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SURFACE WAVES IN MULTILAYERED ELASTIC MEDIA

I. RAYLEIGH AND LOVE WAVES FROM BURIED SOURCES IN A
MULTILAYERED ELASTIC HALF-SPACE

By Davip G. HARKRIDER

ABSTRACT

A matrix formulation is used to derive integral expressions for the time transformed displace-
ment fields produced by simple sources at any depth in a multilayered elastic isotropic solid
half-space. The integrals are evaluated for their residue contribution to obtain surface wave
displacements in the frequency domain. The solutions are then generalized to include the effect
of a surface liquid layer. The theory includes the effect of layering and source depth for the
following: (1) Rayleigh waves from an explosive source, (2) Rayleigh waves from a vertical
point force, (3) Rayleigh and Love waves from a vertical strike slip fault model. The latter
source also includes the effect of fault dimensions and rupture velocity. From these results we
are able to show certain reciprocity relations for surface waves which had been previously
proved for the total displacement field. The theory presented here lays the ground work for
later papers in which theoretical seismograms are compared with observations in both the time
and frequency domain.

INTRODUCTION

Several years ago Dorman, Ewing, and Oliver (1960) successfully utilized the
Thomson-Haskell matrix formulation (Haskell, 1953) in the calculation of surface
wave dispersion on multilayered elastic media using a high speed computer. Since
that time surface wave dispersion has been used extensively in the interpretation
of the earth’s structure. Caleulation of dispersion had previously been limited to
simple earth models consisting of at most three layers.

The success of surface wave dispersion in yielding additional knowledge on the
earth’s upper mantle structure and on the earthquake source mechanism has given
hope to seismologists that the amplitude spectra of surface waves may provide
further information concerning the mechanism of seismic sources. This is especially
true for source depth which has no influence on dispersion. In order to determine the
effect of source location on surface wave amplitudes it is necessary to include a
source at depth in the multilayered formulation. Also without a specific source one
is unable to determine the relative excitation between modes as a function of
frequency.

There are two methods of attacking the source problem for an n-layered medium.
The classical technique uses the determinants that result from Cramer’s rule for
solving a set of inhomogeneous linear equations. One expresses the source as an
integration of homogeneous solutions to which have been added homogeneous layer
solutions with arbitrary coefficients so as to be able to satisfy the boundary condi-
tions at each interface. In this way one arrives at a formal integral solution with
an integrand given in terms of the ratios of two determinants of order (4n — 2) for
Rayleigh waves and (2n — 2) for Love waves.

This method, although easy to formulate, is extremely cumbersome if not dan-
gerous to evaluate numerically on a computer. The danger involved results from the
fact that determinants in general are not slowly varying functions of their elements.
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The determinant solution was obtained by Jardetzky (1953) and Kellis-Borok
(1953). Besides the numerical difficulties inherent in solving large order deter-
minants there is the practical difficulty of reordering or simplifying the deter-
minants into a form which provides insight into the individual effects of receiver
depth, source depth, and layering on the spectral amplitude.

The second method is to use a matrix formulation. Previously this has been done
in two ways. Using the Thomson-Haskell matrices to obtain the reflection and
transmission coefficients for plane waves in multilayered media (Thomson, 1950),
and an integral representation of a point source in terms of plane waves, Gilbert
(1956) obtained a formal integral solution for the compressional point source, but
made no effort to evaluate the integral for the surface wave contribution. '

Gilbert and MacDonald (1961) applied the Thomson-Haskell matrix method
to a layered sphere using the solutions of the equations of motion for an elastic
shell. They obtained the solution to the source-at-depth problem for the sphere by
operating on the source vector equation with a matrix product of the shell matrices.
The source vector equation was obtained by evaluating the source at positions
infinitesimally above and below the source depth.

This paper derives in detail an integral solution for the time transformed dis-
placements for certain elementary sources at depth in a multilayered isotropic half-
space. The integrands are expressed in terms of elements from the matrix product
of the Thomson-Hagkell layer matrices in the layered array. These integrands are
obtained by a technique similar to that used by Gilbert and MacDonald, namely,
by a matrix operation on a general source vector equation. The elements of the
vector equation depend on the integrand of the particular type of source under in-
vestigation. The transformed sources considered are as follows: (1) An explosive or
spherical pressure source, (2) A horizontal and vertical point force, (3) A model of
vertical strike slip fault sources formed by integration of a time lagged horizontal
singlet or doublet point force over the fault surface.

The vertical and horizontal point forces are not as restrictive as one might
surmise. Their generality was shown by Kellis-Borok (1953) who pointed out that
the field due to a point force, #, of arbitrary direction in a multilayered media can
be obtained by the superposition of the fields due to a vertical point force, F sin A,
and a horizontal point foree, F cos A, where A is the vertical angle between F and
the horizontal. Furthermore, displacement fields for multipole sources can be
determined by spatial differentiation.

From the residue contribution of the integral solutions, we obtain the Rayleigh
and Love wave displacements for various source types. If we had stopped here this
problem would have been merely an extension of the matrix technique of Gilbert
and MacDonald to Rayleigh and Love waves on a multilayered media for different
types of sources. Extensive programming and numerical analysis would have been
needed to compute amplitude spectra or theoretical seismograms. However by
obtaining a simple form of the inverse of the product matrix in terms of the ele-
ments of the product matrix itself and simplifying the residue numerator we are
able to separate the solution into factors representing source depth, receiver depth,
layering, and path of propagation. The necessary simplification of the numerator is
accomplished by using relations determined by setting the integrand denominator
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to zero. The factors representing source and receiver depth are shown to be simple
functions of quantities calculated in the plane wave problem. Using the numerical
techniques to be described in Part II the excitation function for the layered medium
can be calculated analytically by simple modifications of computer programs which
are currently used in seismology to calculate dispersion for Rayleigh and Love
surface waves.

Tare EQuaTioNs oF MoTION AND THE MATRIX RELATIONS FOR LAYERS
Not CONTAINING A SOURCE

Tirst we consider a semi-infinite elastic medium made up of n parallel, solid,
homogeneous, isotropic layers (figure 1). We number the array such that the layer
at the free surface is layer 1 and the half-space is layer n. Placing the origin of a
eylindrical coordinate system (r, 8, z) at the free surface, the layer interfaces are
defined by 2z constant and any given layer m is bounded by 2, and z,, with z,, >
Sm—1 -

The Fourier time transformed vector equation of motion for an isotropic elastic
solid m is

(A + 2u) grad div S,, — pmeurl (curl 8,) = —oomSn (1)
where the following notation has been used:
8w = (Gm , Tm , Wa); the displacement vector with (r, 8, z) components
w; angular frequency

pm ; density

Am , um 3 Lame’s constants

<)\m + 2y
am == —_————

1/2
) ; compressional wave velocity
Pm

1/2
Bm = (”—m> ; shear wave velocity
om

w .
ko, = —; compressional wave number
(247

w
ks, = —; shear wave number

-~ =5,

Defining the potentials &, ¥, and % implicitly as
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_ 0m | OUm | 10X

G (7, 0 —_— = YAm
il 0,2) = 50+ 5o+ %

) 10¢n . 10%m  Om

m\ 7T ] = - - . 2
I (7, 0, 2) r 08 +r 9206 or (2)
_ 0m 10 ( 0n 1 3%

m\T, 07 = -\ 2 ane
(7, 6, 2) 0z 7 or <7 ar ) 72 96?

which represent the transformed radial, azimuthal and vertical displacements

r r o
—_————————— O
|
z
2
Zy
| 3
1
1
1
i
s—|
Zg-1
Sy
————————— lr~s————~——— D=z
Sz
Zs"
s+
i
|
i
1
|
1
n-|
Zp-|
n
J

F16. 1. Direction of axes, numbering of layers, and the depth of interfaces and source.
respectively, and substituting into equation (1) we see that
div 8, = Viou
and that equation (1) is satisfied if @, , ¥ and %, are the solutions of

10 ( 9n) , 18m | Fom 2
Vz_m = - e s = _'kuz Pm
o = ar <r 6r> P T a2 ¥

(3)
Vz\Zm = _kgm’a—bm

2 2 -
Vm = —kg,Xm

Using (3) with (2) and the definitions of stress in terms of displacement, we obtain
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the normal, azimuthal tangential, and the radial tangential stress to the z plane or
P.., Py, , and P,, respectively

a g[/m 1 O%m
a7, 0,2) = 37‘ oroz Y
10w , 10%m  O%m
m(r08) = g T s or
— _ aﬁbm 62$m 2
wm(n 0: Z) - '52_ + 8 ) + kﬁm\&m
— O, .o
P (r68,2) = 2up — + A div S,
dz
_ ) &m d \bm 2 a\bm
= B [ 9z t 923 + K Mkamwi (+)

20 m | 20Wm | kb, OUm a%(m]
o [7 T iazee Ty a8 ara6

7 9z

P (r,6,2) = um (@ﬂ + %)

— a@m a‘pm 2 a‘z/m 1 625(7"
= Hm [ ERrREEE v s L e v

In passing, we note that if %, is independent of r and if &, , ¥» and %, are inde-

pendent of 9, equations (4) reduce to the usual potential expressions for cylindrical

displacements involving azimuthal symmetry (Ewing, Jardetzky, and Press, 1957).
We now define

in(r,0,2) = [ anlr, 0,5 8) dky  Py(r,0,2) = [ Pu (6,2 ) d,
0 0

U7, 6,2) = / valr, 8,25 k) dk, Py, (r,0,2) = / Py, (r,8,2; k) dk,
0 1]

