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Abstract 

A general introduction to x-ray diffraction and its application to the study of surfaces 
and interfaces is presented. The application of x-ray diffractkm to various problems 
in surface and interface science is illustrated through five different techniques: crystal 
truncation rod analysis, two-dimensional crystallography, three-dimensional structure 
analysis, the evanescent wave method and lineshape analysis. These techniques are 
explained with numerous examples from recent experiments and with the aid of an 
extensive bibliography. 
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1. Introduction 

The purpose of this review is to discuss some different ways in which x-ray difiaction 
is used to study surfaces and interfaces. We begin with an elementary discussion of 
the theory of diffraction, starting with the scattering hom a single electron. From 
there the idea of reciprocal space is derived, a concept used in most thinking about 
diffraction measurements. Next, these general concepts are applied to the special 
case of surfaces. This sets the stage for the main focus of this review: five specific 
diffraction techniques used to study two-dimensional structures, and illustrated with 
results from recent experiments on actual surfaces and interfaces. 

Surface science is a subject that has grown enormously in the last decade, partly 
because of the availability of new electron-based tools. X-ray diffraction has con- 
tributed also to many advances in the field, particularly when synchrotron radiation 
is used: satisfactory signal levels are obtained for surface: of all but the lightest ele- 
ments. Previous reviews of x-ray diffraction from surfaces were made by Ridenhans’l 
(1989), Fuoss and Brennan (1990) and Robinson (1991). 

Interface science, on the other hand, is still in its infancy as far as structural anal- 
ysis is concerned. Relatively crude techniques, such as dissolution or erosion of one 
half of an interface, exist but have limited application. A central point of this review 
is that surfaces and interfaces can be treated more or less interchangeably from the 
point of view of x-ray diffraction. It is expected that in the coming decade consider- 
able use of these techniques will occur and that, by the end of the decade, interfacial 
processes such as crystal growth, epitaxy, interfacial bonding, wetting, roughening and 
adhesion will be understood far better at the atomic scale. 

2. X-ray diffraction background 

In this section we calculate what happens when x-rays are directed at a crystal and 
the scattered rays are viewed from various angles a large distance away. Specifically, 
we calculate the cross section of scattering from the sample. X-rays are used because 
their wavelength is comparable with the interatomic spacing. ’RI better understand 
the scattering formulae, we will build the crystal in stages, starting from one ebctron. 
Figure 1 defines the real and reciprocal space vectors which are used in deriving 
the scattering formulae below. The Thompson formula (Warren 1969, Jackson 1975) 
describes the amplitude of the wave A, that comes from a scattering electron at T,, 

as a function of the amplitude of the wave A, that goes in, assuming the dipole 
approximation, 

e2 1 

rnc2 R, 
A, exp(-ibf - T, )  = A,-- exp( -iki - T,) 

where e and m are the electron’s charge and mass, and R, is the distance to the 
observer. 1 / R ,  arises because a spherical wave comes out when a plane wave goes 



602 I K Robinson and D J Tweet 

Figure 1. (a )  Definition of the Ea1 space vectors used in equations (1)-(10). Point 0 

is the origin of the nystal, point A is the origin for the nth unit e l l ,  point B is the 
j t h  atom of the nth unit cell and point C is an electron belonging to the j t h  atom of 
the n i h  unit cell. (b)  Definition of the reciprocal space incident and exit wave vectors 
ki and Al. These wave vectom both have magnitude 27r/X, with X being the x-ray 
wavelength. The momentum transfer q is kf - ki. 

in. The constant, e2/mc2, has a very small value, of 3 x m. Thus, even 
with the large number of electrons in a crystal, the total scattering cross section is 
still quite small. Consequently, the kinematical approximation is valid, in which the 
amplitude scattered by an object is taken to be the sum of independent contributions 
from all the individual electrons. 

