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Summary

A kind of ray theory is developed for surface waves in a layered elastic
medium in which there are gradual lateral variations in the thicknesses of
the layers and in the elastic parameters characterizing each layer. An
approximation equivalent to the JWKB approximation is used, and
equations governing the slow variations in amplitude, frequency and
wavenumber in a nearly uniform sinusoidal wavetrain are deduced. In
the first approximation these equations are found to be those given by
Whitham’s average Lagrangian method. An equation governing the slow
variation in phase is also deduced. The solution of these equations by the
method of characteristics gives ray-tracing equations and an ‘amplitude
equation similar to those given by standard ray theory for body waves. The
analysis also leads to a straightforward method for finding the total energy
flux and energy density of the waves without performing an integration
over the depth co-ordinate.

1. Introduction

Elastic surface waves in non-uniform waveguides have long been studied in
seismology and attention has mainly been given to problems with varying layer
thickness. De Noyer (1961) derived the period equation for harmonic Love waves
propagating in a layer whose thickness varies sinusoidally in the direction of pro-
pagation and deduced, from energy conservation, the variation in amplitude across
the structure. Ghosh (1963) used a Green’s function technique to study the attenuation
of Love waves at a continental boundary and the representation theorems of elasto-
dynamics have been used by several authors (Herrera 1964; Knopoff & Hudson
1964; Herrera & Mal 1965; Mal & Knopoff 1965; Mal & Herrera 1965; Knopoff &
Mal 1967) to investigate the scattering of surface waves by regions of varying layer
thickness or lateral heterogeneity. Wolf (1967, 1970) has presented a method for
determining the scattered field when a Love wave is incident upon a small irregularity
in the free surface and this method has been extended (Slavin & Wolf 1970) to treat
the case in which the irregularity cannot be considered small. The scattered field is
represented as an integral in the complex plane over the modes of the unperturbed
structure and the kernal of the integral is then chosen in such a way that the boundary
condition is approximately satisfied on the irregular part of the boundary. Thapar
(1970) has presented some theoretical and experimental results for the amplitude
variations in Rayleigh waves as they traverse a small irregularity in the free surface
of a uniform half-space or an irregularity in the interface of a two-layered half-space
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462 J. H. Woodhouse

model. Boore (1970) has performed finite difference calculations for a Love wave
pulse incident upon a thickening layer and Lysmer & Drake (1971) have applied the
finite element method to determine the response to incident harmonic Love waves
of quite complex structures.

Except for the simple treatment of De Noyer (1961), all the methods cited above
require large amounts of computing time to obtain the response of a given structure
and except for the finite difference calculations of Boore (1970) all methods deal with,
waves of a single frequency. The aim of the present paper is to develop a theory
analogous to standard ray theory for body waves which will give good results at high
frequencies and which will be simpler to apply than the full wave solutions. The
usefulness of the theory will be in determining travel times, shadow zones, and
approximations to amplitudes for surface waves travelling over the two-dimensional
surface of a layered structure in which the surface altitude and the underlying structure
may vary gradually with the two horizontal co-ordinates. The theory will allow,
however, for a wave to be propagated over many wavelengths, and to pass into a
medium differing greatly in structure from the original medium. The theory suffers
from the same inadequacies as ray theory, in that reflected waves are neglected
together with mode conversion.

An approximate and general theory for nearly uniform harmonic wavetrains has
been developed by Whitham (1965a, b) in terms of an average Lagrangian and this
theory has been applied by Gjevik (1973) to Love waves in a layer whose thickness
varies in the direction of propagation. The method gives equations governing the
slow variations in frequency, wavenumber and amplitude of the waves. It has been
shown (Bretherton 1968) that for linear waves in a slowly varying waveguide Whitham’s
equations may be obtained from a perturbation procedure. An advantage of this
latter method is that it shows how higher approximations may be obtained; in fact
the equations governing the first approximation are deduced from a necessary con-
dition that the higher approximations should exist. In the present paper we apply
this perturbation procedure to trapped elastic waves in a solid layered structure,
taking advantage of the propagator matrix formalism for the unperturbed problem.
Our resuits reduce to those of Gjevik, and are essentially equivalent to those of De
Noyer in the restricted cases they consider.

2. Formulation of the problem and equations of motion

We shall consider a semi-infinite elastic medium (Fig. 1)

z = 1o(%, y)

where x, y, z are cartesian co-ordinates. We shall use Greek letters to denote suffices
taking only the values 1, 2 and shall use the summation convention throughout. We
set
X, =X, X3=), X3=2
and also define
X, =¢ex,, T =¢t

where ¢ is a small parameter. The elastic parameters c;;; and the density p are
allowed to have discontinuities at surfaces

z = n,(x,), r=0,1,2...N 2.1
where it is assumed that
on

—— = 0(1 =0,1,2...N.
X, o), r=0,1,2...N

This means that as ¢ — 0 the slopes of the boundaries tend to zero.
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FiG. 1. A laterally heterogeneous laycred structure.

Now if ¢ = 0 the medium is a laterally homogeneous layered structure for which
the theory of harmonic waves travelling parallel to the surface and confined to the
region of the layers is well known. We shall here perform a perturbation in the small
parameter ¢ to find the behaviour of a nearly uniform wavetrain in a laterally varying
structure, provided that this variation is small within a wavelength.

We shall assume that the disturbance in the solid is governed by the linear stress-
strain relation:

Tij = Cijra Uk, 1 (2.2)

where u is the elastic displacement vector and c¢;;, has the usual symmetries:
Cijii = Cijik = Cjirt = Cutijr
Moreover it is assumed that the potential energy density
leoou. . u
2 Ykl %, §j Yk, 1

is a positive definite quadratic form in the quantities u; ; when they are real. The
momentum equation (in the absence of body forces and sources) is

o, P
ax, TP e

(2.3)
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and equations (2.2), (2.3) may be combined into the single equation

5;‘ (cijkl Uy, D=p 2.4

J

o’

We shall apply the boundary conditions that the surface tractions vanish at the free
surface, and are continuous at the surfaces of discontinuity (2.1); i.e.

bii r+0
[Tfa‘T i]" =0, r=0,1,2...N. 2.5

ie axd %0
The free surface condition is included in equation (2.5) by defining
;=0 for z <nex,y)

and equation (2.5) will be referred to from now on as the continuity condition.
We also require that the displacements u be continuous at the surfaces of discon-
tinuity, and we shall assume this to be the case throughout without again explicitly
stating the condition.