Wnlr, 0,2) = f wy(r, 0,z k) dk, P, (r8,2) = f P, (r0 2 k) dk,
o b (5)

n(r, 0,2) = f on(r, 0,25 k) dky,  Fn(r,0,2) = [ s, 6,2 1) d,
0 (1]
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and

(7, 6, 2) =f X7, 0, 23 &) dk.
0

Assuming the following separable radial and azimuthal dependence for the potential
integrands

€9m<7”7 b, z; k) = @m(z)']l<kr) cos 10
Un(r, 0,2 k) = ¥n(2)J(kr) cos 18 (6)
xXm(r, 0,23 k) = xm(2)J((kr) sin 16

we substitute relations (5) and (6) into equations (4). Equating integrands, we
obtain

0n(r, 0,2 ) = {[%m + d‘”’”(”] HIED) ey T >} o5 19

dr

Vg, (2) dT(kr) @ 9p,(2) Ji(kr)
AV dkr k¢ kr cos I

vm(T7 07 2, k> = {_[@m(g) + fll‘b:;_zszil ‘ﬁ%ﬂlﬁz m( ) dJl(k? >} sin 18

_ ) Vg, (2) Jilkr) | 7 01,(2) dJo(kr)| .
_{ e B TR e dw |l

dem(z) | d a&m(Z)

dz

wa(r, 8,2; k) = |: + -+ kﬁmnp,,,(z):l Ji(kr) cos 10

=t ey, (2) Ji(kr) cos I8
k ¢

(7)

zzm(r 0, 2; k) = {2 |:d (PM(z) + dIPM(Z) + ;m d\[/:;:Z):l - )\mkim@m(z)}

-Ji(kr) cos 10 = oy, (2)J(kr) cos 18

szm(r’ 0’ z; k) — _um{l: d‘Pm(Z') + 2d¢1n<2) + kﬁm‘l/m( ):|J1<.ZC7)

+ dxn(2) dJl(kr)} sin 10 = {—i‘rRm(z) Tullr) _ 71,,(2) sz(kr)} sin 16
dz dr kr

P, (r, 0,2 k) = ”m{[ d‘Pm<3> 19 d¢m(2) 4R gz ):| sz(l’t’V)

dkr

4 Gxnlz) dxm(z) Ji(kr )} os 1 = {z e (2) dJl(k’> + 71,.(2) J’(kr)} cos 10
“dz  r dkr




SURFACE WAVES IN MULTILAYERED ELASTIC MEDIA 633

where we have used the following relations:

Tene) _ (12— 12 Jou(e) = —Frh, on()
dz?
d—%—z) = (K — k3, )¥m(2) = —W'r3, ¥m(2)
| (8)
ToE) (1 b ) = a2

ER)

the first three relations (8) being a consequence of substituting equations (6) and
(5) into equations (3).

Since there are no boundaries at » or 6 constant, the solution to the multilayered
half-space problem will have the same r and 8 dependence as the source integrands.
The r and 8 dependence of equation (6) were chosen for this reason. For the hori-
zontal point force their dependence is given by ! = 1 and for the azimuthal inde-
pendent sources by I = 0.

At the welded interface between two layers, we impose the boundary condition
of continuity of displacement and stress. Since (J,(kr))/kr and (dJ,(kr))/dkr are
linearly independent, we must impose continuity on their individual coefficients in
the integrand expressions (7) in order that continuity of displacement and stress
be satisfied for all r. From equations (7) this continuity at the z = z,_; interface
between layers m and m — 1 can be expressed in vector form as follows.

’_uRm<Zm—1 ) _uRm_l (zm—l) ]
c c
me (Zm—l ) me——l <2m~—1 )
¢ = ¢ (9a)
O'Rm(zrrr-l) O'Rm_d(zm—l)
c C
_Tzem(zm—ﬂ _ LTRm,_1<Zm—1> _

and

|‘01m<2m—1) i)Lm_l(zm~1>
c - ¢ (9b)
TLm(Zm—1) TLy_y (zm—l)

From (7) we see that these z dependent coefficients of the displacement and stress
integrands for layer m are given by
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) 2| (o) + Wl

me<2> = ik |id‘Pm(Z) + dl,bm(Z) + kBMK[/m( >:I
C (74
2 3 (10a)
oRm(Z) = 2Hm [d ZZEZ) + dZZ§Z) + kgm dkl/zlnz(Z):l - }\mk‘(zxm‘Pm<z)
o, (2) = —ikﬂm[ d*"”‘(z) + 2 d””’"@ + k3m¢m(z)]
and
v;——L’”C(Z) = tk*xn(2)
(10b)
riale) = o )

For layers not containing a source, we use for ¢,(2) and ¢,,(z) the general solutions
of equations (8) with arbitrary coefficients.

€0m(2) — Z 14 —zkram _I_ A ” zkramz
(11)

‘Pm(z) - a’mle—ilcrpmz + &’m//eiicrﬁmz

And from (8), the exponents of (11) are given by

2
(kro,)? = K& — K = & [% - 1]

!
N
b
E
oyl
i
]
-
o
Sm' (]
[
ot
L

(k7"ﬂm>2 =

where ko, = o/an, ks, = w/B. and a, and B, are the compressional and shear
velocities respectively of layer m. We use the following sign criteria for r,, and
g, as given in Haskell (1953):

C2 1/2
Tayp = [—é - 1] for ¢ > an
Ay
62 1/2
Tay = —1 l:l — ——2] for ¢ < am
277
(12)
c2 1/2
rg, = [5;2 — ljl for ¢ > Bn

c? 1/2
T8, = —1 (:1 — ——] for ¢ < B
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Defining
¢\
N 2 — ik ax !
Am :_k;< ) ’LTamzm lAm’
¢ \2
a~ oy 2 ik -~ n
A”‘ B —k (05 ) l Tﬂ”‘zm—lAm ]
m,
ik 13
& 4 kB tm 1~ ! ( O)
m
Ym
and

4 ikrg, 2 -
— e Bmbm—1 ”

Ym

and substituting equations (11) in equations (10a), we obtain

. 2
tan2) _ —("‘—’"—) (A0 + A.7) €08 hra, (2 — 2n1)
c C
— (A — A,") sin kra, (2 — 2n1)]
— Yna,[(Bn — Gw”) €08 hrs, (2 — 2uy)

- Z.((A’-’m, + (:’m”) sin /m”ﬂm(z — zm—l)]

. 2
%—(Z%) = _<2‘1’3> ra,|—i(A, 4+ A.”) sin kro, (2 — Zma)
¢ ¢

+ (A = B.7) cos kra (2 — 2n)]
+ Vul—1(0n) — @n”) sin krg (2 — 2ns)

+ (Gn” + &n”) cos krs, (2 — 24-1)]  (14)

—Pm am2(7m—1 ) [ (Am, + Am” ) COS k?‘am (2 — Zm_l)

O'Rm(z) =
— 4(A," — A,”) sin kre, (2 — 2ma)]
2 2 A ! A7
= PnCYn 78, (m — ) cos krg, (2 — 2pa)
— (& + d”) sin kre, (2 — 2m1)]
TRm(z) = Pm amZ'YmTam['—'L.(Aml + Am”> sin kram(z - zm—l)

+ (A — A.”) cos Fra, (2 — 2m1)]
— o€y vm — D[ =9(8n’ — &”) sin krs, (2 — 2pn)

+ (&' + 6n") cos krg, (2 — 2ma)]



636 BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA

where we have made use of the following relations

72 _ﬁ_lgz Pm

“ Olm2 >\m + 2I-Lm
22
K o= ke _ 722 Pm
B ryr -
m Man

and

2
)
¢
Evaluating equations (14) at z = 2,, and at z = z,_; , we can then eliminate the

coefficients (A, + A,7), (&, — A,"), (6w — &n"), and (ém + é.”) in the
same manner as Haskell (1953) and obtain his matrix result.

ruRm(zm) ] r.u}izm<Zm—l.) ]
c ¢
W, (2m) Wy (Zn1) _
¢ = @Rm c (10)
U'Rm(zm) tTRm<2m—1)
_TRm(zm) i _TRm(zm—1> .
The lements of the layer matrix @z , are given by
(@r,)u = (@r,)u = Ym 008 Pn — (ym — 1) cos Qn
. sin P, .
(@r, )12 = (Gr,)as = 1 l:(’Ym - 1) — Ym g, S0 Qm]
(Gp, )3 = (@rp)os = — (pmc’) ™ [cos P,y — €08 Q)
(@nus = (o) [ S E2 4, cin Q]
(@Rm)ﬂ = (@Rm)43 = —1 l:’YmTam sin P,, + (’Ym - 1) SI%'?QE:I
(16)

(g, = (@z,)3 = —(ym — 1) €08 Pr + vm C0S @

(@Rm)% = z(pm 62)_1 [Tﬂm Sin Pm + sin Qm]

T8m

(Gz,)a = (Qrp)e = pnCYm(¥m — 1)[cos P — cos Q)

. in P, .
(@g,)5 = pmC l:('Ym — 1) SHT + Ym'1g,, Sin Qm]

am

. . sin Q.
(Gr,)a = ipnc’ l:vm2ram sin P, + (ym — 1)° TﬂQ :I
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with
P, = rke,dm , Qum = krg, dn and dw = 2w — Zm

In addition, the coeflicients are related to the z dependent quantities at z = 2,4
by

N " i uRm ( fm—1 ) ]
A + AJ] c
A — A" | ()
.t ” = R}n c (17)
W — Wy
[am, __|_ &ml/J O-Rm(zm—l>
LTRm (zm—1> .
where
2 -
_2<§ﬁ) 0 (pm amz)_l 0
Qm
E;i‘n = 0 62(711% - 1)/(05m27mnm) 0 (pm amzram)_l (18)
(vm — 1)/(ynrs,) 0 —(pm Y ,) " 0
i 0 1 0 (pm Eym)