2.1. Momentum transfer 

A very important concept, the ‘momentum transfer’, is now introduced, as shown in 
figure l(b). q is the vector difference between the ingoing wavevector hi and the 
outgoing wavevector k,. Since lkil = lkrl = Ikl = (%/A) for elastic scattering, 
where X is the x-ray wavelength, we can immediately derive the Bragg law, 

The momentum transfer is the fundamental experimental variable. It relates both 

to the experimental scattering angle, 28, through equation (2), and to the theoret- 
ical scattering amplitude that is derived below. This can be seen by rearranging 
equation (l), with the definition q 3 k, - hi, 

exp (iq T,,). 
e’ 1 

4 = A O Z K  (3) 

The results of a scattering experiment may be thought of as a map in momentum 
space, where q is the independent variable and the scattered intensity is the dependent 
variable. In general, the sample has three degrees of orientational fkeedom, and the 
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scattering angle makes a fourth, so an instrument called a four-circle difbactometer 
is used. This has four concentric circular motions, three of which, called w, q5 and x, 
move the sample to the particular direction of q, and one that moves the detector by 
an angle 28, setting the magnitude of q. In practice, the orientation of the sample, 
position of the detector, and counting of the scattered x-ray photons are all computer 
controlled. 

We now have the x-ray scattering amplitude from an individual electron, equa- 
tion (3). Using the kinematical approximation, by simply summing the scattering 
amplitude from each electron, we arrive fust at the scattering from an individual 
atom, then from one unit cell of the crystal, and fmally from the entire macroscopic 
crystal. 

22. Form and structure factors 

In summing the scattering amplitudes from each electron in an atom, it is neces- 
sary to represent the electrons by their density distributions, as described bv their 
wavefunctions. This summation then becomes an integration: 

A, = Ao-- p ( d )  exp(iq - ( R ,  + rj + T I ) )  d3r’ 

-2 1 

where 

The atomic form factor, f (q) ,  is defined as the Fourier transform of the electron 
density for a single atom. The atomic form factor is written as a function of the 
magnitude of the momentum transfer, independent of direction, because in almost 
all cases the atom is spherically symmetric. More strictly, f( q )  is a complex number 
and somewhat energy dependent because the x-ray can excite atomic transitions. f( q )  

is a tabulated function for all atoms in the periodic table. 
The third step of the assembly is to add up the atoms inside one unit cell of 

the crystal. The atoms may not all be the same chemical element so they must be 
distinguished by assigning separate form factors, fj (4). If there are N, atoms in the 
unit cell, then 

where 
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Once again, we use a simplifying notation, calling the function F ( q ) ,  the sum over all 
the atoms within one unit cell, the structure factor. Now, of course, F( q )  depends on 
the direction of q as well as the magnitude because the relative positions of the atoms 
in space are important. Here the structure factor is defined in terms of the atomic 
form factors, fj(q). Altematively, it is sometimes convenient to think of F ( q )  in 
terms of p ( r ) ,  the electron density of one unit cell, where T is defined as in figure 1. 
Defining p ( ~ )  as the sum of the contributions from all the atoms in the unit cell, 

the structure factor can be written as 

. 
F ( q )  = 1 p ( ~ )  exp(iq - P) d3r. (9) 

This is an alternative, but equivalent, definition of the structure factor: the Fourier 
transform of the electron density for one unit cell of the crystal. 

2.3. 30 dinaction 

The final step is to add up all the unit cells to make the whole crystal. This is where 
the scattering becomes strongly focused into beams along certain directions and is 
then called diffraction. For simplicity, assume the crystal to be block-shaped with 
N,, N2 and N3 unit cells along the three crystal axes defined by the vectors, al, a2 

and a3. We add up phase factors for the positions of the origin of each unit cell, 

R n  = nlal -k n2a2 4- n3a3, 

This is simply a geometric sum, because we have already isolated all the chemistry 
inside the structure factor. What is left can be written down explicitly and is the same 
for all crystals. 

Let us examine one of the sums that appears in equation (10) more closely. From 
this we will derive all of the important properties of diffraction, including diffraction 
from surfaces. Define the function 

N-1 

n=O 

1 - exp(izcN) 

1 - exp(iz) 
- - 

This complex quantity, with z = QU, represents a simplified version of the scattering 
amplitude for a one-dimensional crystal containing N atoms. The quantity of interest 
to experimenters is the square modulus of S, representing the scattered intensity: 
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Figure 2. N-slit interference function shown here for N=6. Note that the primary 

maxima are spaced 2x apart in units of q .  a3 while the subsidiary maxima are spaced 

2n/N apart. ?hi*s there are N - 2 subsidiary maxima between each pair of primary 
maxima and h m  the spacing of the subsidiary maxima the value of N can be deduced. 

