known
result of the classical theory of elasticity. In an incompressible non-porous solid medium
ηF → 0, then (24) yields c1 = 0 and is physically acceptable as a longitudinal wave cannot
propagate in an incompressible medium.

Equations (11) to (15) and (19) to (22), with the help of (23) reduce to the dimensionless
form and the displacement components ui and wi(i = F, S, L) are expressed in terms of
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potential ϕi, ψi and ϕL as:

ui = ∂ϕi

∂x
+ ∂ψi

∂z
, (26)

wi = ∂ϕi

∂z
− ∂ψi

∂x
, (27)

uL = ∂ϕL/∂x, (28)

wL = ∂ϕL/∂z, (29)

and yield the following seven equations determining ϕS, ϕF , ψS, ψF , p, ϕL, and pL as:

∇2ϕS − ηSp − δ2
2
∂2ϕS

∂t2
+ δ2

2P

(
∂ϕF

∂t
− ∂ϕS

∂t

)
= 0, (30)

ϕF = − η
S

ηF
ϕS, (31)

(ηF )2p − δ3δ
2
2η
S ∂

2ϕS

∂t2
− Pδ2

2
∂ϕS

∂t
= 0, (32)

δ2∇2ψS − δ2
2
∂2ψS

∂t2
+ Pδ2

2

(
∂ψF

∂t
− ∂ψS

∂t

)
= 0, (33)

δ3
∂2ψF

∂t2
+ P

(
∂ψF

∂t
− ∂ψS

∂t

)
= 0, (34)

∇2ϕL = δ2
6
∂2ϕL

∂t2
, (35)

pL = −τLzz = −δ4δ
2
5∇2ϕL, (36)

where

δ = β0

c0
, δ2 = c1

c0
, β0 =

√
μS

ρS
, δ3 = ρF

ρS
, P = SV

ω′ρS
, δ4 = ρL

ρS
,

δ5 = αL

c0
, δ6 = c1

αL
, αL =

√
λL

ρL
. (37)

The boundary conditions are

τLzz = 0 at z = −H, (38)

wS = wL at z = 0, (39)

τzz − p = τLzz at z = 0, (40)

τzx = 0 at z = 0. (41)
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Equations (30) to (36) along with the conditions (38) to (41) govern the propagation of surface
waves in an incompressible half-space lying under a uniform layer of a liquid. The time
harmonic wave solutions of equations (30) to (35) for the wave propagation are given by

ϕS = (P1cosh ξ 1z+ P2sinh ξ 1z)e
ik(x−ct), (42)

ϕF = − η
S

ηF
(P1cosh ξ 1z+ P2sinh ξ 1z)e

ik(x−ct), (43)

ψS = (P3cosh ξ 2z+ P4sinh ξ 2z)e
ik(x−ct), (44)

ψF =
(

iP

δ3kc + iP

)
(P3cosh ξ 2z+ P4sinh ξ 2z)e

ik(x−ct), (45)

ϕL = (P5cosh ξ 3z+ P6sinh ξ 3z)e
ik(x−ct), (46)

where

ξ 2
1 = k2

(
1 − c2 − i

Qc

k

)
, (47)

ξ 2
2 = k2

{
1 − δ2

2

(
1 + i

δ3P

(kcδ3 + iP )

) (c
δ

)2
}
, (48)

ξ 2
3 = k2(1 − δ2

6c
2), (49)

Q = Pδ2
2

(ηF )2
. (50)

From equations (26) to (29), (36), along with the stress–strain relations (6) and with the
help of (42) to (46), we obtain the following expressions for displacements, pore pressure and
stresses as:

uS = {ik(P1cosh ξ 1z+P2sinh ξ 1z)+ ξ2(P3sinh ξ 2z+ P4cosh ξ 2z)}eik(x − ct),

(51)

wS = {ξ1(P1sinh ξ 1z+P2cosh ξ 1z)− ik(P3cosh ξ 2z+ P4sinh ξ 2z)}eik(x − ct),

(52)

uF =
[
− η

S

ηF
ik(P1cosh ξ 1z+ P2sinh ξ 1z)