Equation (17) was used in obtaining (15) and it will be used again for the half-
space boundary condition.
As pointed out by Haskell (1962), the inverse of the layer matrix is given by

(@)t = (—1)"™(Cr,) (19)

Combining (19) with the relations between elements given in (16), we can write
the inverse matrix as

@l — —(Qa,) s (@r, )5z —(Qg,, )2 (g, )13
i [ (Qr,)ee — (@, )s (@, )2 _(@Rm>12A|
—(Cg,)a (Gr,)n —)Cg,)n (Gr, )1

|7 (Qry)u  —(Crp)se (G, )os —(@Rm)14_|

(20)

In a similar manner, we form x.(z) from the general solutions of (8) for layers
without a source

Xm(2) = Eme TP 4§, e (21)

and substitute into equations (9b). Defining
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a ! — -1 ~ ! a 2 1 o~
¢, = ke Tkt BmEm—1 m and eml/ — keﬂ"ﬂmzm 1 Em” (22)

we obtain
vLm(Z) ! A N L .
== (& + &, )ik cos krg, (2 — 2Zm) + (én — & Yk sin krg, (2 — Zm—1)

10, (2) = — (& + & Vkumrs, sin krg, (2 — 2a-1) (23)
— (& — & Vikpnrs,, c0s krg, (2 — Zm-1)

Evaluating equations (23) at 2 = 2z, and at z = 2,1 We can eliminate the co-
efficients and obtain the following:

91, (2m) 'l D (Zme1)
¢ = G’Lm ¢ (24:)
71, (2m) J Trip (@m—1)

where the elements of @z, are

(@Lm)u = (@Lm)m = ¢08 Qn

(G = sin. Qm (25)

(@Lm)gl = iymrﬁm sin Qm
Here the coefficients are related to these z dependent quantities at 2 = zm—1 by

'+ & - [”"__’m(zm—l)]
[“’ ] Fer me(:m_nJ =

. [(ik)"l 0 ]
B, = _ (27)
0 - ('Lkﬂm Tﬂm) !

The inverse of the layer matrix Gy, is given by

1 [ (@Lm)zz —(@Lm)lz]
—(Gr,)n (G, )u

€ ém

where
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Comparing equation (28) with (20) we see that the elements of the inverse of
both G, and @, can be written as

(@)= (=1)"(a),, (29)

wherel =n+1—kp=n+4+1—jand aisan X n matrix. Itﬂis easy to show
that if

c=ab

and the inverse of matrices a and b are given by relation (29) then the inverse of the
product matrix ¢ will also be given by relation (29). This is an important matrix
relation which will be used later to simplify the form of our solution.

MATRIX RELATIONS FOR THE SOURCE LAYER

The point sources considered in this paper can be represented in two equivalent
forms. The first form is the source potential. For the source layer s defined by the
planes 2, and z,_; , we use a general point source located at D, (2, < D < z,1) such
that the z-dependent integrands of the source potentials are solutions of equations
(8) everywhere in s and continuous with continuous derivatives except at D or

— ik —D
9080(2) — Soile k1o lz—D]

Yso(z) = St HroslsP! +asz 2D (30)
and '
Xso(Z) — Sf)‘:ge—ZkrﬂHZMDl

where S3, St and S%; are spatially independent constants which depend on the
source type and the elastic constants of the layer containing the source.

The second form is a discontinuity in the z dependent coefficients of the dis-
placement and stress integrands at the source plane. The equivalence of the two
forms will become obvious as we obtain the necessary matrix relations for the
source layer.

Combining equations (30) with the solutions of equations (8) with arbitrary
coefficients, the general potentials for the source layer are

§03<Z> = Sf)tle—zkms\z—D] + Zsle—ikrusz + Zs”eikmsz
llfs(z) = Sétze~ikrﬁs\z——m + a)sle—ikrﬁsz + &’Slle’ikrﬁsz (31)
xs(z) = Sf)bse_ikmslz‘m —+ Es,@hﬁ"ﬁsz 4 gs”eikrﬁsz

or rewriting
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0s(2) = (Sie™™® 4+ B)) ¢7*= 4 K g7
Ys(2) = (Ste™” 4+ &, )e " 4 o708
x:(2) = (Se™?” 4 &/ )e et g reta
ei(2) = A/e7® " 4 (A + Spoe HresP)ges
Ye(2) = @, ¢ B 4 (@," 4 Soae D) g 87

D>zgzs_l

PO ~ . .
xe(2) = &'V (& + Sqe ) o

Decomposing layer s

forz, 2z = Dand layers;for D 2 2 = 2,4,

14

Zs2

o
Ws2

1
€51

ikre D re4
Sdie™=s” + A/,

i

+ ikrg D -t
Soee™ " 4 &,

l

ikrg D !
= S;)‘r:iel 78 + € ,

=&, and

we can write equation (32) as

/

pea(2) = Age

Yea(2) = @ase

!

g

AsZ

-~
Ws1

"
€51

— zs” + Sa-le—ikr%D
— d’sll + So—ze~zkmsD

— Es” + So—ge—zkrﬂsD

—ikra 2 + Al/ eikrmsz

- — 1 M
st(Z) = e zkrgsz + Ew@lkrﬂsz

I3

§051(Z) = 5sl

L W
Va(z) = @ae HrBst + w;’161krﬂsz D

xa(2) = Ene

5 2!
—ikrg 2 + &glze—ikrﬁsz 2,
e—ikrusz + Zglleikrasz
=

—ikrg 2 2 ikrg .z
Bs + & 16 B

Z=2>D

1%
v

v

(32)

into two layers with the same elastic constants; layer s,
and defining new constants

(33)

(34)

Comparing equations (34) with equations (11) and (21) and the relations derived
from (11) and (21), we have the following matrix relations for the source layer
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ruRsz(Zs) ] _uRsz(D)
C C
szg(22> szz(D)
c = GOz, c
U'ng<zs) O'ng(D)
| TR (%) _ro{D)
_ _ _ (35)
(uRﬂ(D) tir,, (2e1)

c [
U')R“(D> wR31<zs—~1)
c = @z, c
UR@I(D) O.Rsl(zs_:l)
__TRsl(D) 1 ___TRsl(zs—1> _

where the elements Gz,, and @z, are identical with the exception that
do=2,—D and dg=D — 2z
Furthermore it can be shown that their matrix product yields
Gr, = Qg,y Cryy

where Gz, is the layer matrix for layer s if no source is present. In addition we have
the veetor equation

(s, (D) | [UzaD) ] [ (uR> i
C [ C
r,, (D) e, (D) W,
—e =l |+|°\% (36)
CfRﬂ(D) UR“(D> 50138
_Tng(D) _ _TR“(D) _ L 57'123 J

where from equations (10a) and (32)

5 (“c> — KI(Sh — S7) — ihrs,(Sh + S5)]

5 (“’%) = ik —ikra,(Sh + So1) + K (S& — So)]

dor, = Kol (vs — 1) (St — So) — thrs, v:(St2 + So2)]
67"1'133 = k2czps[_78/ras(sg_1 -+ SU_I) - Zk('Ys - 1)(83-2 - SO—Z>]
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Furthermore we obtain

Z)Lsz(Zs) 0L82(D)
¢ = Qr,,

TL”(Zs)_, TLsg(D)
ﬁle(D) oy (Zsma)
c = @y, c
72, (D) 71 (1)

and the vector equation

I_TLSZ (D) 7Ly, (D) 871,

where by equations (10b) and (32)

4

a(L) = i(SG — Si)

dr, = —ikus75, (St + Sos)

Rayreiga WAvES FROM AN EXPLOSIVE SOURCE AT DEPTH

(38)

(39)

(40)

For an explosive source, we use the Fourier time transformed spherical compres-
sional potential for a pressure applied to the walls of a spherical cavity in medium s.
It must be pointed out that only the source term ‘“‘sees” the spherical cavity. In
other words, we do not impose on the multilayer problem the boundary condition
that normal and tangential stress over the cavity walls vanish for the homogeneous

terms; thus waves reflected and scattered by the cavity are not considered.