Let us define the matrices C;; and vectors 1, u, t, by the following relations:

(Cier = Cuarj
(D =1
(to)i = Ti
(), =u

Qav = Ca-v_cafi C3_31 C3v'

1t is easily shown that C,; must be non-singular for the potential energy density
to be positive definite. The lateral stress vectors t, may now be written

du -

to = Q7 —+Cos C,.n (2.6)
and the equations of motion (2.2), (2.3) take the following form involving only
uand 1

du ‘ _ ou
2z = G TG G
Q2.7
ot 0 Ju 0%u .
B il vy2_ v Ccol
oz ax, (Q" ox, )” o, CnC D

Now if &€ = 0 these equations have a solution in the form of a uniform harmonic
wavetrain with

u = u(z) exp (i(k, x, — wr)) (2.8)

and the equation

— = Af (2.9)
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is obtained where we have defined the 6-vector

f= (1)
T
and the 6 x 6 partitioned matrix:

Tt
A=
(s

S;;‘ ) (2.10)

with
S = pw2 l—kokv Qav

T = ika Ca-3 C;g,l

and where ¢ 17 denotes Hermitian conjugation. Equation (2.9) forms the basis of
the propagator matrix formalism, introduced by Gilbert & Backus (1966), which is
used in Section 6 of the present paper. For an isotropic material we have

Cijia = U(0y0+0;85)+A0;6

and if the vector k is directed along the x, axis we have:

0 Hd Lo 0
T = A+2p U
0 0 o0 Cii = .
0o — 0
ik, 0 0 K
1
0 —
A+2pu . @2.1D
W=k 2[(,1+2 - ] 0 0
s— |77 SRR
0 pw?— uk? 0
0 0 pw?

3. Variational principles
(a) General considerations

We shall assume throughout that the fields considered decrease sufficiently rapidly
as z — oo for the relevant integrals to exist. Let us consider the Lagrangian density:

Oii;  Ou;

L, u) = fw %{p i,

no

—Cijig Ui j Uy, ,} dz 3.1

where, for the moment, u, ii are independent vector fields subject to independent
increments éu, dii. We find that

& ¢ (.
5L=a—tf;_-=5u,.p

Ju; oii;
Y + o p5u,-: dz

%o

220z 1snBny 0z uo 1senB Aq $1Z1469/1.9¢/€/. €/al0melB/wo0 dno-olwspese)/:sdyy Wolj papeojumoq



466 J. H. Woodhouse

I
7|
|
Q
Se—g

%{Ciakl Oty ty 1+ Cpp By, 5"1:} dz

oo 0% u;
+ f ‘}{5”1'[—6;; (Cojur e, ) —p o2 ]

7] - 2%,
+ [H (Cijur Ty, )—p "Et‘{“] 5"1} dz

No[sn on,
+% rg'o [5“i(5i3kr‘ E Cigit Ups 1)

aﬂ ne+0
+(c,-~ @, = . i, ;) ou .
jk3 ¥4, § ijke Yi, j k
x,

=0

We see that if du,, §ii; are required to be continuous, and if these variations vanish
on the boundary & of a region 2 in (x,, t) space, then the variational equation:

5fidexldx2dt=0 3.3)

gives rise to the equations of motion (2.4) and the continuity condition (2.5) for the
two fields u;, i;.
Alternatively we may consider the Lagrangian density:

L'(u;) = L(u;, u) 3.4)

which, for a real vector field u has the usual interpretation as the difference of the
kinetic and potential energy densities and leads to the same equations and continuity
conditions for the single vector field u.
In the case where the displacement is Re(u;) where u; is complex a third Lagrangian
density is useful:
L =$L(u*, uw) (3.5

(¢ *’ indicates complex conjugation) which again leads to the equations (2.4), (2.5)
for the single vector field w. In a laterally homogeneous solid in which the displacement
takes the form (2.8) % may be interpreted as the average value of L'(Reu,), the
average being taken over one period of the exponentials occuring in (2.8).

(b) A laterally homogeneous solid
If the solid is laterally homogeneous we may consider displacements

u; = u(z) exp(i(k, x,— or)). (3.6)

Let us consider the Lagrangian density % defined by equation (3.5). If u(z) is
subject to variations du;(z) we see that in order to obtain a variational principle we
may drop the demand that du; vanishes on a certain surface in (x,, t) space since the
integrands in the first two terms on the right-hand side of equation (3.2) are inde-
pendent of x,, t. The variational equation

5f”.<£dx1dx2dt=o
R
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takes the simple form
0% = 0.

By considering certain specific variations du we may obtain alternative forms for
the integral ¥ which will be useful later, Let us first take

Ou; = yu;

with y real, and assume that u satisfies the equations of motion and continuity con-
ditions, but not necessarily the boundary condition at the free surface. (The reason
we consider such fields is that they are easily constructed using propagator matrices,
as we shall show in Section 6.) From equation (3.2) we find

0 =99% =fy(u' t+ 1t w),. -,

and so

Z =4utt+1"n) 3.7
where the notation is that used in Section 2.
Now take
ou; = iyu,

so that
0.7 =0 =2}iy(txt u—n' 7). 3.9)

Hence
L =1 1),=p, = 21" W), o, 3.9

and when the free surface condition

(D= =0

is satisfied £ = O giving the familiar result that average potential and kinetic energies
are equal in a linear wave system. Also since & is stationary with respect to small
variations du,(z) from displacements u satisfying all equations of motion and continuity
conditions, we obtain Rayleigh’s principle for the calculation of w when &, is known.
It is easily shown that the average vertical energy flux

—Av [Re(rm) Re(—%l%)]