This is called the 'N-slit interference function' because of its use in optics. It is 
plotted in figure 2 

We can now write the diffracted amplitude as a product of slit functions, 

For the t h e  being, we will consider the large-N limit of the N-slit function, corre- 
sponding to the case of a large crystal. S N ( q a )  is sharply peaked at q = 27rni/a 
where m is an integer, and tends in the limit to a periodic array of 6 fu.nctions with 
a spacing of 27r/a. This tells us that the diffracted intensity from a crystal has the 
special property of being only along specific, well-defined directions. 

The generalization to three dimensions (3D) of this statement leads to the concept 
of a reciprocal lattice. The diffracted intensity is the product of three orthogonal, 
periodic 6-function arrays, so we can write down three separate conditions that have 
to be met simultaneously for the intensity to be at a maximum: 

q *  al = 2nh 

q - a ,  = 27rk 

q a3 = 2nZ. (14) 

These three equations, all of which have to be true for diffraction to take place, are 
called the h u e  conditions. The integers h, 12 and 1 are called Miller indices. The 
three conditions can be simultaneously satisfied by the vector 

9 = hb, + kb, + lb3 

b* = 27r 

(15) 

with 

(16) 
a2 x a3 

al a2 x a3 
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etc. 
Since an arbitrary set of integers h, k and 1 gives us a q that satisfies the h u e  

conditions, the allowed values themselves form a 3D lattice of points. This ‘reciprocal 
lattice’ is spanned by the vectors bl ,  b, and b3 which are orthogonal to the uI, U, 
and a3 that span the diffracting crystal. The { a j } s  have units of length (A), so the 

{bj}s have units of inverse length (A-’). Fbr further discussion of the properties of 
the reciprocal lattice, the reader is referred to one of the many excellent texts on 
crystallography (Lipson and Cochran 1966). 

Now we understand the difiaction pattern of a 3~ crystal: the diffracted intensity 
is zero except at discrete points that lie on a lattice in the space of the momentum 
transfer vector, q. When we measure the intensity at such a hkl point, it is given by 

3. Surface diffraction 

Up to this point we have considered diffraction quite generally; with figure 3 we 
introduce the special case of diffraction from a surface. We really have to consider 
two cases: figure 3(a)  is the case of an ideal two-dimensional (2D) monolayer, hard 
to realize in nature; the other is the case of figure 3(b) that most surface scientists 
really talk about implicitly, the case of a truncated 3D crystal. The top layer could 
have a structure of its own, or it could be a simple continuation of the bulk, with 
slight modifications. 

a) Isolated Monolaver 

b) Surface of Crystal 

c) Crvs tal -CrvstaI Interface 

Figure 3. Schematic pictures illustrating 2~ layers existing at surfaces and interfaces. (a )  

Isolated monolayer, (a) surface of crystal, (c) crystal-crystal interface. 
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It is also possible to include two bulk media in the problem, one on each side of 
an interface, as figure 3(c) shows. Either one or both media may be crystalline. The 
diffraction formulae we derive below apply to these situations equally well. 

The diffraction from all three cases can be described using equation (13). If we 
take o3 to be along the surface normal, the isolated monolayer is handled by setting 
N3 = 1. The diffraction iS then independent of q - a3, the component of momentum 
transfer perpendicular to the surface. In 3D reciprocal space, we find the diffraction 
is a zD lattice of rods, as shown in figure 4(a). Each rod is a line of scattering 
which is sharp in both directions parallel to the surface and diffuse (or continuous) in 
the out-of-plane direction. These rods are the chief characteristic of diffraction from 
surfaces. 

2 D  
LAYER 
ONLY 

BULK 
CRYSTAL 
AND 2D 
LAY ER 

CRYSTAL 
TR UN CAT1 ON 
RODS 

Figure 4. Schematic diffraction patterns corresponding to figure 3. ( a )  For the isolated 
monolayer, ( b )  for the surface of a 3D crystal, (c) more realistic representation showing 
variation of intensity along crystal truncation rods (m). 

