
Geophys. J .  R .  astr. SOC. (1987) 88,231-240 

Surface-wave ray tracing equations and Fermat’s 
principle in an anisotropic earth 

Toshiro Tanimoto SeisrnologicalLaboratory252-21, California Institute of 
Technology, Pasadena, California 91125, USA 

Accepted 1986 July 11. Received 1986 July 11; in original form 1986 February 4 

Summary. Ray tracing equations for surface waves in an anisotropic earth 
are derived in two ways: first, from the Hamilton’s canonical equations, 
and secondly, from Fermat’s principle. Phase velocity, including its azimuthal 
variation, is required to solve the equations, but group velocity is eliminated 
from the equations. The difference of direction between the wave vector 
and the ray path is one of the features of wave propagation in an anisotropic 
media and the equations explicitly show dependence upon such an angle. 
By putting that angle to be zero, ray tracing equations in a transversely 
isotropic (or simply isotropic) medium are obtained. 

In an isotropic medium, phase traveltime, which is an integration of phase 
slowness along the ray path, is stationary. In an anisotropic medium, phase 
travel-times is not stationary. Instead, phase slowness projected onto the ray 
path and integrated along the ray path is stationary. Ray tracing by the 
bending method in an anisotropic media should utilize such a stationary 
quantity. In a weakly anisotropic medium, however, the angle ($a) 

between the wave vector and the ray path is small and cos $, - 1 up to 
first order in $a. Thus phase traveltime is approximately stationary in a 
weakly anisotropic medium. 
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1 Introduction 

The Earth’s lateral heterogeneity and anisotropy causes deflection of surface wave ray 
paths from the great circle path that contains the source and the receiver. In the long 
period range (longer than about 200-300 s) the Earth’s structure looks almost laterally 
homogeneous and thus the assumption of the wave propagation along the great circle path 
has been quite successful. This assumption comes from Fermat’s principle (for phase 
velocity studies), which states that a ray path is stationary and is not perturbed by lateral 
heterogeneity to the first order. 
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232 T. Tanimoto 
In the shorter period range, however, path deviation becomes quite large. Ray tracing 

is required in such a case and many studies have already been incorporating such effects 
to study lateral heterogeneity (e.g. Gjevik 1974; Woodhouse 1974; Sobel & von Seggern 
1978; Lay & Kanamori 1985). Recent studies also include amplitude calculations with 
ray tracing algorithms (e.g. Wong & Woodhouse 1984; Yomogida & Aki 1985). However, 
most studies are concerned with an isotropic medium. Ray tracing equations in an 
anistropic medium, especially when azimuthal variation of phase velocity exists, have not 
been discussed in detail. 

In view of the fact that some researchers have tried to recover azimuthal variations 
of surface wave phase velocities (e.g. Forsyth 1975; Tanimoto & Anderson 1984, 1985; 
Suetsugu & Nakanishi 1985; Nishimura & Forsyth 1985; Montagner & Nataf 1985), it 
seems to be timely to derive ray tracing equations in an anisotropic medium in a readily 
computable form. We derive the ray tracing equations, first from the Hamilton’s canonical 
equations, which explicitly show the directional difference of the wave vector (direction 
of phase velocities) and ray path (direction of energy propagation or group velocity). This 
difference is one of the most important features of wave propagation in an anisotropic 
medium. In fact, by putting this angle difference and partial derivative of phase velocity 
with respect to azimuth to zero, we can obtain ray tracing equations in a transversely 
isotropic medium. By taking the distance as an integration variable, group velocity is 
completely eliminated from the equations. Phase velocity, including its azimuthal 
variation, must be supplied to solve the equations. 

We also discuss Fermat’s principle in an anisotropic medium and derive the same ray 
tracing equations from this principle. In an isotropic medium, phase slowness integrated 
along the ray path, which is phase traveltime, is stationary. In an anisotropic medium, since 
the direction of the wave vector is not the same as the ray path direction while projection 
of phase slowness on the ray path integrated along the ray trajectory becomes stationary. 

In Section 2, we derive the ray tracing equations from the Hamilton’s canonical 
equations and in Section 3 we derive the same equations from the Fermat’s principle and 
discuss the differences between anisotropic and transversely isotropic cases. 

2 Ray tracing equations 

We assume a laterally, smoothly varying medium in which the dispersion relation varies 
gradually on a scale of wavelength and also the wavenumber changes gradually along the 
ray path. The waves are then locally approximately sinusoidal and displacement can be 
expressed by 

u ( x l , x 2 , t ) =  Q ( x l x 2 , t ) e x p  [ i a (x l ,x2  t ) ] ,  (1) 

where (xl, x2) are the coordinates in the surface, and Q and (Y are Gnplitude and phase 
functions, respectively. The local wave number, ki ,  and frequency, w ,  are given by 

The dispersion relation takes the form 

o= a ( k i ,  k2,xi,x2). (4) 
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Ray tracing equations in an anisotropic earth 

From (3) and (4), we have 

Differentiating this by xi, we get 

or 

233 

(5 ) 

By the method of characteristics, (7) can be transformed to the following Hamilton’s 
equations 

where u = 1 , 2 .  