1D ot e gt
2 (utz—1tu)
so that equation (3.8) also expresses the fact that no energy is transmitted across the
free surface. '
It is of interest to find the form taken by the integral % in terms of the fields u
and t. Using equation (2.7) we may eliminate ou;/0z from % in favour of the stress
components 7,;. We obtain

is given by:

& = f 1(u' Su— 1! C5d 7)dz (3.10)
%o

which we shall write as £ (u, 1), where

i)
T= C33'—ag— +ikaC3a. u

(.11)
p o out ik ut
T = _az— C33—lka. u Ca'3'

220z 1snBny 0z uo 1senB Aq $1Z1469/1.9¢/€/. €/al0melB/wo0 dno-olwspese)/:sdyy Wolj papeojumoq



468 J. H. Woodhouse

The variational problem is to find w, t such that (3.10) is stationary, under the
constraint (3.11). This constraint may be incorporated into the Lagrangian by adding
terms

~ 4 0 Jut
1( 25 5 —ik Cogu) H(¢1= 7 Costik, w1 Cas)

to the integrand in (3.10), where the row vector ¢ and the column vector ¢ are
independent Lagrange multipliers (Seliger & Whitham 1968). We may now use the
variational principle with 1, u subject to independent variations. Variations with
respect to t, Tt yield

e -1
¢=1"C,,

b= C;; T

and the Lagrangian takes the form:

0

P = f}{u" ik, C,3Csy 1—1tik,C3, Cy,u—utk,k,Q,, u

1o
gty w0y G2
+pw” u’ u— oz T— oz u}(z.
This may be written:
v oft of
Z = {%{f*Bf—~~~ Mf—ffo—} dz (3.13)
. 0z 0z
no
with
S | ik, C,; C54 ) 0 1)
B= , M= (i 3.14
(—MCHQA C7 (ow G419

where 1 is the unit 3 x 3 matrix. We do not justify the procedure of introducing the

Lagrange multipliers (T), ¢ but simply check that the form (3.13) leads to the correct
equations of motion and continuity conditions. We have:

- of oft )
5L = f%{arf [Bf—(M*—M)—a;] + [ffB— - (M——M')](Sf} dz
yA
no

N 7-+0
+ Zoi[éffo+fTMTf5f] 3.15)

n-—0
which leads immediately to the equation

f
% = (M~M")Bf (3.16a)

and the condition that t is continuous and vanishes on the free surface. Itis straight-
forward to check from (3.14) that

M-M"HB = A (3.16b)
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Surface waves in a laterally varying layered structure 469

and hence (3. 16a) is identical with (2.9).
An alternative derivation of (2.9) from (3.10), (3.11) makes use of the classical
Hamiltonian formalism. Defining a Lagrangian from the integrand of (3.10)

A= t"C3} t—u'Su
we have conjugate momenta

' _0A _ o
ou,,
_ A
p= out,,
Now define
# =1ty ,+u,, 1—A

= ufSu+ 1" C53 v— 17 C33l ik, Cy, u+ut ik, C,; C3d t.

Hamilton’s equations expressing the stationary principle take the simple form:

ou a# .

S = oo = Cid TGl ik, €y w
ot o
5 =~ par = Sk, CaCl x

and these equations are equivalent to (2.9). This formulation of the equations in
terms of a Hamiltonian is also noted by Kennett (1974).

4. Perturbation theory

We shall now return to the original problem when there are gradual lateral
variation in the properties of the medium. Following Bretherton (1968) we seek an
expansion for u, 1 in the form

u= E‘, gefuz, X, T)
s=0
4.0
T = }di ge? 19z, X,, T)
5=0
# is a function of x,, t and we define
a0
ky=——
7 Ox,
4.2)
)
Tt
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470 J. H. Woodhouse

We shall assume that k,, w are slowly varying functions of x,, t, i.e.

ka = ka(Xw T)

w=oX,T)
and it follows from (4.2) that
ok ow
(4 —_ = 0
oT + X, 4.3)
ok, Ok, 0
X, o&x,

Now substituting the expressions (4.1) into equations (2.7) we obtain

- 0 a N\
sgo el = sgo ge’t {C3‘31 19— C5,5 Cs, (s 52;— +lka) uf )}
§ e‘e“’ﬂ- = f e ! — (a J +ik ) Q (a 0 +ik) u®
s=0 ot <o 0X, 7] T\ 0X, v
5 5 4.4)
i i (s)
+p(a aT lco) (e aT la)) u
—\e g +ik)C C"t(‘)}
aXU 4 o3 “33

and using (2.6) with (2.5) the continuity conditions become:

fr+0

+ikv) u® +C,; C33 1‘5)” =0,

7-—0

® on i)
s .10 sy _p—tr
PR [t Tox, {Q”(‘e’ X,

r=01,2..N. (4.5

The zero order terms in ¢ in (4.4), (4.5) give the equations

o
L AX,, T){®
0z (4.6)

[7Oprt8=0, t=0,1,2..N

£ = u®

A is the matrix defined by equation (2.10) although %,, ¢;u, p, @ will all now be
functions of X,, T. These °stretched * co-ordinates enter into (4.6) as parameters
only, and for each X, T the equation may be solved in the same way as in the case
of a laterally homogeneous medium. Thus the first approximation gives displace-
ments which vary with depth in the same way as those for a wave with frequency w
travelling in a laterally homogeneous structure with the same properties as those at
X,, T. In addition the wave motion is required to be in a definite mode and w, k, are

where
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related to one another by the local dispersion relation for this mode:

w = w(km Xo): (47)

the stretched co-ordinates entering through the dependence on X, of u, p, ciju-
For w, k, on this dispersion surface the first approximation f'® takes the form

£ = a(X,, T) ik, , X,,2) (4.8)
where f is a known solution of (4.6) with fixed phase and normalization, and a(X,, T)

is a phase and normalization factor which remains to be determined.
The first order terms in ¢ in (4.4) (4.5) give:

ou®? . .
= —C3i tW+C5ilik,Cpyut = —C35 Cy, x @
ot
o, 00—k ky Qp) uV+ik, Cpy €33 v
5 3 (4.9)
— . k v (0)
(aXU QO\’lkV+, O'QD‘V aXv )u
0 i) i)
ol i+ ier —— ) g — =1 -(0)
p( aT io+iw 6T)u X, (C,3C33 T )
3 0
[:“’-(Q,,V ik, u® +C,3 C33 c<°>)—6—§7—'~]" =0. (4.10)
o n.—0
Now the equations (4.9) may be written
o
P —AfD = o 4.11)

where ¥, represents the right-hand sides of (4.9), and given that f(® is a solution of
the corresponding homogeneous equation (equation (4.6)) we may find a necessary
condition that a solution f* of equations (4.10), (4.11) exists. Let us consider the
integral