In our experiment, if we were to measure at any point along one of these re- 
ciprocal space rods, we would always obtain some intensity, but if we measured in 
between them we would measure nothing because of the in-plane 6 function. The 
usual form of presentation of such data is in the form of a scan or linear slice through 
space cutting across one of these features. Notire that we always talk about measure- 
ments in reciprocal space: this is the language that is always used in crystallography 
and diffraction physics. We think in the space of the reciprocal lattice, not in the 
real space of the crystal itself. Since what we ineasure is the scattering at various 
diffractometer angles, we are, in effect, making a map of reciprocal space. It is, 
therefore, extremely convenient to think in these terms. Furthermore, many aspects 
of the physics of crystals are greatly simplified when viewed in reciprocal space, as 
will be evident later on from the examples. 
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3.1. Ctystal truncation rods 

Figure 4(b) is the diffraction from the structure of figure 3(b) with a 2D layer plus 
the bulk. We have simply superimposed the two diffraction patterns of the surface 
(lines) and the bulk (dots) on top of each other. This picture conveys the idea that 
the Bragg rods of diffraction due to the surface pass through the B r a g  points of the 
bulk. The rods, however, are by no means flat in theii intensity profiles as they were 
for the monolijer case, and in fact they look more like the schematic representation 
of figure 4(c). This is because all layers of the crystal contribute. The intensity profile 
can be derived by detailed consideration of the N-slit function, equation (12). The 
numerator, sin2( N q  u3/2), is an extremely rapidly varying function of q, at least 
for large N, and is in any case smeared out in a real experiment because of finite 
resolution; since it is always positive, we can approximate it by its average value of $. 
This gives a simpler form for the limit of large N that is actually independent of N, 

Although this approximation is not useful at any of the Bragg points given by the 
third h u e  condition (equation (14)), g - a3 = 274 it tells us that the intensity in 
between them is actually non-zero along the surface normal. 

Such rods are called 'crystal truncation rods' (CTRS) since they arise from the 
crystal being truncated (Robinson 1986). They have the characteristic dependence on 
perpendicular momentum transfer as given by equation (18) and plotted in figure 5. 
The origin of this intensity variation along the rod can also be seen by constuction 
of the diffraction amplitude coming from the semi-infinite crystal inside t < 0 with 
absorption E from one layer to the next, 

In the limit of E tending to zero, the square modulus of S ' ( q  as) tends to the 
form given in equation (18) above for S'(q u3). When E is small, corresponding 
to the real case of an absorbing crystal, equation (19) is only significantly different 
from the ideal case of equation (18) at and very close to the Bragg peaks. We know 
equation (18) must be incorrect for real crystals because it predicts an infinite value 
for the intensity at the Bragg peaks: for complete fidelity we must introduce both the 
effects of absorption and the full dynamical theory. 

It is important to make the distinction between the truncation rods, passing 
through bulk reciprocal lattice points, and those due to an isolated monolayer. Both 
can exist together in the same sample because an adsorbed layer does not necessarily 
have to be registered with the crystal underneath. In the interesting case of recon- 
structed surfaces, the outer layer@) of a crystal spontaneously rearrange to produce 
a new periodicity (see below). For the diffraction of the added layer not to pass 
through the bulk Bragg points, however, it must have a different periodicity. The 
analysis of these two kinds of rod differ somewhat, as we shall see. 
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Figure 5. Crystal truncation rod profiles. The full curve shows the m for a perfectly 
sharp surface, as calculated in equation (18). Also show are the m s  for a lough 

surface (dotted curve: equation (23)) and a surface witk an expanded top layer (broken 
curve). 

It is instructive to compare the intensity distribution along the rod for the two 
cases (from equation (17)): 

Clearly the two kinds of rod have the same order-of-magnitude intensity in the 'valley' 
far from the Bragg peaks at q a3 = 2nl. The actual intensity obsemed here in a 
real experiment is of order of 10 counts per second for a heavy element (such as 
Pt) using a laboratory-based rctating-anode source, or lo4 counts per second using a 
storage ring source in a standard configuration (Ib'Zoncton and Brown 19831, such as 
the National Synchrotron Light Source at Brookhaven National Laboratory. 

3.2. Surface roughness and ~ R S  

An alternative way to see the origin of the CTR is to represent the semi-infinite crystal 
as aproduct of a step function with an infinite lattice. The diffraction pattern is then, 
by Rurier transformation, the convolution of a reciprocal lattice with the function 
(iq-a,)-'. It was originally shown by von Laue (1936) and more recently by Andrews 
and Cowley (1985) that the external surface can thus give rise to streaks emanating 
from each Bragg peak of the reciprocal lattice. The &function B r a g  peak becomes 
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a streak with Iq a31-2 intensity dependence. Joining adjacent streaks together leads 
to the sin-'(q a3/2) dependence via 