+ao) dCj “+(””) 23=0, 
dt akax1,x2 d t  &a k , , k  

which is obtained by using (8) and (9) and means that the frequency is constant along the 
ray path. 

Equations (8) and (9) are the basic equations for ray tracing. Lighthill (1978) claims 
that the solutions are readily computable given the initial values of xa and k ,  (Lighthill 
1978, p. 320). In principle, this is true, but in practice the dispersion relation function o 
is not so completely known, including both spatial and wavenumber derivative (group 
velocity). Quite often, only phase velxity is given. We will thus manipulate (8) and (9) 
and obtain the ray tracing equations in a more computable form. The final form contains 
only spatial derivatives of phase velocity. 

Hereafter, the spatial coordinate will be (0, q5) which are colatitude and longitude in a 
sphere, and the wave vector is (ke, k,). Wavenumber k is defined by 

Another important equation is 

where a is the radius of the earth. 
Instead of using ke and k,, we use the following expression for the dispersion relation: 

0 = W k ,  +, 0,q5), (1 1) 

where $ is the azimuth of the wave vector measured anti-clockwise from the south (Fig. l), 
i.e. 
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1 vector) 

+ 
Figure 1. The azimuth of the wave vector at (8, @) is given by $ and the angle between the wave vector 
and the ray path is shown by One of the most important features of wave propagation in an 
anisotropic media is this angle difference, Ga, between the wave vector (phase velocity) and the ray 
path (group velocity or the direction of energy propagation). 

and 

and the dispersion function changes from 8 to W because different arguments are used. 
Equations (8) and (9) become 

de a w  - 
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Ray tracing equalions in an anisotropic earth 235 
Substituting (18) and (19) in (14)-(17), we get 

dk@ = aw 
- -  

dr ( d m ) k ,  $ , 0 . 
The group velocity U can be expressed by 

From (20) and (21), this can be written by 

Note that in a transversely isotropic media, the group velocity is given by U = (aW/ak)e,@ 
(24) shows that in an anisotropic media, an additional term appear because of azimuthal 
dependence of the dispersion relation. 

Now let us introduce an infinitesimal angular distance along the ray d A ,  which is 

a d A =  U d t .  

By introducing the angle $a, which we define by 

( a  w/ak)$ ,@,@ cos $ a =  

and 
U 

we can rewrite equations (20)-(23) as 
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236 T. Tanimoto 

1 dkt, dk d$ - eos $ - k sin $ - - 
a d A  dA dA 

and 

1 dk, - dk  d0  dJ, 
_ _  - - s i n B s i n J , + k c o s $  s in$ -+ks inB  cos$-- 
a dA dA dA dA 

Then (27) x sin 6 cos $ t (28) x sin J, gives 

(33) 

where we used (25), (29), (31) and (32). 
Also from (27) x (- sin 0 sin $) + (28) x cos J,, we obtain 

1 ak cos J, 1 ak 

k ae W , * , @  k a@ w,+,e s ine  
sin $ + -(-) --I. (35) sin $ ~- (-) 

Thus the ray tracing equations, using phase velocity c instead of wavenumber k(=o/c),  
become 

sin 0 cos ri/ - I(?) sin $1 (a,) c a@ w,+,e 
1 dk  1 ac 

k dA c a +  W , O , @  c ae W , $ . O  
- -=cos$ ,  [-(-) cose s i n $ - -  - 

(39) 
Note that the three equations (36)-(38) are sufficient to calculate the ray trajectories. 
The additional equation (39) provides the information on the change of wavenumber along 
the ray path. 
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Ray tracing equations in an anisotropic earth 237 

If we can express $, by phase velocity, group velocity is eliminated from the equations 
(36)-(39). This can be done as follows; equations (25) and (26) can be written 

and 

Z 
sin $,=-- 

-’ 

where 

From (29), this is simply 

(43 

Therefore, if we know the azimuthal variation of the phase velocity c, we can obtain $, 
from (40), (41) and (43). Thus if phase velocity c at a particular frequency w is given as a 
function of 0 ,  @ and $, all quantities that appear in equations (36)-(39) can be calculated 
and ray trajectories in an anisotropic medium can be traced. 