I= f O (B-(Mf-M)%)f(“dz
o

— f £O1 M—M') g dz. (4.12)
ffo

Integrating the right-hand side of equation (4.12) by parts we find

v ErC N .
I = f (f(o)T B— P (M—M“)) f(l)dz_r;) [f(O)T (M—M“)f“)]g:jg
1o
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The integrand here vanishes by equation (4.6) so that

s N
ff“’” M-MNydz+ F [T M-MHIVTI0 =0, “4.13)

fo

Substituting y from (4.9) we get

r ou® d d
Ot Ol C, gt ik +i
! {T 33 30 6X, u [( 6X,, Qﬂv lkv+lka Qav GXV )

0 0
+p( o7 lotio ?,1:*)] u®

G,
— @1 a—X“ Ca3 C3_31 ‘E(O): dz

o
S [uOt gD _ (Ot g ]m+0
+ 5 [u@t 2 — @1 @ T = 0.

By use of the continuity conditions (4.10) on u®, t* this becomes an equation in
u'?, 1 only and rearranging the derivatives with respect to X,, T the equation may
be written:

a
X,

®

o} : 0 - (4] 0 - (V]
f {u( al Qav lkv u(O)"i'%(u( )t Ca3 C331 t( - “( " C331 C30 “( ))}dZ
"o

7 0
+7%T f (9 piwu®)dz
o

-~

¢ d ) _ 3
- f {("w” ox, Co Css #0411 €3 G X, “(O))
o

-

Q ik _ika Qo‘v

0 0
(0)t (0)
o (ax, o axv)“

5
Ot : (0) 4.14
+u (p P 1w —1m 2 p) u } dz ( .1 )

an
0 - -
_ f ;z{u(o)f C,; C331 (9 4 O C331 Ci, u(o)}dz
[
fo

12,4

where the arrows indicate the directions in which the differential operators act. Now
it is clear by inspection that the left-hand side of this equation is pure imaginary and
the right-hand side is real so both sides must vanish. We shall consider the impli-
cations of putting the right-hand side to zero in Section 9. The left-hand side gives:

220z 1snBny 0z uo 1senB Aq $1Z1469/1.9¢/€/. €/al0melB/wo0 dno-olwspese)/:sdyy Wolj papeojumoq



Surface waves in a laterally varying layered structure 473

0
oX

oo
[ (FOTC €5 u? =i, €5 1O+ 20T Q, K, u)dz

a
Ho

+ ~;—T f 20O pu®dz = 0. (4.15)
no

Comparing this equation with equation (3.12), we see that it may be written:

o (0% o (0%
aT ((’5(0)— oX, (aka)zo (4.16)

where £ = £(u®, 19) and where, for the moment, the differential operators

6 0

20 ok,

are understood to operate only upon the explicit dependence of (3.12) on k,, w, and
not on the dependence contained in u‘®, ©'® which are solutions to the unperturbed
problem for the locally equivalent uniform waveguide.

We may show however that these derivatives may be replaced by ordinary de-
rivatives. First we note that the functions f of equation (4.8) are only uniquely
defined for k,, w lying on the dispersion surface (4.7). We shall assume however
that these functions are extended in some arbitrary (but differentiable) way to points
not on the dispersion surface. The derivatives

of of

ok, o

may then be defined in terms of this extended definition of f. In the examples of
Section 7 this extension is accomplished by defining f to be a solution of (4.6) except
that one component of the surface traction (t3, say) is allowed to be non-zero on
the free surface. Setting this final stress to zero gives the dispersion relation, but f is
in general defined for arbitrary &, w. This particular way of extending the functions
has the advantage that the Lagrangian & takes a particularly simple form:

aa*

L =
4

(u),* (1), (not summed) “.17

which we have obtained from equation (3.9). Having defined the derivatives

A

ok, ’ ow

we may write:

P (0t 26(0)t (0t (0) (0)
_(Z‘Z = 0L f%‘af f_a f ~ MfO©) _ of MT_Qf_ 4 f(O)TB.a_f_
ok, ok, ok, ok, 0z ok, oz ok,

1o

of(Ot of(©® OO
- M —fOTM! } d :
oz ok, o, 0z) (4.13)
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and using equation (4.6) we find

_ 9L ) 1 (O F M
kT ok, TEE ok, MM

e 0

i 0¥ X [éf("” af<°>] neto

and it is now clear that because of the continuity conditions satisfied by £ the
additional terms vanish when w, k, lie on the dispersion surface giving

o 0
ok, ok,
Similarly it may be shown that
0 0.F
o o
and equation (4.16) becomes:
d [o%& 0 oy
oT (6(0)_ 8x, (ak,>=0' *.19)

It is shown in Section 8 that this equation leads to an equation governing the wave
amplitude in the first approximation. For the quasi-static (w = constant) two-
dimensional problem the results of the next section show that equation (4.19) reduces
to the condition used by De Noyer (1961) of constant energy transport across the
structure.