The potential for this type of explosive source has been given by many authors
(Kawasumi and Yosiyama, 1935; Sharp, 1942; Fu, 1945; Mengel, 1951; Blake,

1952). Here we use the following form

ei(kasas—ﬁsp) —iky R

- ﬁOs 3 €
‘pSO<R> = —— 0
4: s 272 2 1/2 R
s [(1 - ?_S.,ki) -+ k,isaf:|
4
where

R is the distance from the source,

a; is the cavity radius,

Pos 1s the Fourier time transformed pressure at the cavity walls,
and

ko, a5

272

askﬁ
1__ s
( 4)

Bsp = tan_l

(41)
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Since the source is located at (0, 6, D) in the cylindrical coordinate system (7,
8, z), we can write R as

= [+ (¢ — D) (42)

By means of the Sommerfeld integral, we can rewrite equation (41) as

Palr,2) = [ Sue™ Py (k) di (43)
0
where
3 z(kasas fsp)
Sy =i Do © 7 5 (44)
4ps 7, [(1 — “—4}) + kisaf:,

and as before
Kl =k — &

Since the source is symmetric and the only boundary conditions are at the layer
interfaces, z constant, the problem is axially symmetric. Therefore setting | = 0
in relations (6) and (7) the potential, displacement, and stress integrands for a
layer m reduce to

me(n 0; 25 k) = ﬁﬁm(z)Jﬂ(kT)
Xm(ry 0, 2;k) =0

Gn(r, 0,2, k) = — [ w(2) + d¢m(z)] Ji(kr) = llcuR”‘(z) J1(kr)

Un(r, 0,2, k) =0

e, 0,950 = [ 2 4 Bl gy ) ]

@ me(z)

k
P.,(r, 0,2z k) = {Q#m [d2g0m<2> + &Y (2) + 2 di//m(z):l (46)

Jo(kr)

dz? dz? P “dz

— Amkim¢m(z)}Jo(k7‘) = og,,(2)Jo(kr)
Py, (r,8,2;k) =0

Przm(T, 9, z; IC) _ ‘_k,U-mI: dﬂam(Z) 42 d‘pm(z) + k2 d\b:lw(z):l J1 (k )

= —iTRm(z)Jl(kT)
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For the source layer, s, the integrand of the source term is from equation (43)
es0(7, 0, 25 k) = ou(2) Jo(kr) (47)

where
es0(2) = Sy *rsl==1 (48)

Comparing equations (47) and (30) we see that S& = Sor = Snand S& = S& =0
and thus, by equations (37) and (40)

(%) -0
c

b (“;) — Wr., S (498)
dog, =0
brr, = —2K°CpsYoTa, S = —4Kk s T, Sor

§ (%) =0 (49b)
érr, = 0

- It should be pointed out that equations (49b) are the reason that x,(r, 8, z) and
Tm(7, 0, 2) are equal to zero and not because of the 8 independence. As a counter
example, we can have a ring torque source about the vertical axis which will pro-
duce xa(r, 0,2) or a .(r, 8, z) displacement alone with no 8-dependence.

Using source relations (49a), the source vector equation (36) may be written as

—ung(D)_ —uRﬂ(-D)— r 0 ]
¢ ¢
(D) || owat0) | 1 5(2)
T |=| e |T| M (50)
0
O'Rsz(D) GRsl(D)
D) | Lran(p) | L O
Combining equations (9a) and (15), we have
—uRn_l(zn——l) ] —uR32<D) ]
c ¢
Wry_y (Znt) e,y (D)
Lc_l_ — A;Z _R—c_.__ (51)
O'R,,_l(zn—1> Ung(D)
\_TRn_1<z1L—-1) _ _TR,gz(D> _
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[z, (D) ] [z, (0) |
¢ c
an(D) ’lj)zal(o)
e | = Arg | T (52)
ory (D) o, (0) |
| T2 (D) L 72, (0) ]

where Ay = Qgz,_, - - @g,, and Agz,, = Gg,, -+ Qg, . At the free surface z = 0,
we require that the stresses vanish. Thus by equation (46), equation (50) reduces
to

FuRsl(D) ] Fu}lo ]
[ C
DR 1 D -Rg
w—";*l = Ag,, wT (53)
lfzesl(D) 0
| 4, (D) Lo _

where

uRo uR1<0) and % = ’11')131(0)
c c

We now define W, X, ¥ and Z by the matrix operation

[ 1, (D) ]
HIR
X L | %ra(D)
v = Az, e (54)
[ZJ O'Ru(D)
_TRsl(D) .

Multiplying the vector source equation (50) by Az., and using equations (54) and
(53) we have

[X—’ Vo, B <7”_R)
l v = T + Alzsl ¢ (55)
| z

0 J | 67’38 _
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or

Ure _ W — [5 (wi> (Azg i + dre, (470 }
C

c
% = - |: <sz> (AR51>22 + 5TR (Azes]>24:|
(56)
Y = [5 (sz) (AR“)ﬁz -+ Ot (AR81>34]
Z = |: <sz> (Alesl)n + 5TR (Alesl)u:l
From relation (29) the inverse of 4z,, is given by
(Ary)as —(Ary)se (Arge —(dr,du
_(AR51)43 (AR31)33 _(ARSI)Q?) (AR31)13
(57)

Az, =
{ (Ap)e —(Aedn  (An,)n _<AR81>12J
_(AR51)41 (AR31>31 —(Azesl)n (Azasl)n

Replacing the (A%.,) elements in equation (56) by their Ax,, equivalents, yields

I

% w 4+ l:a (sz> (A381)34 -+ O7g, (AR81>14]

Ir

e _ x —[ (“’) (Ary)ss + o2, <ARM>13]

c
(58)
Y = — [ <sz> (AR31>32 + 57’3 (ARu)l?:l
Z = [ <sz> (ARsl):n + 5TR (AR“)H:I
From equation (17), we have for the half-space or layer n
_uRn (zn—1> T
A + A7 ¢
3. — A | tomy (2a)
Al AV = E;n [ <59>
Bn — On
'Jﬁ ’ + 6 IIJ O’Rn(Zn_1)
_TRn(zn—l)
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As a boundary condition for the half-space, we require that the coefficients A,” and
&,” vanish. For ¢ greater than either of the halfspace body velocities, this is equiva-
lent to requiring that there be no radiation from infinity into the wave guide due to
equation (14) and the sign criteria of 7., and rg, . Similarly for ¢ less than either of

the body wvelocities, this is equivalent to requiring that displacements and stress
remain finite as the depth becomes infinite. With this boundary condition, equation
(59) reduces to

B uRn (Zn—l )

A/ —
l> An, ] 1 an (Zn-l)
= ERn -

C

L ¢ (60)
Wy,
l- - /J aRn(zn_l)
Wy
L. TRn(Zn—1> .
Defining the matrix Az by the matrix product
Ap = AF Ap, = Gry_y o QryyCayy o Qg = Qg o0 Qg <+ G,
since it can be shown that @z, = Gz,, Qx,, , and in turn defining J by
J = Bz, A (61)

we obtain from equations (60), (51) and (54)
A w
A’ X )
= 62
&, Y (
[ & Z

Eliminating A, from the linear equations given by equation (62) yields

0= (Ju—Ja)W+ (Jo— Je2)X + (Jo — J)Y + (Ju— Ju)Z (63)
Similarly eliminating &, yields
0= (Ja—Ja)W + (Jso — Ju2) X + (Jss — Jus) Y + (Jasa — Ju)Z (64)
Solving equations (63) and (64) for X and W we obtain

[GN — LH]Y 4+ [RN — SL|Z
[NK — LM)]

X:
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v @) - @) (7))

[NK — LM

where
=J13—J23 E=J33*J43 Z_%:J14_J24
Jll_‘JZI’ N J31_!]41’ L Jll—J21
(67)
J34_J44 K
L

Jio — Ja M_J32_J42
J31—J41’ and

Jll - JZI F - J31 - ‘]41

I
Il

Bl D

Using the definition of J and the elements of Ex. given in equation (18), we can
write the following

L= ’YnTa,L(AR)u -+ ('yn — (ARC)41
K = ‘Yn7"a,,(AR)12 + (yn — 1)(AR)e — Fay (AR)32 + (AR>42
G = Yara,(Ar)is + (yu — 1)(Ag)s — Tan (AR)33 + (ARC>43
R = 'YnTan(AR)M 4 (yn — 1)(Ar)o — 7% (AR)34 + (AR)44
(68)
N = —(yn — D(Ar)u + vars,(Ar)n + 5 <AR)31 ;iz? (Ap)a
(AR)SZ 7"5”

M= —(v. — 1)(AR>12 + 'Yn7ﬁn(AR)22 -+ e (Az)e

(An)sg L
G2

H = —(’Yn e 1><AR>13 + ’Yn7ﬁn<AR>23 + 2 (AR)43

S

I

—(vn — 1)(Ar)us + a7, (Ar)a + (‘ch);"* "8n

o (Ar)u

From definitions (68) and the relations between A elements, obtained by per-
forming the operation ArA4%' = I and replacing the A%' elements by their Ar
equivalents, e.g.

(Az)is(Azr)e + (Ar)eu(Ar)u — (Ar)u(Ar)a — (Az)s(Ar) =0
it can be shown that

RN — SL = GM — HK (69)
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Using equations (65) and (66), we have from equation (58)

. (&Y 3)
Wry Nz "Nz
c

= - T (70)
and
?ﬁg _ NR(3)NR(4)
Cc FR (71)
where

"y
el
Ii

[NK — LM]

® _ [RN — SL]
N =[GV ~ LH]{Y S —— Z}

=
wr-\
f

=14+ % [5 (sz> (ARS>33 + 5TR3(ARS)13:|

c

v = [ (M) — Lo (K H[RN(%)—SL )]
N RO

FR i
N =1+ .o I:& (%) (Ar,)s + BTRS(ARS)M:I

It is convenient at this point to examine equations (72) when F is equal to zero.
From the definition of Fz in equations (72), we have

! K
N"L (78)
Combining equations (73) and (69) yields
EN — SL K
GN —HL L (74)
and thus for the case of Fr = 0, equations (72) reduce to
(6] K
Nz = [GN — LH]{Y + ZZ}
N:® =1 (75)
N, = IENRa)
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and
NR(4) = 1

Thus by equations (5), (46), (70) and (71), the displacements of the free surface
are given by

w [¢)] (2)
= m(r,0,0) = [ YN ) ar (76)
0 R
and
© 1 3) €3]
b=an00) == [ 2V g (77)
0 R

Fvaluating equations (76) and (77) for the residue contribution, we obtain for
each jth mode or root, » fixed, at Fr(w, kg,) = 0

1) 2
, T NeNg)

{U)O}RJ- = k—}; W Hom(kxﬂ“)
().