Also shown in figure 5 are two examples of modified am, corresponding to 
those of a statistically rough surface (see below) and a surface with a different top 
layer spacing. The steeper than q-2 dependence for the rough surface is simply 
the consequence of an effective broadening of the step function representing the 
truncation of the crystal. A simple model of statistical roughness, which was found 
by Robinson (1986) to work quite well for a variety of samples, is an exponential 
distribution of heights: layer 0 is assumed to be fully occupied, layer 1 above it 
(dotted in figure 5)  has a fraction ,B of sites filled, layer 2 has fraction p2 and so on. 
This leads to a modification of equation (21) by an additional factor, 

4. Crystal truncation rod analysis 

This is the first of five sections that will describe different kinds of measurements that 
one can make with x-rays to learn about surfaces. Here, for example, we analyse the 
intensity of the truncation rod to obtain information about the vertical structure. This 
is useful for examining layered structures with so-called 1 x 1 reconstructions (see 
below), in which there is perhaps a lateral or vertical shift of the top plane relative 
to the bulk, but not a change of the periodicity of that layer. This technique is also 
very useful h studying interfaces which have different spacings and perhaps different 
chemical compositions. 

CrR analysis is very similar in concept, but not in detail, to the LEED crystallo- 
graphic analysis (van Hove and 'hng 1979). In an x-ray measurement, as we saw in 
figure 5, the intensity as a function of the perpendicular momentum transfer then 
passes through the bulk Brag peaks and has some looping behaviour in between. 
The looping contains the information about the surface structure of the material, such 
as the expansion of the layer spacing. This is identical in form to the I( V) spectrum 
in LEED, except that instead of singular Bragg points where the x-ray intensity goes 
to a very large value, the electron intensity has attenuated peaks. This is because 
the penetration of the electrons at 50 eV is very small (w 5 A). We do not use the 
information near the divergences of x-ray measurements because that tells us ody 
about the bulk; we look instead at the intensity between the bulk Brag points. 

4.1. NiSi2/Si(lll) interface 

Figure 6 shows a simple interface structure measured by Robinson et al (1988a). 
Nickel has been deposited on top of a Si(ll1) surface and heated to an appropriate 
temperature where it reacts to form a good crystalline film of Nisi,. One reason it 
forms so well is that the lattice parameters of nickel silicide and silicon are within 
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0.5% of each other at room temperature. Due to this parallei lattice match, the entire 
structural problem is reduced to one dimension: a determination of the parameter 
d, the interfacial separation. From that we can figure out the bonding arrangement 
of the interface. Finer tuning of the technique would allow us to determine the 
relaxations in the neighbouring silicon or silicide as well. If the interface were ideal, 
that is, if all of these bonds were ideal silicon-silicon bonds, then the value of d 
would be f of the bulk spacing, a. (see figure 6). 

Figure d Schematic ‘ball and stick’ model of a NiSi~/Si(lll) interface, defining the 

structural parameters ao. a1 and d .  

Let us calculate the diffraction from this system as a function of the single perpen- 
dicular component of momentum transfer, q. First of all, we draw the amplitude from 
the nickel silicide film as a full curve in figure 7(a). This example is a seven-layer 
film of silicide, so we have a seven-slit interference function S,( q a3) with its broad 
maximum at the Bragg position in the centre. The substrate gives rise to a truncation 
rod with its divergence also in the centre (second full curve). However, the IqI-’ tails 
soon overlap with the amplitude from the film. Since the two objects are juxtaposed 
in the sample, it is their amplitudes that must interfere with each other, not merely 
their intensities. This is where the structural information about d emerges. On one 
side of the B r a g  peak the intensity goes up, while on the other side the intensity 
goes down in the superposition (figure 7(b)) .  The asymmetry is very sensitive to this 
interfacial parameter d. The best fit ti, the data is obtained when d = l.lOaq, as 
can be seen in figure 7(c). This shows a slight contraction from the 1.12Sa0 obtamed 
above by considering ideal bond lengths, and agrees well with the results of other 
techniques (van Loenen et a1 1985, Vlieg et a1 1986, Zegenhagen et a1 1989). 