When the form (4.8) is substituted into .# given by (3.13) we obtain

£ =Z(a, 0, k,;, X,)

a known function of its arguments. Equation (4.19) may be derived from the
variational problem:
8[Z(a, w, ky X,)dXdX,dT =0

with constraints (4.3) namely:

0w + oky 0
X, oT
kg Ok _ g
X, X,

and this is the average Lagrangian principle as formulated by Whitham (1965b).
The variational equation for a is simply

which is equivalent to the result
¥=0

since a enters into % only as a multiplying factor.
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Surface waves in a laterally varying layered structure 475

5. Conservation equations

We shall here obtain two exact conservation equations for the laterally hetero-
geneous structure and examine the form these take for the approximate solution £©.
The first equation is closely related to an energy equation and the second to con-
servation of a quantity which has been called the  wave action’ (e.g. Bretherton
1968). The Lagrangian (3.1) has two obvious invariances; firstly it is not an explicit
function of t (we assume that the structure does not change with time) and secondly
it is unchanged to first order if we simultanecusly replace @ by (1 +y) and u by
u(l —y) where y is a small parameter. Using equation (3.2) (or equivalently by
Noether’s theorem—see for example Seliger and Whitham 1968) these invariances
give rise to two conservation equations:

o0

0 1 aﬁ, (‘5u,~ ~
Py fi a1 p Py +Cija By, g the, 1 A2

no

o oil; . Cu
+ f -1 {Ciakl Y uk,l+cijkauisj'_gt&—} dz=0 (5.1

) oi; . oy
o f%{ 5 Pui P }dz
no
o X X .
- ox f%{Cijka“i,j”k“ciakt“i“k,z} dz=0. (5.2)

o

These are exact equations satisfied by any two vector fields u, & which satisfy the
equations of motion and continuity conditions. If uis a real vector field and we set
i = u the first integrand of (5.1) becomes the energy density and the second inte-
grand becomes the lateral energy flux vector, so that equation (5.1) is a conservation
equation for the lateral flow of energy.

If the medium is laterally homogeneous and we set

u = Re{u(z)exp(i(k, x, — 1))}
we can average over one period of the exponential to obtain the ¢ average ’ energy

density:

+ [ Hu'(2) @0 =8) u@)+ €'(@) C33' <(z)}dz
Mo
and an ¢ average ’ energy flux vector:
- [F 0@ 5@~ '@ u@pdz.
fo

Using the fact that % given by (3.10) vanishes, and the results of Section 4, these may
be written*:

* These expressions provide a straightforward way of finding the total energy flux and energy
density of surface waves in a Jaterally homogeneous or heterogeneous layered solid.
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respectively, where
F =9 (u(z) exp (i(k, x,—wz))).

Considering now the approximate solution £'°? for the perturbed structure and arguing
along the lines of Whitham (1965a) we may expect a conservation equation to hold
for the flow of average energy; i.e. we may expect

0 (w oL ) 0 ( oL ) 0
—_— w =
oT ow (7X6 ak, (53)

where £ = % (09, 1'9). This equation may, indeed, be deduced from (4.19) and
the fact that % does not depend explicitly upon t. Since .2 vanishes for k,, w on the
dispersion surface we have:

0L oL ok, N 0% o
éT ok, ¢T  éw 0T’

0= (5.4)

(The derivatives with respect to T are with X, fixed, and those with respect to w, &,
are those obtained by differentiating the functional form % = % (a, 0, k,, X,)).
Using (4.3) and (4.19) in (5.4) equation (5.3) is immediately deduced.

The second conservation equation (5.2) leads to equation (4.19) if we substitute

D I3
i*=u; = 20.9‘ e®ul(z, X,, T)
=

and retain only zero order terms in &.

6. Propagator matrices

The equations (4.6) governing the z dependence of the first approximation in the
perturbation expansions are identical with those governing wave propagation in a
uniform waveguide, with the * stretched ’ co-ordinates X, entering only as parameters.
They may be solved by standard propagator matrix methods (Haskell 1953; Gilbert
& Backus 1966) and we shall simply present some results for these matrices without
proof.

The propagator matrix P(z, z,) is defined as the (unique) continuous solution of
the matrix equations

d
'E P(z,zp) = A(z) P(z, 2) 6.1)
P(zg,2) = 1

where the notation is that used in Section 2 and 1 is the unit 6 x 6 matrix. P has the
following properties:

(i) P-l(znzz) = P(z;,24)
(ii)* P'(zy,2;) M-M') = (M-M") P~ (z;,2,)
(iii) P(zy,2;) P(z;,2;3) = P(z4,23)

(iv) 1If A(z) is constant in the region

zZ, KZ2<K2Z,

Results (ii) and (vi) appear to be new and are proved in the Appendix.
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Surface waves in a laterally varving layered strucfure 477

then
P(z,,2,) = exp (A(Zl _22))

(v) The solution of the initial value problem

of
5 = Af
f(zo) = fo

is given by
f(z) = P(z, z0) £
(vi)* If the material is transversely isotropic throughout
NP(z,,2;) = P*(z,,z,) N

where

Now let us suppose that the value of £/ on the lowest surface of discontinuity is

given by
£ (ny) = fy.

In order that the wave motion is confined to the region of the layers we require

Lim Pz, qp)fy =0 6.2)
and using (3.7) £ is given by
&L = ' Pl (no, ny) (M+M) Plo, 1x) fiy. (6.3)
The condition that the stresses vanish at the free surface may be written
MP(i7o, ny) fy = 0. (6.4)
It is shown in Section 10 how equations (6.2) to (6.4) may be applied to find
Z(a, 0, k,, X,).
For an isotropic medium in which k is parallel to the x, axis we have:
0 0 —ik ljp O 0
0 0 0 0 1/u 0
ikA
_ Jﬁ_ 0 0 0 0 . _l__m
A= A+2u A+2p
i? ikl
— pw? kz[ A+2u)— —] 0 0 0 -
poHE GH20= A+2u
0 —po+pk* 0 0 o0 0
0 0 —pw? —ik O 0
(6.5)

* Results (ii) and (vi) appear to be new and are proved in the Appendix.
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w?p \*
= kZ___ e
Y ( A+2u )

V/ (kZ__ _C_Dip__)%
H

Let us define

(6.6)

with v, v’ being either positive real or positive imaginary. Then A has eigenvectors
given by the columns of a matrix R, belonging to eigenvalues —v', —v, v, v, =V, v/,
where