+ iP ξ 2

δ3kc + iP
(P3sinh ξ 2z+ P4cosh ξ 2z)

]
eik(x − ct), (53)

wF =
[
− η

S

ηF
ξ1(P1sinh ξ 1z+ P2cosh ξ 1z)

+ kP

δ3kc + iP
(P3cosh ξ 2z+ P4sinh ξ 2z)

]
eik(x − ct), (54)
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uL = ik(P5cosh ξ 3z+ P6sinh ξ 3z)e
ik(x − ct), (55)

wL = ξ3(P5sinh ξ 3z+ P6cosh ξ 3z)e
ik(x − ct), (56)

p = − δ2
2

(ηF )2
(k2c2ηSδ3 + iP kc)(P1cosh ξ 1z+ P2sinh ξ 1z)e

ik(x − ct), (57)

τzz = [{ξ 2
1 − (1 − 2δ2)k2}(P1cosh ξ 1z+ P2sinh ξ 1z)

−2δ2ikξ 2(P4cosh ξ 2z+ P3sinh ξ 2z)]e
ik(x − ct) (58)

τxz = δ2{2ikξ 1(P1sinh ξ 1z+ P2cosh ξ 1z)

+ (k2 + ξ 2
2 )(P3cosh ξ 2z+ P4sinh ξ 2z)}eik(x − ct) (59)

τLzz = δ4δ
2
5(ξ

2
3 − k2)(P5coshξ3z+ P6sinhξ3z)e

ik(x − ct). (60)

Substituting the equations (51) to (60) in the boundary conditions (38) to (41) and in order to
insure the boundedness of solutions at infinity, one can easily obtain the following system of
linear simultaneous equations for the unknown arbitrary constants P1, P2, P3, P4, P5, and P6

as:

P1 + P2 = 0, (61)

P3 + P4 = 0, (62)

P5coshξ3H − P6sinhξ3H = 0, (63)

2ikξ 1P2 + (k2 + ξ 2
2 )P3 = 0, (64)

RP 1−2δ2ikξ 2P4 − SP 5 = 0, (65)

ξ1P2−ikP 3 − ξ3P6 = 0, (66)

where

R = δ2k2

[
2 −

{
1 − δ2

2η
Sδ3

(ηF )2

} (c
δ

)2
]

and S = δ4δ
2
5(ξ

2
3 − k2). (67)

The non-trivial solution of above system of equations requires that the determinant of the
coefficients of the unknown must vanish. This argument yields the required frequency equation
relating the non-dimensional phase velocity c with the non-dimensional wave number k as:

tanh ξ 3H = ξ3{(ξ 2
2 + k2)(2δ2ξ1ξ2 − R)− 2δ2ξ1ξ2(ξ

2
2 − k2)}

ξ1S(ξ
2
2 − k2)

. (68)

4. A particular case

Rayleigh type surface waves at the free surface of a fluid-saturated incompressible porous
half-space:
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If H = 0 then after some simplifications, equation (68) takes the form

4

√
1 − c2 − i

Qc

k

√
1 − δ2

2

(
1 + i

δ3P

kcδ3 + iP

) (c
δ

)2

=
{

2 − δ2
2

(
1 + i

δ3P

kcδ3 + iP

) (c
δ

)2
} [

2 −
{

1 − δ2
2η
Sδ3

(ηF )2

} (c
δ

)2
]
. (69)

Equation (69) governs the propagation of Rayleigh type surface waves at the free surface of
a fluid-saturated incompressible porous half-space and if the pore liquid is absent or gas is
filled in the pores then after some simplifications equation (69) takes the form

4

√(
1 − c2

δ2

)
(1 − c2) =

(
2−c

2

δ2

)2

. (70)

If the dimensionless quantities are converted in to the corresponding physical quantities then
this equation yields

4

√(
1 − c2

c2
0

) (
1 − c2

β2
0

)
=

(
2− c2

β2
0

)2

. (71)

The above equation corresponds to the Raleigh wave propagating in the empty incompressible
porous solid and is a well-known result of classical theory.