4.2. Other Cntderived structures 

Au(lOO), Pt(100), and Au(ll1) all have approximately hexagonal surface layers that 
are incommensurate with the rest of the crystal. Analysis of the m s  yields in- 
formation about the layering of these structures that disregards the details of the 



612 I K Robinson and D J Tweet 

- 
Z 
3 

- 
Ln 
z 
w 

MOMENTUM TRANSFER qa,/2rr 

Figure 7. (a )  Scattering amplitudes in thc vicinity of the first-order Bragg peak for 
the Si(ll1) substrate and seven-layer Nisi2 film. The momentum transfer is in units 
of 2n/ao. (a) 'Ibtal diffraction intensity for various values of d / ~ ,  found by adding 
the amplitudes from the substrate and the film with appropriate phase factors and 
squaring. (c) Data (open circles) compared to the best fit (full curve). ?he best fit gives 
d/ao = 1.10. Reproduced from Robinson et al (1988a). 

hcommensurate layer itself (Gibbs ef nl 1988, 1990, Ocko ef a1 1990, Sandy er a1 

1991). These measurements immediately confirmed that the top layer of Au(100) 
and Pt(100) was 20% denser than the underlying bulk layers, which is seen as a 
consequence of the hexagonal packing. A later surprise was that Pt(lll), a surface 
not known to reconstruct, also enters this incommensurate state at high temperatures 
(Sandy et a1 1992). 

Van Silfhout et a1 (1990) studied the structure of the clean Ge(l11) surface by 
means of the m s  alone, even though it is reconstructed with a c 2 x 8  unit cell. They 
found a preference for the T4 'adatom' structure (see below). Since oniy integer 
orders were used, the structural model could be reduced to a 2 x 2  unit cell instead of 
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the full ~ 2 x 8 .  Because of this simplification, a large number of structural parameters 
could be derived that were not determined in the analysis of fractional orders by 
Ridenhans’l et af (1988). 

Other structurez that have been determined by the analysis of cTR profiles include 
a number of Buried interfaces. The interfaces between amorphous Si and Si(ll1) and 
between SiO, and Si(ll1) were examined by Robinson et al (1986b). In both cases 
a good fit to the cms was obtained with a model of partially occupied layers on the 
amorphous side of the interface. Order was lost within a couple of layers. The major 
difference was that the a-Si/Si(lll) interface retained the stacking faults associated 
with the original 7x7 recollstfllction of Si(ll1). The Si02/Si(lll) interface has also 
been studied by Kashiwagura et al (1987), Hirosawa et al (1990), Iida et ul (laSl), 
and cowley and Lucas (1989). GaAs(lOO)/Si(lOO) has been measured by Jedrecy et af 
(199Oa), Al/GaAs(lOO) by Marra ef uf (1979), and the GaAs(lOO)/oxide interface by 
Kashihara et al (1991). The CaSrF,/GaAs(lll)B interface, as studied by Hashizume 
et uf (19!J2), showed an absent F layer adjacent to the GaAs. 

5. ZD crystaUography 

This is the oldest of the techniques we will discuss and where the majority of the 
experimental surface x-ray work around the world has been done. It could be the 
most generally useful application of x-ray diffraction to surfaces. The object is to 
figure out the in-plane coordinates of a surface structure by unraveling the positional 
information encoded in the F(q)  of equation (9). We will consider several examples 
of this in some detail because there are subclassifications of the technique which are 
specific to the way we solve structures from crystallographic data. 
First, we should briefly say what we mean by crystallography in three dimensions. 

Recall the formula derived earlier expressing the scattering amplitude of a crystal as 
the sum over all unit cells within the crystal, 

This summarizes the fact that the diffraction pattern from a crystal is a set of 6 
functions whose weights are the values of the Fhk1 where 

p(r)exp(iv (hb, + kbz + l $ ) )  d3r.  =/  
The purpose of aystallography in the traditional sense, then, iS the determination of 
the contents of the unit cell, p ( r ) ,  given the intensity of diffraction at a discrete set of 
points, q = hbl+kb2+lbp Equation (25) tells us that Fhk, iS just the hkl’th r ;OUIkX 
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component of p(r ) .  This implies that the density is the inverse Fourier transform of 

the Fhkl, 

One might naively think that finding the density is a straightforward application of 
equation (26). Unfortunately, Fhkl is a complex number, 

whose amplitude, (Fhk.(, we measure through the intensity, I = lA4I2. Consequently 
the phase hctor, q,kl, is the missing quantity. The essence of crystallography, the 
so-called ‘phase problem’, is that we measure the amplitude of Fhkl but not the 
phase, and both are necessary to invert the Fourier transform and calculate p( r ) .  