—iv ik iv’ ik 0 0
0 0 0 0 1 1
R = k —v k v 0 0
iQuk?—pw?)  =2ikuv  iQuk*—pn?) 2ik pv 0 0
0 0 0 0 —u oy
—2ukv’ 2uk? — pwr* 2ukv’ 2uk:—paw* 0 0
6.7)
and R~ is given by:
i(2uk? — po?) ku i k
- ! 2 0 2 B 2 0 - ’ 2
2V pw pw 200 v pw
ik i 1 ki 1
—t 0 S k= pe?) oy 0 —
pu? 2va2( Hk = por) 2vpw? 2p0*
iQuk?—pw?) ke i k
Ty oz Y ol 7 0 o
R = 2V pw pw 2pw 2 pw
ik p 1 ki 1
——=E 0 - Quk?—po?) s 0 ——
pw? 2vpcu2( WK = pe) 2vpw? 2pw?
0 1 0 0 I
2uv'
0 i 0 0 e
2uv’
(6.8)
so that
R™!AR = Diag (—V', —v, Vv, v, =V, V')
and ) ) o
exp (Az) = RDiag(e "%, e, e"% %, e "7, e"*) R™L 6.9)

7. Geometric properties

The properties derived in this section are true for any transversely isotropic,
laterally homogeneous, layered structure with z axis as axis of symmetry, whether
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Surface waves in a laterally varying layered structure 479

completely isotropic or not. Let us consider the 3 x 3 rotation matrix
cos® sinf O
V(@) = { —sinf cos® 0]. (7.1
0 0 1

Because Of transverse iSOtI’Opy we have
cijkl = Vim V;’n Vkp qu cnmpq

where the 8 dependence is understood. In terms of the matrices of Section 2 this may

be written
vVtC,,V= V,‘:,,, CoyVin

and for the matrices S, T, C;; occurring in A we find

VITV = i(Vk), C,;
VISV = pw?1—(VK), (VK), Q,, |- (7.2)
VIC3;3V =Cy;

If the dependence of A upon k is made explicit the results (7.2) may be combined to
give:

Ut AK) U = A(Vk) (7.3a)
where U is the 6 x 6 partitioned matrix
V@ O
U = . (7.3b)
0 V(@)
If we now choose 8 = k such that
ky=kcosx
ky =ksink
where
k = (k,ko)*
we find
Ut (x) AU®K) = A’
where

A’ = A(V()K)

is the matrix A calculated with k parallel to the x; axis, i.e. with k; =k, k, = 0.
Thus equation (2.9) becomes:

f
2 Tt (e
> Uk) A UNx)f

which clearly has solution
f=Uxrt

where
of’
— = A'f,
0z A
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Let us now consider the calculation of & using (3.10) for instance; we have:

= f Hw't Ut(e) SU®K) W — 7't Ul (k) C34 Uk) ') dz

no

= f Hu'tS w =1t i ) dz (7.4)

no
where

S = pco2 l—kz(cu _C13 C;.‘Sl C31)

f = (—“—)
T

The expression (7.4) is independent of the specific direction of the wave and hence
to calculate . we need only consider waves parallel to the x, axis, that is with
k, =k, k, = 0. This may be summarized by saying that .# is a scalar with respect to
rotations in the x;, x, plane. This has an important consequence; the wavenumber
components k,, k, enter into #{a, w, k,, X,) only through the variable k = (k, k,)?,
and therefore the average energy flux vector,

and

0 _ _ K 02

TPk, T Yk ok

is in the direction of k. Hence for a transversely isotropic medium energy transport
is in the direction of the wave vector.

8. Solution of the equation by the method of characteristics

The equations governing the gradual variations in amplitude, wave vector and
frequency may be written:

Qo %y (8.1
0x, a D
ﬂcﬁ, EIEV, =0 8.2
ox, ox, (8.2)
0 (22 _ 0 (3% _
ox, (ak,)_ ot (aw)"o' ®.3)

We have replaced the stretched co-ordinates X,, T by the original co-ordinates of
the problem, but still demand that the lateral variations in the medium be gradual.

The derivatives
G, 0

ot ’ ox,

are total in that they include the effects of varying wave vector, amplitude and
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frequency. We now define characteristic curves (Courant & Hilbert 1962) by the
equations:

dt dx, dx,

OZLjow) ~ ~ @Llok) ~  (0Loky) ®8.4)
i.e.
_ @2k,
Yo = T 02)0w) (8.5)

where ¢ -’ denotes a derivative with respect to time along the characteristic curve.
Now since Z(a, w, k,, x,) vanishes identically when the dispersion relation

o = w(k, x,) (8.6)
is satisfied, (8.5) may be witten
] ow
%, = r 8.7

0w/0k, is the local group velocity, and from (8.5) and (5.3) we see that it is also the
velocity of energy transport. Substituting the form (8.6) into (8.1) and using (8.2)
and (8.7) we find

(8.8)

where the derivative on the right-hand side is that obtained from (8.6) keeping k,
constant; it is a known function of k,, x,. Recalling that k,, w are defined in terms of
the phase 8 by equations (4.2) we obtain from (8.6) the following equation for 6;

00 00
Py +w(a‘:, x,) = 0. 8.9

Equations (8.7), (8.8) are in canonical form with the dispersion relation
o = w(k,, x,) taking the place of the Hamiltonian H = H(p,, q,) and equation (8.9)
is the Hamilton-Jacobi equation corresponding to this Hamiltonian. This corres-
pondence between wave propagation and the equations of classical mechanics has
been known since the work of Hamilton (1828-1830) and has been used in a geo-
physical context by Backus (1962) to determine the perturbation induced by the
rotation of the Earth on elastic wave propagation. Block & Gilbert (1972) have
recently used such a correspondence to calculate perturbations in phase as a surface
wave traverses an anomalous region. It will be shown below that equation (8.3)
enables perturbations in amplitude also to be calculated, and furthermore it is shown
in Section 9 that there is an additional phase perturbation which is not considered in
the work of Block & Gilbert and is not predicted by the average Lagrangian method
of Whitham.