. NN ™

{Go}r; =1 7y _BFLR—] % (kg 1)
or by equation (75)
(ol = - TV H (k)
1) <79>
{Go}r; = 1% k—:f a_NFiE* Hy® (kg 1)
().,

where (8Fz/k)w,i, N ;11.), N §e2,~), N 23,.) and N 242 are evaluated at (w, kz;) such that
Frlw, kg) = 0.

Fr(w, kg;) = 01is a form of the period equation for Rayleigh wave propagation
in plane multilayered solids (Haskell, 1953; Dorman, M. Ewing, and Oliver, 1960;
Dorman and Prentiss, 1960; Press, Harkrider and Seafeldt, 1961; Dorman, 1962;
Harkrider and Anderson, 1962). For all real (w, k) or (¢, k) the elements in the
@, matrix are either always real or always imaginary according to the following
criteria (Haskell, 1953).
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Real (@z,,) » if 7 + k even integer

Imaginary (Gg,) s 1ifj 4+ & odd integer
The same is true also for the product matrix 45 . For a phase velocity, ¢, less than
or equal to the half-space shear velocity 8, , we see that the quantities defined in
equation (68) are also real or imaginary for all real k. We now express the imaginary
quantities as a real quantity (designated by an asterisk superseript) multiplied by
zor

L=:L% G=4G", M=iM* and S =iS*
and thus
Fp(w, k) = NK + L*M*

which is real for all real k and ¢ = 8, .
Taking the ratio of {go}z; to {wWdz; , we obtain from equation (79)

(o}n; _ ;K H® (hny )
{U—)O}Rj L HO(z)(kR]‘ 7")

or

i%}—R’-% K 'L—K— as kg, 7 — ©
{U—)O}Rj L

L*

Thus at horizontal ranges large compared to the wavelength, the surface displace-
ments are either prograde elliptical or retrograde elliptical dependent on whether
the real ratio (K/L™) is positive or negative respectively. This large distance result
is the same as obtained by Haskell (1953) for the homogeneous case of plane two-
dimensional Rayleigh waves:
I:?lo:| _ K
wole L

Rewriting equation (79) in Haskell’s notation
{do}e; = —i [“—] {100} ny FL” (g ) /Ho™ (o, 7)
Wo_|H ;

Evaluating the residlge contributions of the integral repre§entations for §q
(r,8,D), P..(r,0,D), P, (r, 0 D), G(r,0,D), welr,8 D), P,,(r,0,D) and
P,..,(r, 8, D) by using equations (53) and (50) we find that
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—-z'{(AR“)m + [%jlm (AR“)H}

‘ {wO}Rl H1(2)<kR,’ 71)/H0(2)(kR,' 'l")

fl

{@a(r, 6, D) }Ri

= —1 [M} . {wO}RjH1(2)(kRjr)/HO(Z)(kRJ'T)

Wo
{a(r, 6, D)}Rj = {(AR“)ZZQ -+ l:@] . (ARsl)ﬂ} {0} &;

Wy_\m

(P70, D)}y = iy { (A [ 2] i} (ol

. a1(D _
Em{“, )} {10} s,
o

C H]'

{Przsl(Ti 07 D)}Rj = kRj {(AR“)@ "I" [Z_Z)]H (AR31)41}

(80)

X {10} r; H1(2>(kze,- T)/Ho(z)(kzzj ”)

= kR,- IiTSl(.D)} {U_JO}R,-Hl(Z)(kRﬂ’)/Ho@)(kRﬂ")

and

I

{QSQ(T7 97 D) }Rj {qﬂ(rv 07 D) }Rj
{Waa(r, 0, D) }z; = {Walr, 0, D)},
(81)
{P%w(Ta 0; D)}Rj = {PZZn(T: 05 D>}Rj

{PT«’vsz(T! 0? D) }RJ' = {P"'zsl(,r7 07 D) }Ri
From the set of equations (81), we see that there is no discontinuity in displace-

ment or stress across the source plane z = D, for the residue contributions. Thus
from equation (80) we obtain
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{Gn(r, 0,2)} = —1 l:y%(:zl[ {u')o}R,.Hl(?)(kRir)/Hom(kRir)

(1, 0,2)} = [M] {0},

o

{Pzzm(ry 0,2)} = ikRi _O-M(z>— D . (82)

{Przm(r, 0, Z)} = kRj {’U_)I)}RJ-Hla)(kgj T)/H0(2)(k13j 1')

¢ lu;

where the homogeneous ratios (H subscripts) are given for all m in terms of
Ap,(2) = Or,(2) Qrp_y * - Qr,

and where @g,(2) is the layer matrix for a sublayer in m of thickness d.(z) =

Z— Zme1.

From equation (58) and the definitions of the homogeneous ratios implied in
equations (80) and (82) we have

et L] v

(4

Inserting real quantities (asterisked) and using equations (44), (50) and (75) yields

) -r21)

N1(zl-) . 3 [ ; i(kagas—03p)
-a—Fij—- = ZkR,]- Qs Pos a 2]62 2 172 AR]'(“’)e agls (84)
(W)M [(1 _ Gk, 4“) + kisa82:|

where
Ae,(o) = CN = L]

6Ty

Ok Jwi
Therefore the Fourier time transformed Rayleigh wave surface displacements for an
explosive spherical source at depth D are
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2] el

|
L - C H; i(kasas;ﬂsp)
AR,‘ 4

242 2 1/2
(=) ]
X Ho® (kg ) ; (85)

J 1 [a*(D)] _ [us*w)] l
2, | Wy
) e ‘ ] 3 L I Wo 0 HJ
{do}r; = | —— H.wkﬁ.,-posas T\ 7

T ]

Wy
(% —f 2
X AR,- e%( 0gQs sP)H1< )(kR,- 7‘)

{u')o} Rj = ’L.]CRj Yf_)g§ as3

Before proceeding to the next section, it should be noted that by means of equations
(46), the part of our solution dependent on source depth D can be written as

* * 2
s o W _m; Vs Wy
c B ; c H

Ravieica WavESs FROM A VERTICAL PoIiNT ForcE AT DErTH

Consider the same elastic medium as before but with a vertical point force in
layer s at (0, 8, D). The Fourier time transformed vertical point force L(w), positive
in the downward or positive 2 direction is defined (Pekeris, 1955) in terms of the
transformed normal stress to z = D plane as

o f [P,..(r,6, D7) — P, (r,8, D)rdr = —L
0
or ; (88)
[P, (r,6,D") — P, (r,0,D") = —2£f To(kr) dl
™ Jo

with continuous g, , 1, and P,,, for all » along z = D.

Since this source is azimuthally symmetrie about the z axis and the boundary
conditions are at the z constant plane interfaces this problem reduces, as before, to
cylindrical symmetry. Comparing equation (88) with equation (46), we obtain

a(@>=o
C

e\
5 (7> ~ 0 (89a)

BG‘RS = '—‘é@

2
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67'13 = O
5 (%) 0 (89b)
(STL8 = O
Thus the vector equation in the source layer s for the vertical point force is
—uR” (D) ] _uRn (D) ]
c ¢ 0
Wy, (D) e, (D) 0
c = c = l (90)
60’33
URsz(D) JRsl(D> [ 0
| e (D) ] | e, (D)

As an alternate method relations (89) could have been obtained from the source
potentials which correspond to source definition (88) in an infinite elastic medium.
The displacements due to such a force in an infinite space are

Z a2 6-ilc,9sR _ 6—1'160,33
_s ¥ 07 = —— —_—
4o, 0, 2) 4drpsw? drdz ( R )
91
L a2 e—i/cgsR _ e—zlcc,sR . ( )

Expressing equations (91) in integral form using the Sommerfeld integral and
comparing with equations (46) and (30), we see that the source potentials are given
by

+ Lk

St = 4wps w?

- Lk
So = = 4mps ?

] (92)
_ L

+ -

Soz = Soz ? rrpsw??“ﬂs
St = Sz =0

Substituting equations (92) into relations (37) and (40), we obtain equations (89)
again. In the next section where we consider the horizontal point force we will make
use of equations (91) to obtain our source definition.
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Following the same procedure as for the explosive source, we obtain

L—L:—O =W - BGRS(A;L)H
%%) =X — BO’RS(A;L)%

Y = BO'RS(A;;)%
7 = bor, (A%t )es
and by equation (57), the inverse of 4gz,, ,

Ug

TO =W — 6URS(AR31>24

7’% = X + b0z, (Az, )5

Y = BURS(AR81)22
Z = — BUR8<AR81)21

Using equations (59) through (71) yields

ry _ _ Na"N&®
c Iy
and
by _ NN
c Fr
where from equations (94)
F
NR(z) = ]_ N }:1) BO'RS(AR“)Q,?,
NR(4> =1 N (3) 5‘713 (AR“)M

As before the displacements at the free surface are

2
© 1 NR(I)NR()

=1 A 7. Jo(kr) dk

(93)

(94)

(95)

(96)

(97)

(98)
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and

3 4
® 1NR()NR()

A 7, Ji(kr) dk (99)

o= —
The residue contribution of equations (98) and (99) are thus

(1)
Ri

(o} n, = ~— GFRJ Ho® (ez; 7)
/@
© (100)
K or R
{QO}R]‘ = ,L’I‘;ET— 3& Hl(Z)(kRjyl)
B\ Ok Ja
where N, is, as before,
N = [GN — L] {Y n % z}
but now from equation (94)
N = [GN — LH]agR,{<ARﬂ>22 - % (ARsl)m} (101)

All the relations concerning Fj and the displacements and stresses at depth in
terms of the homogeneous solutions shown for the explosive source are also true
for the vertical point force. With these relations N§, can be rewritten as

Nél,? = — % [GN — LH] [M] (102)
T Wo Hj

Therefore the Fourier time transformed Rayleigh wave displacements for a vertical
point force at depth D are