Now, crystallography has been around a long time and so there are many good 
tricks for solving this phase problem. We will discuss a couple of them in the next 
sections but before we do we will first return to the 2~ dsac t ion  experiment and 
think about exactly what it is we measure there. Rewriting equation (25) we have 

where we have defined T = zal + ya2 + %a3 and made use of equations (14), (15) 
and (16). When we measure in-plane data, we determine the value of Fhkl for 1 = 0, 
which is written Fhko or simply Fhk. Then we can rearrange the above equation 
slightly to obtain 

where 

We see that p‘( z, y) is the projection of the three-dimensional density of the unit cell 
onto the (a, U) plane, or a ‘top View’ looking through the structure. Equations (28) 
to (30) tell us, then, that we can substitute a section of the three-dimensional Fburier 
transform of the real density with a two-dimensional Fburier transform of the pro- 
jected density. This result is known as the section-projection theorem, which is very 
important, incidentally, to the analysis of computed axial tomography (CAT) scans in 
medicine. 

One further point that needs clarification is what is meant by a reconstructed 
surface. The term reconstruction is defined as a spontaneous change in the periodicity 
of the crystal at the surface, as illustrated in figure 8. In this example it can be seen 
that along the horizontal direction of the page the structure has double the periodicity 
of the bulk. The general nomenclature is an n x m’ reconstruction where n and m 
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prsUre 8 Illustration of diffraction from a 2x1 Ileconstruction. Full circles represent 
atoms of a simple cubic crystal viewed from the side. Broken atoms are paired at the 
surface to double the periodicity. The diffraction pattern below shows bulk Bragg peaks as 
dots, aystal truncation rods (CIR~) as full tines and contributions from the reconstructed 
layer as broken lines. At integer-order positions the latter two contributions interfere. 

are the multipliers of the unit cell dimensions. Our example is therefore called a 2x1 
reconstruction, assuming bulk periodicity out of the plane of the page. 

As can be seen in the diffraction pattern of this reconstructed surface in the 
lower half of figure 8, there are extra lines of diffraction half way between the CrRs 
of the bulk We can consider two general regions of reciprocal space of interest to 
surfaces: the in-plane region ( I  = 0 )  and the out-of-plane region (I > 0). Each 
of these regions subdivides into ‘integer orders’, Fhk’s with h and IC integral, and 
‘fractional orders’ with one or other index fractional. In the case of the in-plane 
dsaction (I = 0)  of a crystal with a basis (e.g. FCC or ace), there will be WO 

kinds of ‘integer orders’: in-plane bulk peaks where a bulk Bragg reflection occurs, 
and special points where cra~ intersect the I = 0 plane. If we are interested in 
understanding a surface reconstruction, the fractional-order intensities will be easier 
to analyse than the integer orders since there is no contribution from the bulk at 
those positions. Often we start with in-plane, fractional-order data, then extend out- 
of1plane for 3D information and/or the integer orders to learn about the relation with 
the bulk crystal. Each of these steps is discussed in detail below. 

We have explained the locations of the half-integral spots, but what about their 
intensities? It Is clear that we can get a 2x1 reconstruction in many different ways: 
by dimen (shown in figure 8), vacancies, or chemical modulation. There can also 
be more than one layer involved. The exact arrangement within the cell is what 
determines the relative intensities of the various half-integer spots. 

5.1. InSb(ll1) 2x2 suflace 

The techniques of 2D crystallography for analysing a reconstructed surface are Ncely 
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illustrated by the InSb(ll1) and GaSb(ll1) crystal faces studied respectively by Bohr 
et al (1985) and Feidenhansl et a1 (1987). When cleaned in ultra high mcuum (UHV) 

both surfaces show the same 2x2 reconstruction shown in figure 9 (Pedersen 1988). 
The surface unit cell of InSb(ll1) without reconstruction (small rhombus in figure 9) 
contains an indium atom in the top layer and an antimony atom in the layer below. 
Because InSb is a 'polar' q s t a l ,  its (111) surface instead has the antimony on top 
and would therefore be expected to have totally daerent properties; it turns out that 
it even has a different reconstruction, namely 3x3. In the ideal 2x2 state there are 
assumed to be four indium and four antimony atoms in each unit cell in a p3ml planar 
arrangement; we want to find how they rearrange when the surface reconstructs. 'Ib 
do so, the intensities of the half-integer spots for 1 = 0 were measured and the 
values of lFhkl derived using equation (20). The results of such an experiment are 
illustrated in figure 10. This is one sector of the 1 = 0 plane in reciprocal space 
containing the independent half-integer spots. The rest of the 1 = 0 plane is related 
by 6mm symmetry @3ml plus an inversion centre). The variation in the intensities 
among the spots is the crystallographic information that tells us where the atoms are 
in the surface plane. 'Ib extract that information we Will apply two techniques in 
succession: the Patterson function and the difference Fourier map. 