Since @ is not an explicit function of ¢t we immediately deduce from (8.6), (8.7),
(8.8)

o =0,

i.e.  is constant along the ray (or characteristic curve). Equation (8.3) may be
written

(w)- 0L % _ < 1o
) b ox, (8.10)
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Now let us suppose that initial conditions are given as
ko= Bo(s)
on the surface having representation in terms of parameters s;, S,:
Xe = ao(sv)
t= t‘)(sv)'
The solutions of equations (8.7), (8.8) may be written:
X¢_= Xo (t_’ O(,(Sv), ﬁo(sv)5 tO(sv))

ka = ka (t’ aa’(sv)’ ﬁa‘(sv)’ tO(sv))'
It is easily checked that

0x, ox, 0s, 1

= = — j
0x, 0s, 0x, J
where o a(xl, x2)
a(sl’ 52)
and equation (8.10) requires
(J _6:?5_) = Q. (8.11)
dm.

This equation together with the “ ray ’ equations (8.7), (8.8) enables the amplitude
factor aa* to be calculated. J is simply a measure of the geometrical spreading of the
rays and equation (8.11) means that for an observer moving with the local group
velocity the product of the local energy density with the area of his ray tube remains
constant. The correspondence of the present theory with ray theory for body waves
in now apparent.

The equations governing the propagation of the derivatives needed in calculating
J may be derived by differentiating the ray equations (8.7), (8.8) with respect to s,:

0x, P o (0x, o [0k,
= 12
( 7s, ) ok, ox, ( os, ) * ok, ok, ( as, ) (8.12)

(ak,) _ Yo (6xu)_ i) (aku). 8.13)
0s, 0x,0x, \ 0Os, 0x,0k, \ 0s,

The equations (8.7), (8.8), (8.12), (8.13) now form a system of differential equations
for the twelve unknowns x,, k,, 0x,/0s,, 0k,/0s, and may be integrated numerically
in order to calculate J. This procedure is analogous to the time integration method of

Wesson (1970) in the theory of body waves. The initial conditions from which the
integration may be started are as follows:

Xa (to(sv)) = o‘a (Sv)

ka (to(sv)) = ﬁo‘(sv)
o (to(s) = 50 ®.14
ok, B, -
s, (to(sy)) = 51; (sv)-
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We know from the previous analysis, that for the propagating ray

Fla, v, ky, X,;) =0 (8.195)
and it is easily shown that )
Lla,w,k,, X;) =0

is a direct consequence of equations (8.7), (8.8). Thus if (8.15) is satisfied at the
initial point of the ray and the ray is found by numerical integration of (8.7), (8.8)
then (8.15) is automatically satisfied everywhere on the ray. This has the useful
consequence that if the dispersion relation is satisfied at the initial point it is satisfied
everywhere along the ray so we do not need to solve for w as a function of k at each
step of the integration. This should greatly speed the numerical integration of the
ray equations.

The equation governing the phase 8 for an observer moving with the local group
velocity along the characteristic curve is:

6 = ku xa—w(kas xu)
and hence
ty

0] = J {k, %,—wlk,, x,)} dt. (8.16)

[+]

to

The integrand here is the Lagrangian corresponding to the Hamiltonian v = w(k,, x,)
and it is easily checked that the integral (8.16) is stationary with respect to small
perturbations of x,, k, from their true values, provided that the end points x,(¢,),
x,(t,) are fixed.

9, An additional variation in phase

Equation (4.8) gives the first approximation to the stress-displacement field in
terms of an amplitude factor a and equation (4.19) gives an equation for aa* since
% depends on a only through this quantity. As yet we have no equation governing
the phase of @ so that our solution is determined only up to a factor exp (ip(X,, T)).
To find an equation governing p we must return to the relation (4.14). We have used
the fact that the left-hand side vanishes and we now consider the right-hand side.

Let us write

£9) = exp (ip(X,, T
9.1
where
f = |a(X,, T ik, », X,,2)

so that p is the phase of a occurring in equation (4.8). Substituting (9.1) into the
right-hand side of equation (4.14) and setting this to zero we find

a o
2. L - . 22 - oox J. (@' C,3 C53' T+71 €54 G5, W) dz
g %o

oT do  0X, ok,

£ 9 Lt o
- f %;{(ﬁT FXT C,3 C33' T+7 G5 C3“—6~X—,_ u)
no

i 3
—T - —- —
+ (G Qi =ik, Q)
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0 d
—.T . —. _—
+1 (p ST iw uo—aT )u} dz. 9.2)

When the dispersion relation is satisfied the left-hand side of (9.2) becomes

07 .
o

in the notation of Section 8. The right-hand side may, in theory, be evaluated since
all quantities there are known from the preceding analysis. Hence by integrating along
the rays we may find the additional phase correction p.

10. Examples

In order to apply the above theory we require % as a function of k, w, X,, T.
This function may be found explicitly only if the propagator matrices are known as
functions, k,, w and the elastic parameters. Such expressions for the propagators are
known if the elastic parameters and density in each layer are independent of z and so
in the examples considered we shall assume this to be the case. We therefore associate
with each layer a set of elastic parameters and a density which depend only upon the

)
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FI1G. 2. A two-layeted structure with lateral heterogeneity.
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Surface waves in a laterally varying layered structure 485

horizontal co-ordinates x,, x,. As stated above the functions defining the layering
are also functions of x, x,.

{a) Love waves

We shall consider the three-dimensional layered solid shown in Fig. 2 and a
disturbance with u;(® = 0. The material of each layer is assumed to be completely
isotropic and, as shown in Section 7, we may calculate .# by considering a Love wave
travelling parallel to the x, axis in a laterally homogeneous medium. Since f has only
two nonvanishing components fi,, £;, we shall redefine

- (2)
T32
and similarly redefine the matrix A and the propagators P by deleting all but their
second and fifth rows and columns. The propagator P(n,, #,) takes the simple form

1
P(no, 1) = cos (vo (11 =1o)) oo sin (001, —70))

1o Vo Sin (Po(M1—70)) €08 (Yo (1 —10))

2

Es

vy = —ivg’ = (i’p_“’_ _kz) _
Ho

©
u
£, = ( 2(o) )
T32
must satisfy equation (6.2) and it is easily seen that this implies that £,® is a linear

combination of the eigenvectors of A (for the lower medium) with negative eigenvalues.
Since there is only one such eigenvector in this case we have

fl(O) = a( 1 I)
—Hy Vs

where a is a constant and hence

where

z=0

vy
COS — +
£, = f(0)|z=no =a Yo(1—"0) fo Vo

$in Yo (111 —1o)

Yo Mo S o111 —1o) — iy V1’ €08 70111 — o)
Substituting into (4.17) we obtain

?
HiVy

070

% = jaa* {cos Yo —1io) + sin ?o(’11"’10)}

X {0 lo SiN Yo(1y —10) = py v1' €08 Yo(11y —10)}

Although this average Lagrangian differs from that derived for Love waves by
Gjevik (1973) it gives the same expressions for

9L 0L
ow ' ok,
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when the dispersion relation is satisfied. The results for % are different because
Gjevik has (in effect) extended the functions f to points not on the dispersion surface
in a manner different from that used here (see Section 4).