L w,(D
{Wolr; = — 1;[10( ):, ARjHom(kRﬂ")
H

Wo

- . I-/ ’do* l[)s A @ /7.
; S e e Rj H, (AR,‘ r)
Wo _|g; |_Wo lm;

where, as in equation (84),

(103)

——
S
G
Il
I
Y
I

A [G*N — L*H]

S (%)
Ak Juj



658 BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA

RaviricH AND LOVE WAVES FROM A HorizonTaL Point ForcE AT DEPTH

We now consider a Fourier time transformed horizontal point force in layer s at
depth D directed in the § = 0 direction. As our source displacement field, we use
the displacements due to a horizontal point force of strength L(w) in an elastic
space with the same elastic properties as layer s. These displacements are obtained
by expressing the source displacement field (91) of the previous section in terms of a

eylindrical axis at right angles to the force (figure 2).
From equations (91) the source displacement field in the new coordinates is

given by
i 9 [e8E _ eik%n> , oA
Gso(r, 8 = | —{ ——— f
Guo(r, 6, 2) 47w, 008 [61‘2 ( R + ka, R

—ikg R —thagR .
sin. B_ g <L_RL~> + i, e—lkﬂsRJ (104)

Deolr, 0,2) =
SO(, ’ ) 471'0)2[)8

) E 2 e~¢k53R . —iky R
W7, 0,2) = Tty cos 0 Fv <———R—~—

where
R=+7V+ (2 — D)

Rewriting as an integral representation, yields

I—J @ e—ikras |2—D]| "

— D
—— cos 0 f I:lc2 e g @ B ‘)
4w w’ps o Tas

dJ(kr) 2 dkrg,|e—D) Ji(kr)
dkr + ke e Tk dk

qso(T, 0, Z) = —1

—ikry |2—D]

. Z-/ - * € —i —
Deo(r, 0,2) = 4 sin 0[ BT 4 pg, e 8150
47e’ps ) Tes

Jl(k7"> 2 —ikrgy|s—D| dJ1(k7’):|
kr + Fa, ¢ dkr dk

(105)

L - D
Wao(7, 0, 2) = ——Af cos O{L;H)J}
f [k?(e~ikrﬁs|z*D| . ewikraslz—DI)Jl(kr)] dk
0

Comparing the source r and 6 dependence with equations (7), we see that the »
and 0 dependence of the solution integrands are given by equations (7) when
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[ =1, and that

: 7 ~ikra,|z—D|
Ug,, (2 . L ¢ s — _
Rs_ﬂ(l = —g k3< + 7€ thrgg |z m)

¢ dre’p,

Teg

ﬂL80<Z) _ L

¢ Dnagp, M (106)
sz[)(z) N L IZ - D| 3, —ikrg |2—D| —ikre 12— D|
— ] Bs _ gt
c t dradps | 2 — D AC ¢ )
Y4
|
3
L}
- y - -
L r
8
X

Fra. 2. Horizontal force geometry.

Evaluating the source stresses from equations (105) and comparing the integrands
with equations (7), we obtain

kL — ik, o—D] 1
oryy(2) = _ZZI;[(% ¢ A Rl
. kl—l - D —ikrg |2 —ikrg |2—
mreo(2) z’g{%_—,)'} [ 7l — (o — e (107)
. _kL {2 — D\ —ikrg,iz—0]
nate) = SH{ =5

Evaluation of equations (106) and (107) leads to the vector equations for the
source layer at z = D,
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-uRsz(D) ] ’_/I:LR“(D>_
¢ c 0
szg(D) szl(D) 0
oea(D) || o2 (D) LTR
| 72,,(D) | L7 (D) |
where
kL
5T1:,;‘g =1 51—'_
and
0L52(D> ?}le(D) 0
C = c _|.. l: :l (109)
rn (D] Lmn@)] L
where
LI
57'1;8 = —ié

The same result can be derived by noting that the source displacements can be
obtained from the source potentials

L o rasleDl

‘PsO(Z) = —1 rrw?ps "
1-: z—D —ikrg. |2—
QI/SU(Z) = 47rw2ps{lz - Di} e krggle—D]| (110)
T 2
xol2) = —i o BB i

drw?ps krs,

And by comparison with equations (30) we have

e Lk

Sor = Sn1 = 7/4——7'.0)2%;“—8
L

S&t—so—zzm (111)
. Lk

St o= S = —i 2 foe

4o krs,

Substitution of equations (111) into equations (37) and (40) yields the same result
as above,
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kL kL
BTRE = ?/'2—1; and BTL! = '—g

The horizontal force problem has now separated into two sets of independent
vector relations. The first set, given by equations (9a), (15) and (108), represents
Rayleigh type surface waves; the second set, (9b), (24) and (109), Love type
surface waves when the residue contributions are obtained. Following the procedure
of the previous sections, we obtain for the first set

% =W + bra,(Ar, s
U . x _
0= X — br, (Ary)s (112)

Y = _BTRS(A—R“)H
Z = BTRS(AR“)II

Solving equations (112) yields

. (¢H)] (2)
Wry _ _Ne Nz (113)
C FR
and
tny  N2®N®
¢ Fs (114)
where
Ne® = 14 2 5y (A)
R = W TR Rg1 /13
(115)
Na® = 1 4 2 bra, (As,,)
R = NR(3) TR Ry /14
For the second set, we have similar to equations (51) and (52)
VLp_s (zn—l) ULy (D)
¢ = A, ¢ (116)
TLn_l(zn—l) TL32<D)
and
?}L“ (D) 7>L1 (D)
¢ = Ay, ¢ (117)

Tle(D) 0
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where
[11132 = @’Ln 1 @Ls2
Ale Qr,y Qr,
and
% - i1, (0)
c c
Using the following definition
- s,y (D)
7] —am | (118)
TLgy (D )

and multiplying the source layer vector equation (109) by A7}, yields

bi,

Vv _ —_“ 1 0

[T] B J A [6]
0

or

) _
e vV — BTLS(ALll)lz

(119)
T = ér1, (A, )2
Using relation (29), equations (119) can be rewritten as
= Vo, (s e
(120)
T = ér., (A, )u
From equation (26), we have for the half-space or layer n
én/ _I" én” . U'Ln (Zn—l)
w | = Iy, ¢ (121)
o o TLn(zn—l)

Our boundary conditions at infinity in the half-space as before requires that &,”
= 0. Defining
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L = AL82AL51 = Qryy 0 QrgyQuyy o Qo = Qppy o0 Qo oo

s

@y,

where it can be shown that @;,,G.,, = @z, , We obtain using equations (121), (116)

and (117)
[:} _ ma, [ﬂ (122)
or
v M T (123)
where

» [(ik)* 0 H(Anu(AL)mJ
J = ELnAL = (124:)
0 ‘(ik#nﬂan)_l (AL)Ql(AL)22

Evaluation of equation (124) and substitution of equation (123) in (120) yields

. D 2)
[ NL( NL(

T (125)
L
where
F, = "(AL); - (AL)llllnT;;n
- (126)
O _ ]CL * %
N, = l% [(AL)22 - (AL>12I-ln7ﬁn](ALs1>11
and
(2) _ kfj FL E3
N, =1 — li;N——L(l) (AL81>21
since
Y
BTL5 = - 5:]%

The matrix elements of @y, are real or imaginary by the same criteria as Gx, .
These criteria will also hold for the matrix product elements. In addition for ¢ < 8,
we have as before that rs, is imaginary. The imaginary quantities are expressed as
real quantities (designated by asterisks) multiplied by <. This notation was used in
equations (126).
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Fr(w, k) = 0is a form of the period equation for Love wave propagation in plane
multilayered isotropic solids. Since we are interested in the residue contribution we
note that when F;, = 0, equations (126) reduce to

u . _(Ab)z
"B (AL

NL(z) = 1
(127)
and

kL [(A)n(4r)e + (4,)5(4,)%]
27r (AL>11

NL(D = (Ale)n

And again using relation (29), we can show that
(AL)u(Ar)se + (AL)1*2(AL);<1 =1
and (128)

kL 1
27[' (AL)I

Thus be equations (113), (114), (128) and (7) for m = 1, the Fourier displace-
ments at the free surface are

qo = au(r, 0,0) = fw _1_NR(3)NR(4) dJ,(kr) EN (1>NL(2> Jy(kr)
noEn ok Fg dkr k F, kr

NL(D = (ALM)II

}dk cos #

% = 0i(r, 0,0) =

I

(129)

1NON® Julkr) | ¢ NoONL® da(kr) .
/ { ke TR, dior | s b

1 2
Z NR( )NR( )

A Ji(kr) dk cos 6

W = ijl(’l‘, 0,0) =

Evaluating the residue contribution of equations (129) for the zeros of Fr we
obtain for each jth mode
7 NiNg)
<aFR> i
dk )i
NONE @
~y ™ NaNa @ oy _ Hi (ke,7)
{Qo}r, = 1 <6FR) { 0 (kze,-?) T cos 0 (130)
ok Ju.i
. 7r N(3) (4) Hl(g)(kRﬂ”)

B; <E}_{) kR,‘r
ok o

{Wo}r; = m(kgﬂ") cos ¢

sin @
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As shown before

N =N =1
N(3) — KN(I_) = —4 ,::u(’_*:l N(l)
Bj 7 Ry o _m; By (131)
) K
&, = [GN — LH]{Y + ZZ}
and by equations (112) and (108)
(0 L * K
N = kg, — [@N — L™H]{ (Ag,, e — — (A, u (132)
! "9 L
Using the homogeneous solution notation, we write equation (132) as
= .k
NG = ike, Z[G*N — L*H] [MD—)] (133)
27 wo _m;

vielding the Rayleigh contribution for a horizontal point force at depth D

[us (D>:I Az, Hi® (kz,r) cos 6
=

{do}; = -—iz’ [“_0*] [us*(D)] A, {Ho(z)(kzz,-f”) _ wfﬁ} cos 0 (134)

’Li)o kR-?