Equations (36)-(39) also show the difference between the transversely isotropic (or 
simply isotropic) medium and the anisotropic medium. Equations for the transversely 
isotropic media are, of course, obtained by putting $, = 0 in (36)-(39) and also dropping 
the term related to differentiation of phase velocity with respect to $ in (39). This can be 
verified, for example, by comparing the equations in Aki & Richards (1980, p. 725). 
Equations (36) and (37) show that the ray direction (the direction of energy propagation) 
makes an angle of $a with the direction of the wave vector (Fig. l), which is one of the most 
important features of wave propagation in an anisotropic media. In addition, equations (38) 
and (39) tell us that infinitesimal increments of $ and In k (natural logarithm of k) are 
given by the projection (cos $a) of quantities in the brackets [ 1, which are the increments 
for $ and Ink  in a transversely isotropic medium [since there is no azimuthal dependence 
of phase velocity in such a media, &/a$ = 0 in (39)]. It is interesting to note that the 
difference of the wave vector from the ray path direction in anisotropic media is corrected 
simply by a projection. 

3 Fermat’s principle 

In the following, we show that the equations in the previous section can be derived from the 
Fermat’s principle. 

Fermat’s principle is given, in general, by 

6 k ,dxa=O,  (44) 
riy 

where the summation over 01 is assumed and the integral is taken along the ray path (e.g. 
Landau & Lifshitz 1975, section 53). In the present problem, which is a surface wave 
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238 T. Tanimoto 
problem in a sphere, this becomes 

6 [ ( k , d e + k o d @ ) = O  

Let us take the integration variable as A ,  the angular distance along the ray, and use (12) 
and (13): 

ray 

F a [ ~ ( k c o s $ ~ + k s i n 9  d0 

where we have an additional constraint 

This constraint allows us to assume the form 

d0 

d A  

and 

- = cos 

d@ - 1 
sin $ I .  

d A  sin 0 

Dropping the constant a, we can take the Lagrangian, L ,  to be 

= k c o s $ - + k s i n e  sin$--, 

where k is a function of 0,  @ and $, i.e. k ( 8 , @ ,  $). 

d0 d@ 
d A  d A  

From the Euler’s equation for 0 

- 0  

and (47) and (48), we can obtain 

(45) 

where we used the relation for a$/aO in (19). 
From the other Euler’s equation for @ 

”( aL ) - % = o  aL 

d A  a(d@/dA) 

and (47) and (48), we get 

d 
-(k sin 0 sin $) = cos ( $ I  - 4) - 
d A  
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Ray tracing equations in an anisotropic earth 239 

Noting that k cos J /  = ke/a and k sin 0 sin J /  = k@/a, it is obvious that the equations (47), 
(48), (5  1) and (53) are equivalent to (36), (37), (27) and (28) respectively, if we define $a 
by J/’ - J /  = $a. Thus the ray tracing equations in the previous section can be obtained 
solely from (45) with the constraint (46). 

We can point out a subtle difference between the derivation in Section 2 and the one in 
this section from Fermat’s principle. In Section 2, frequency was shown to be constant 
along the ray from the original equations in (2)-(4). Fermat’s principle, however, assumes 
the constant frequency along the ray and (44) is given at a futed frequency. 

In transversely isotropic media, J/’  is equal to J / ,  thus (45) becomes 

where we dropped a and still have the constraint (46). Dividing (54) by the frequency w ,  
we obtain 

where s(=k/w) is the phase slowness or the inverse of phase velocity. This shows the well- 
known fact that phase traveltime along the ray path is stationary. This holds, however, only 
in transversely isotropic media. 

In an anisotropic medium, we obtain a slightly different formula, because of the direc- 
tional difference of the wave vector and the ray path: (45) becomes 

6 ( ~ S C O S  J / a d A  = O ,  1 
which states that phase slowness projected on the ray path and integrated along the ray, 
is the stationary quantity. Ray tracing by the bending method (Julian & Cubbins 1977) 
should be done with (56)  instead of (55) in anisotropic media. 

J/‘-  J / )  is small. From (40), (41) and 
(43), this is closely related to the fact that azimuthal variation of phase velocity is a small 
quantity compared with phase velocity itself. In this case, cos J/, = 1 up to first order in 

In a weakly anisotropic medium, the angle 

and thus phase traveltime becomes approximately stationary. 

4 Conclusion 

A set of ray tracing equations for surface waves in an anisotropic earth has been derived. 
Phase velocity, including its azimuthal variation, is required to solve the equations, but 
group velocity is eliminated from the equations. The formulation explicitly shows the 
dependence upon Gat which is the angle difference between the wave vector and the ray 
path direction and is not zero except in a transversely isotropic media. Ray tracing 
equations in a transversely isotropic (or simply isotropic) media are obtained from these 
equations by putting J/, = 0 and dropping the term with partial derivatives of phase 
velocity with respect to azimuth. The same equations can also be derived from the 
Fermat’s principle. 

In transversely isotropic media, Fermat’s principle states that phase travel-time, which 
is phase slowness integrated along the ray, is stationary. In an anisotropic medium, phase 
slowness projected on to the ray path and integrated along the ray path is stationary. 
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240 T. Tanimoto 

Development of the bending method for ray tracing should be done with such a quantity 
instead of phase travel-time in an anisotropic medium. However, in a weakly anisotropic 
medium, phase travel-time is approximately stationary. 
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