The vanishing of the surface stresses gives the usual dispersion relation:

By vye
Ho Yo

tan yo(n; —no) = (10.1)

and when this relation is satisfied % vanishes. We have shown in Section 7 that the
same function .% is obtained for Love waves moving in any direction over the surface.
When the dispersion relation is satisfied we find

ag 2 2

== —iaa* ka{uo h(1+62)+ ”0 B (§2+ ”12 )}
ok, HiVy Ho
o0& @ to® Ui py
52 o2 by L (2 Lo )
ow 4 Bo* Ho B( ) HyVy ¢ Ho Po

where
h=hX,)=ny—ne

vy
Ho Vo

¢ =tany, h =

Ko
Bo? =2
¢ Pa
The surface amplitude is found to be

s = [uQ|,_p, = lal(1+£H)*
50

0L - 1k Mo{h‘l' Ui e A(GW?D }

ok, Ve AQ?v?)
(10.2)
0Z pilte A(Bv'?)
— 12 170
b " “"’°"‘+ % A(u2v2>}

where A indicates that the difference of a quantity is to be taken between the surface
layer and the underlying half space with the understanding that

(02

5
Thus the following conservation equation is obtained:

a (, e AG?) i type AW
}i 2
X, (5o o1+ Syt T (#@pofps v A(ﬂ’V”)})

2

Vo© = “"}’02 =k*—

(10.3)
The dispersion relation (10.1) implies a specific dependence

o = ok, X,)
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of w on k,, x, so that all quantities except @ in equation (10.3) are known functions
of X, k,. This equation together with equations (4.3) are the propagation equations
for s%, k, as functions of X, T.

The ray tracing equations may be written

. ke oo [ AW YR g e AR
xd = _-ﬁ0 ’ A 2 .12 2 .12
w hvy Au* V5 +py po A(B*V'?)
[ . |
w*h 8B, oh ) 2 12
- YA ’
G o= 2y A0
V')’z ﬂoz
ky = e w? Of 1 dp)
+l‘l1 VﬂoA v12 B3 ax + 7 ax )
i v RAGE VD 0, o ABEY?) |

and these may be integrated by standard methods.

(b) Rayleigh waves

We shall consider an elastic half space with elastic parameters and density depend-
ing on the horizontal co-ordinates alone and with an undulating surface. We shall
consider displacements in a Rayleigh mode, and therefore we may calculate the
average Lagrangian % by considering a Rayleigh wave propagating in the direction
of the x; axis in a homogeneous half space. fmay be redefined as

T33

and the matrices A and P are similarly redefined by deleting their second and fifth
rows and columns. There are two eigenvectors of A with negative eigenvalues given
by the first two columns of R in (6.7). A linear combination of these eigenvectors
will give the surface stresses and displacements and if we demand that 7,3 vanish at
the surface we obtain

—iv' + 2—,;7(2”,(2 ~pw?)
pw’*
i =a 2uk
0
Quk*— pw?)?
2uky

—2u kv’ +

By (4.17)
pw*

— 2 PO
< =l 4p kv

(Quk? — pa®)* —4p> k* w').
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The requirement that 15, = 0 gives the usual dispersion relation:

Quk?—pw): —4p* k*vw' =0

and % vanishes when this is satisfied. The suiface displacements are:

ai
1O gy = S (= 200V + 206 = po?)

2
apw
u3(0)lz="0 = 2ﬂk
and we have
0F  k,pw?al® 2pw? v
= a 4 2 _ _ ’_ 2 _ .
ok, 4k*v lk 2w k(v + v’)}

0L _ pw3|al? { 5 kz( v’
ow 4ut kv
The ray equations take the form:

- -y

20> v v
2__ - r__ 2 . .
4k Ve 2w —k ( 5 + L"')

. kq
X, = ——
° w

o) <

{(2,uk2-pco2)( On kz-%a—”w)-zu LLEPEI

7 _\_ 2_ .2
2o + ﬁzv') pQRuk*—pw )}.

0x, ox, 0x,
22,2V O vaﬁ)}
’ Wk o (cx3v ox, PV ox,
' v’ v
® {P(Zukz—pwz)—u2 k* (?v— + W)}
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Appendix

In this appendix we shall prove the two symmetries of the propagator matrix given
by properties (ii) and (vi) of Section 6.
From (3.14) and (3.16b) we see that

A= (M-M"HB.

Where B is Hermitian
Hence :
At = - B(M-M")

= (M-M") AM-M".

Now using (6.1) and its Hermitian conjugate we find
4 (P (M-M")P)=0
dz

“and using the initial condition and continuity condition we have
PPM-MHP =M-M'

and therefore property (ii) is proved for a general layered solid.

Property (vi) is true for a transversely isotropic layered solid and may be proved
as follows.
Substituting § = n in equations (7.3a, b) we find

Ut(n) A(k) U(n) = A(—k)

and from (2.10) we see that
A(—Kk) = A*(k)
and therefore
NP AN = A*

where N the matrix defined in the statement of property (vi).
If we multiply equation (6.1) on the left by Nt and on the right by N and then take
the complex conjugate we find

7312— (N' P*N) = A(N' P*N)

so that by uniqueness we have
N'P*N =P
and property (vi) is proved.
It is interesting to note that properties (ii) and (vi) proved in this appendix are
group properties which restrict P to a certain subgroup of the complete group of
6 x 6 complex matrices. Symmetries such as these will be explored further in a later

paper.
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