7 .k ok (2 .
L] [ER] m B )
2 Wo _|H; Wy H; ’ k}z]-)‘

where Ag; is given by equation (84).
Evaluating the residue of equations (129) for the zeros of F;, , we obtain for each
jth mode

—~

=
=)
K
I

(1) A7(2) (2) .
{?70}L7‘ = i{;_ TI}%& {H0(2>(ij 7”) - —II—I%L)-} sin 6
“ (%) v
@,

i
ok

(1) A7(2) (2) "
m NLjNLj H1 (]{}L]J)

o (135)
{QO}Lj = k-L, (aFL> fo, 7 cos 6

ok
{wo}[,j- = 0

where from equations (128) we have
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2
N( )

and (136)

L

N§) =ik
Wni g <AL>u

(Ale)u

In terms of the homogeneous notation we have

[“?D)L ~ (A

Vo

[vv_]ﬁ = [w{_ﬂl{ ~ (A)u

Thus, for the Love contribution

7. 15 @ .
{T)o}Lj = ’Lg ’:US(D):, AL]- {H0(2)<k14 1") — M} Sil’l /]
Hy

and

Vo ]‘CL:,-T
(137)
L osw)} H® Iz, 7)
(o}, = —1 5 I:T " A, W cos §
where
AL,‘ = 1

7. 6)
1}0 Hj ak @,]
As in previous sections the residue contributions are continuous through the

source plane, and it follows that the residue displacements at depth for the hori-
zontal point force are

(aalr, 02008, = i] 22|,

Wo
{ (2)
B ) I-{l—k(ky—”} / H® () (138)
Bj

Wo

(D7, 0,2) 5, = [w,,,‘(qu{j {10} ,

and

(O (7, 8, 2) o, = [@m@L (oo},

Vo
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for all m. The homogeneous ratios are given for Rayleigh in terms of Ay, (2) as
before. The Love ratios are similarly given in terms of

ALm<Z) = @Lm<z) Qrpy oo Gr,

where ®.,,(2) is the matrix for a sublayer in m of thickness d,, = z — 2,,_; .

In the remainder of this paper, we will be interested in Rayleigh and Love waves
at large r. Neglecting terms in »*'* which are small compared to terms in # % we
have as the dominant surface displacements,

S
(o} n; = 'Lg[gsu()—D)] Az, I1? (kg 1) cos 0

o _lm;

T .ok . K

{Golz; = _lgl:ﬂJ [us .(D):l ARjH[](Z)(]CR]-T) cos 8 (139)

Wy _Ju; Wo Hj
{Bo}r; = Z; [08(1)D):|H Az, Ho® (k) sin 0

0 i

Up to here we have only considered sources with the restricted cylindrical geo-
ometry assumed in equations (7). Because of the linear independence of sin 6 and
cos {6 and the linear independence of angular solutions of different I, the generaliza-
to point sources of more complicated 8-dependence is straightforward. This assumes
of course that the » and 6 dependence of the point source can be expressed as an
integral or sum of integrals with integrands consisting of separable cylindrical
solutions. In fact, using the results of the previous sections, the solutions for more
complicated sources of this type can be found by inspection with the exception of
source integrands involving é7;, , which were not included in this paper.

FxTENsION OF THE HoRr1zoNTAL PoINT FORCE SOLUTIONS TO A MODEL OF
A VERTICAL STRIKE FAaunt

In this section, we take the solutions for a horizontal point force at depth in a
multilayered medium and extend them by spatial integration to represent a model
for a vertical strike fault. This method of integration over a finite vertical fault
plane was used by Ben-Menahem (1961). For Rayleigh waves he used the hori-
zontal point force solutions of an elastic half-space and for the Love waves the corre-
sponding solutions for one layer over a half-space. In this multilayered formulation,
the vertical integration is evaluated exactly. For the time lagged integration over
the horizontal fault dimension, we use the approximate evaluation given by Ben-
Menahem.

Now consider in-phase horizontal point forces distributed continuously on a
vertical z axis for the interval by £ 2z £ hy. The strength is adjusted so that as
Ak = hy — hy approaches zero, the integrated effect reverts to the point force
solution at z = hy = hy. Then using equations (139), we obtain for a vertical
segment of horizontal forces in a single source layer s,
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L ke [us (h)]yj i (140)

(w0} ) = 55 A, Hs® (ke 7) cos e_f

hy

where

[us*@]yj = [An, (W% + [%L Az, (W)

Wo
and [uo™/w] #; 1s a function of the layer array and not k.
Now since a given layer can be divided into as many sublayers as desired by the
matrix relations (15), we can write

Ag,(h) = G, (1) A, (M) where I = h — Iy

Performing the integration, we obtain

[0 - [0, i +[202]

% (141)
+ [‘“ ?’“)} Lis(Ah) + [L@} I%(ah)
Wo Wo

P c
where
AR . .
La(ah) = [ [, Okt = 5, SRATE () SRAQ
0 kras ]’C?"ﬁs
Ah
Iy (AR) = [ @, (D2 dl = (v, — 1) (1 — cos AP,)
0 kRJ ag
+ 2 (1 — cos AQ,)
iz,
ok 1 [sin AP, sin AQS] (142)
I5(AR) = fo [Qr,(D]s dl = —psC%jl:kRﬂas — o 75,
Ah 1
) = [ len O = [ (1 — cos AP,)
0 PsCr; 1513,70:s

+k—n,(1_COSAQ>:|

AP, = kg;ro, Ah and AP, = kg, 7, A

When the line of sources extends through the interface between layers say s;:%
= 1, m, we generalize our result to

— AR
{Do}z; =

[N ’bu

ORS Hl( ><ICR 7') cos 0
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1
= 1

fhl [uslugh)] ik +”§Lk l:usk(h):l ]_dh

A

The 1/Ah is carried outside the summation, instead of 1/Ah,, with each element,
so that if all the layers were the same material the result would be consistent with
a single layer. Similarly

(143)

T Lok V
{Go) s = —1 L [u—O:IH Ar,; Or, Ho® (kz,7) cos 6 (144)

Now for Love waves, the integrated effect for a single source layer is

[M]H dh (145)

Yo

[t} = igALjHO()(kL 7) sin 9*/
I

where

[209] =t o

o
Decomposing 4,,(h) to
Ap (h) = @, (1) Az,(k)
where
l=h—Nn

the integration yields

fh [vi—h)}a ah = [gih—lqa fu(ah) = [_XZ_I)J TR )

C
where
Ah .
I(an) = [ (@0, Wl dt = 52 al,
0 ijTﬁs
(147)
AR 1
(AR =f (@, ()] dl = (1 — cos AQ,)
0 ,usijVBs

When the segment extends vertically through many layers, we generalize to
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o {0 w B [ 0]

e[ 0 )

(148)

and obtain

{Bo}a) =4 gALj Ho® (ky,;7)0y, sin 6

We now shift the vertical line of horizontal forces in the horizontal direction from
0 to b with velocity ». We take into consideration the necessary phase shift cor-
responding to a time shift in the source time function at each source point. We
obtain

~ Y Ahp VAR ¢
{QO}R]" = =5 | HAARJ'ORSJOR

2 oo
_ (149)
~ . L ¢
{wO}RJ‘ =1 2—AR,»ORSJ1R
where by Ben-Menahem (1961)
1 [° ;
Jor = Ef cos 0Ho(2)(lch rye " dg
0
~ COS & (g)’ sin Xz e_i(“%JFXR—%)
- (]CRjV)7 s XR
and (150)

b .
Jiz = %fo cos OH,® (kR].r)e_zs/” dg

IR

cos 6o (_2_)" [sin Xz| e_"(c%:ngXR—%w)
)\

(ke 7)? X/

where

I

XR—w—b %——cos()o and ¢z, £
v ! kg,

Cr;

For the Love wave contribution, we obtain

(B30 = 07 As, Ou, i (151)
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where
b
Jo, = ;_f sin HHO(Z)(kL,.r)e”iE/” dg
0
~ _sin 6 (g)f [sin XL} e_i(fTr:.JfXL—f;z)
(k)i \m I Xy
(152)
and
(J.Jb Cr: w
Xy =—|-2—cost) and c; = —
cL; \ v ki,
- [,C0S8

-+0 T f“?‘

=

vz

Fic. 3. Realization of vertical fault-plane.
The source fault plane geometry, used in the above evaluation, is the same as in

Ben-Menahem except that ours is a right-hand coordinate system with 8 being the
negative of his (figures 3 and 4). The » and 8 in the integrals are given by

2774
o |:1 — 2 (—E—> cos By +- <§>:|
) T

COS~1 ITQ COoS 00 —_ g
1

I

(153)

N
it

s

The evaluation of the integrals is approximate and based on the assumption that
the range r is large compared to the wavelength of the surface waves and the hori-
zontal extent of the fault or

7o >> ks, k)
(154)
roe > b
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. 3 S +X
i < 2 ) cos 005 = [“_0} O, Ar; {sm XR} i(pexn1)
Hy

1o Wy
i : —1 c_+X _3_" .
{u')o}glf’b = ’L(—i—) cos HOL lcR] Ok, Az, {SH;(XR} e ( Ry R 4) (155)
1o &
{170}%’1’ = z<i> sin (90L]c,i7 O.,A;, {Sin_X"} e ( Lok 4)
k) i XL