Now, we derive the equations of the trajectory of particle motion during the propagation
Rayleigh type waves in a fluid-saturated incompressible porous half-space. The horizontal
and vertical components of displacement of a solid particle are real valued and are provided
by equations (51) and (52). So, after some simplifications the trajectory of a solid particle at
a depth z0 is defined by

(uS)2

a2
+ (wS)2

b2
= 1. (72)

Therefore, like the classical theories, trajectory of solid particle motion in this case is also
elliptic with the axes ‘a’ and ‘b’ as the real parts of the quantities respectively and are different
from their corresponding values as given in the classical theories.

kP 1

(
e−ξ1z0 − 2ξ 1ξ2

ξ 2
2 + k2

e−ξ2z0

)
and − ξ1P1

(
e−ξ1z0 − k2

ξ 2
2 + k2

e−ξ2z0

)

The vertical motion vanishes at a depth H0 given by

H0 = 1

ξ1 − ξ2
log

(
2δ2ξ1ξ2

R

)
.

The ellipse will then stretched out into a straight line, uS = a, and will alter its direction
beyond this depth.
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Figure 2. Variation of phase velocity
with wave number.

5. Discussion

Following de Boer et al (1993) and Ewing et al (1957), the values of various physical
parameters are taken as ηS = 0·67, ηF = 0·33, ρS = 1·34 Mg/m3, ρF = 0·33 Mg/m3, λS =
5·5833 MN/m2, μS = 8·3750 MN/m2, kF = 0·01 m/s, γ FR = 10·00 kN/m3, αL = 1·463×
103 m/s. The variation of non-dimensional phase velocity and attenuation coefficient with
respect to non-dimensional wave number is graphically presented in figures 2 and 3. As
tanh(inπ + z) = tanh z, so for given values of wave number, equation (68) is solved for dif-
ferent integral values of n and for a fix value of H . For n = 0, the phase velocity increases
uniformly from a very small value and then becomes constant indicating that the wave for the

Figure 3. Variation of attenuation
coefficient with wave number.
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first mode is non-dispersive. But, for all other values of n, it is evident that the phase velocity
depends upon the wave number, showing that the waves for all other modes are dispersive.
Here for any value of n, starting from some maximum value, the phase velocity decreases
very quickly to some small value, then increases and ultimately becomes constant. It indicates
that for small values of wave number, the wave is highly dispersive, but its dispersiveness
decreases with the increase of wave number and ultimately it becomes non-dispersive. If the
pore liquid is absent or gas is filled in the pores, then ρF is very small as compared to ρS

and hence it can be neglected. This situation for empty porous solid is represented by dotted
lines in the graphs. The behaviour of the dispersion curves in both cases is almost similar,
but for any value of n, the curve for empty porous solid lies below the corresponding curve
for fluid-saturated medium indicating that the presence of fluid in the pores increases the
phase velocity. Figure 3 represents the variation of attenuation coefficient with that of non-
dimensional wave number. For the first mode, the attenuation coefficient is almost zero and
for all other modes, starting from some higher value, the attenuation coefficient decreases
gradually with wave number and ultimately becomes zero. As far as the empty porous solid is
concerned, the attenuation coefficients are zero for all modes. Another important property of
the surface waves is that, the phase velocity for both the cases and the attenuation coefficient
for fluid-saturated incompressible porous medium increase with n for the lower values of the
wave number, but for large values of the wave number both these quantities become constant
and equal for all values of n.

6. Conclusion

The propagation of surface waves in a fluid-saturated incompressible porous half-space lying
under a uniform layer of a liquid is discussed. The half-space is modelled as a two-phase
system with two incompressible constituents (porous solid and inviscid fluid), where the
general field equations are directly adopted according to de Boer & Ehlers (1990). A layer of
water is taken for numerical investigation and during the investigation of the properties of the
dispersion relation; it is observed that the first mode is non-dispersive, whereas all other modes
propagate dispersively. Rayleigh type surface waves at the free surface of an incompressible
porous half-space are also discussed and the results, at various steps, are compared with the
classical theories.
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