In addition we may extend our model to a strike slip fault by considering a point
couple instead of a point force moving along the finite fault plane. We accomplish
this by differentiating the point force results with respect to the horizontal coordi-
nate n perpendicular to the fault plane where

e——— ¥, COS 05—

‘——b———\
(3

l‘— = 0=0

P(r,,0,8,)

Fr1c. 4. Geometry of free surface.

a . 3] cos by ( 9 .
a—n —_— Sln 00 <aT"0> “l_ 140 <6—00> (106)

Equation (156) applies strictly to the single horizontal couple or the vertical line
of couples. However, to our order of approximation in the horizontal integration,
it can also be applied to the horizontal moving couples on a finite fault. As a result,
neglecting all but the lowest order of 7, , we obtain from equations (155)

Ahyb 2\ L 1/2
{Qo}z; " = — ——> sin 6y cos Bo—k |:——:| Or Az;
"o Wo _u;
sin Xzl —ilwrofer)+Xp—(r/0)]
X{——7 ¢ i
Xg
2 1/2 i Ll }
(T} ;™" = (——) sin 6y cos 8o = ki, Oz Az, (157)
k) 2
sin Xe| —iwrofer+Xg—-Gri9]
Xe——r¢e
Xg

1/2 .

e ARb 2 L sin X,| —; VX /A

{01z = (ﬁ> sin 00——70/ 0y, AL,-{ X LY g ilene/or X /4]
0 L
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where L', the time transformed couple strength has the dimensions of L X length
or force X time X length.

EXTENSION TO A SURFACE LIQUID Laver

Now consider the same solid array with the addition of a liquid layer at the
formerly free surface. To be consistent with the previous notation we denote the
liquid layer as layer 0. At the solid-liquid interface, z,, we impose continuity of
normal stress and vertical displacement. In addition we require that the tangential
stress vanish at 2y, and that all stresses vanish at the free surface z_; .

Solving for the surface wave contributions of the new array, we find that the
solutions can be expressed in the same form as the previous all solid solutions given
by equations (85), (103), (134), (138), and (139). In order to use these solutions
for the liquid-surface layer problem, we make the following substitutions

Fr = [NK — LM]| + [T]I[GN — LH]

2
(7] = [ZTOZI = 41" = i< tan P, (158)
0 ao
C _im

and replace the homogeneous ratios defined in terms of the Thomson-Haskell
matrix elements by equations (80) and 82) with

u_m(—Z):l = [Ag,(2)] + l:go—:l [Ag, (2] + [T*[ Az, ()]s
L Wo Hj Wo _iH;
2| e @l — [ 9] ol A S
| Wo Hj Wo Hj
ot ()] ]
o = [ARm(Z)]32 + [ wo m; [ARm<Z)]31 + [T*][AR,,,(Z)]:«;?,
L ¢ 8
(70 ()] - (159)
i | = M = | %] (e — (A T
| ¢ !
'@J _K &y o _KH - M
| Wols; L* L* [G*N — L*H|
L uco i ; ”i wo Zhim U;O A
If we let [T*] = 0, expressions (158) and (159) return to our earlier expressions

for an all solid array.
The above relations pertain to displacements and stresses in the solids normalized
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to the vertical displacement at the liquid-solid interface. Displacements and pres-
sures in the liquid layer are given by

[uo_@)] _ _ sinfkry, do(2)}

o 749 €OS Py
wo(2) | cos {kra, do(2)}
[ o le]- - cos P (160)

5 e,

where do(z2) =2 — 24 and dy =2y — 2.
The addition of the liquid layer has no effect on the Love surface wave contribu-
tions and their pertinent homogeneous ratios remain

[z’m(zi — 4, ()l

Do

72, (2)
Do = [ALm(z)];kl

Cc H §

(161)

Using equations (159), the adaption of the finite fault solutions to a liquid surface
layer is straightforward and will not be given here.

Discussion

Almost all previous work on sources in layered elastic media has been restricted
to simple layer models. The frequency domain displacements derived in this paper
exhibit many of the characteristics inferred from the work on simple models. Ob-
viously, the radial and azimuthal dependence are the same as obtained for simple
models. Therefore the factors obtained for a model of a vertical strike slip fault
which depend on » and ¢ are identical to the ones obtained by Ben-Menahem (1960)
for the same model. Their application to determining fault parameters such as
fault length and rupture velocity is thoroughly deseribed by Ben-Menahem and
thus will not be discussed here.

We will restrict our discussion to the effects of source depth and layering on the
spectral amplitude of displacements as derived in this paper. Jardetzky (1953) and
Kellis-Borok (1953) have also given expressions for these effects in terms of ratios
of determinants of order (4n — 2). The significant difference in their formulation
and the one given here, is that we are able to simplify the displacement expression
so that the effects of layering, source depth and receiver depth are separated into
independent factors.

For the various sources investigated, the factors are as follows:

1. Explosive source
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. ‘PS(D)
{w(z: D) }r; ~ [wTFZ):IH_ o Az, km

Wo

¢ _u;
_ (162)
.k SOS(D)
(ates D) oy~ [ | (T | g
Wo H ;
¢
2. Vertical point force
{’U)(Z, D)}Rj ~ [/U)r(z)] liws(D>J ARJ ]R1/2
Wy Hj Wo H;
(163)
.k .
(4053 D) s, ~ |:7,Lr .(2):| [ws(.D):' An, 7"
Wo H; Wo Hj

3. Horizontal point force

{w(z; D) s

U():):l |:us (?):IHj A, k7"

-~
{a(z; D)= [ ] [“ (D)] A, kit (164)

Wo

{o(2; D)}r; ~ [07('2)];1]. [ﬁS(.D>:| A, kil

Vg Vg

where the r and s subseripts in the H; subscripted brackets refer to receiver and
source layers respectively. The H; subscripted quantities in equations (163) and
(164 ) refer to the ratios of velocity or displacement with depth for the homogeneous
case in the jth mode. The homogeneous ratio of dilation, ¢, , with depth used in
equations (162) can also be given in terms of the homogeneous ratios of horizontal
displacement and normal stress with depth. In the vertical fault models, the source
depth effect of equations (164) is replaced by the average value of the point force
factor over the vertical dimension of the finite fault.

From equations (162), (163) and (164) we see that the relations between dis-
placement and receiver depth, 2z, are the same regardless of the type of source
considered here. This fact was pointed out by Kellis-Borok and Yanovskaya (1962)
as being true for all sources. They failed to realize though that for vector point
forces and the explosive source, the relations between displacement and source
depth, D, for a given mode j can be expressed by similar relations. From our results,
we have as the source depth relations
1. Explosive source
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For volume sources, not considered in this paper, Kellis-Borok and Yanovskaya
(1962) give a set of formulas taken from M. G. Niegaus which allow one to calculate
source depth relations. This is accomplished by performing integrations over the
vertical coordinate of the homogeneous solutions weighted by the actual source
forces.

Actually the source depth relations given in equations (166) and (167) could
have been determined using theorems on sealar and elastic reciprocity given by,
among others, Rayleigh (1877) and Knopoff and Gangi (1959). These theorems
apply to the total motion but as seen from our results, they are also true for the
surface wave contribution to the total motion. For Rayleigh waves we see that the
vertical surface displacement at A due to an internal horizontal point force at B
is equal to the horizontal displacement at B due to a surface vertical point force of
the same strength at 4. Love waves obey scalar reciprocity in that the source and
receiver depth factors are interchangeable.

Sherwood and Spencer (1962) using another reciprocity theorem by Rayleigh
(1877) postulated that the surface displacement at A due to an internal dilatational
source at B is identical to the dilatation at B produced by a vertical point force at
A. From our results we see that this is true if the magnitude of the foree is properly
normalized to the dilatation source, that is, if we set the coefficient of the radial
part of the dilatation source in equation (41) equal to unity then our vertical force,
L, must be of magnitude i4mw’p; .

The factors A and A for Rayleigh and Love waves respectively are independent
of source and receiver depth and also the type of source and receiver. They depend
only on the properties of the layers in the array. From equations (103), Az/2 can
be considered as the spectral vertical response of Rayleigh waves at the free surface
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to a unit vertical surface point force after removing the transmission effect in the »
direction. Similarly from equations (137), A./2 is the spectral SH response of
Love waves at the free surface to a unit horizontal surface point force.

Computer programs based on the Thomson-Haskell matrices for the computa-
tion of dispersion (¢, T') in multilayered half-spaces yield the homogeneous motion
stress ratios as a by product. Several such programs are described in the literature.
Using a technique described in Part II to calculate analytic (8F/dk)., , it is there-
fore possible to modify these programs to compute analytically values of the
layering effect, Az and A, , as a function of phase velocity or frequency.

The obvious advantages of the factoring is that the homogeneous stress and dis-
placement ratios, and the layering effect need be calculated only once for a given
frequency and mode. Once these quantities are plotted, they can easily be used to
calculate the spectrum under many different conditions of source type, source
depth, and receiver depth, without requiring the use of a large computer.

The source theory presented here is the ground work for the numerical computa-
tion of amplitude spectra and synthetic seismograms in later papers. There spectra
and seismograms will be calculated under various conditions of source type, struec-
ture and source depth. Then by comparing spectra and seismograms, we will see if
the various parameters have quantitative or qualitative character in the frequency
or time domain.

Theoretical seismograms of continental Rayleigh and Love surface waves demon-
strating the effect of distance and source depth for a horizontal couple have already
been calculated as part of the research described here (Harkrider, 1963). Similar
calculations are now in progress for an oceanic structure.
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