Fkun 9. (a )  Cut through a crystal to form he InSb(ll1) surface (without reconstruction) 
in (6). (c) Ibp view of the surface with In atoms drawn as large circles and Sb as small 
circles to show the polar nature of (111). The solid line shows the dimension of the 
unreconstructed 1x1 surface unit e l l .  Reproduced from Pedersen (1988). 

5.2. Patterson fir nction 

We would like to take the Fourier transform of Fhkr and thereby obtain p ( ~ ) .  
However, we cannot because the phases are unknown. Instead, we will do the 

next best thing and take the Fburier transform of IFhkl12, which is defined to be the 
Patterson function (Patterson 1934), P ( F ) ,  

P(T) = iFhkfexp( -iq ' F ) .  

hk1 
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Figure 10. Portion of the 1 = 0 plane in reciprocal space of the 2x2 diffraction 
pattem for the InSb(ll1) remnstructed surface. Ihe complete pttem is obtained by the 
application of the mirror operations of the p6mm plane group. The origin is at the lower 
left-hand comer and the [lo] and [Ol] vectors denote the h and k axes, respectively. The 
measured intensities of half-integer order spots are shown as the areas of the shaded, left 
half-circles, while the =lues dculated from the final model of Robinson et d (199Ob) 
are the open, right half-circles. ’he double drcles are in-plane bulk reflections. 

This tum out to be valuable since it is easy to show from equation (W) that 

where (p( T)P(  0 ) )  is called the electron density-density autocorrelation function for 
the unit cell. The utility of this function is illustrated in figure 11. Here the electron 
density of a ID structure consisting of three atoms with Z,, 2, and Z3 electrons, 
respectively, is shown in figure ll(a) and the corresponding Patterson function in 
figure ll(b). A graphical way to generate P( T ) ,  the correlation function of p(  T )  with 
itself, is to shift a copy of the density pattern of part (a) a distance T and overlay it on 
the unshifted p ( r ) .  Then the shifted and unshifted patterns are multiplied together 
and the area under the resulting curve is calculated, giving P(r ) .  After a little 
cansideration it is apparent that all of the interatomic distances in p( T )  will appear 
in P(r ) .  Both distances and directions of the vectors will be preserved. Furthermore, 
the strength of the Patterson peaks will be proportional to the product of the electron 
densities of the two or more atoms which produced that peak. Consequently, the 
largest peak will be at the origin and P( T )  will be symmetric about the origin. 

We Wish to produce a 2D Patterson function. n o m  equation (25) and the fact 
that p ( r )  is real it follows that IF&l = Equation (31) then reduces to 

which is also a real quantity. Figure 12(a) is a contour map showing the Patterson 
function for InSb(ll1) obtained by Bohr a a1 (1985) from the intensities in figure 10. 
There are four clear non-oiigin peaks that must correspond to interatomic vectors 
in the surface structure. The bulk structure projected into the (111) plane is a 
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Figure 11. The Patterson function of a one-dimensional unit e l l .  (a) The electron 
density of a ID structure consisting of three atoms with Zl, Zz and Z3 electrons, 
mpectively. (a) The comsponding Patterson function for this structutt. Adapted from 
Warren (1969). 

honeycomb arrangement of atoms, in which the repeating unit is a covalently bonded 
hexagon, shown as open circles in figure 12(b). If the hexagon is placed in a 2x2 unit 
cell, interatomic vectors are the open circles shown in figure 12(c). If the hexagon is 
distorted roughly to conserve bond length, as the closed circles in figure 12(b) indicate, 
the p k s  in the Patterson function move to the positions indicated in figure 12(c), 
which are exactly those observed in figure 12(a). 

Thus we have explained the location of the peaks in the Patterson function by 
this distorted hexagon. Of course, we do not know yet which atoms are indium and 
which are antimony, but at least we know that this is a basic structural element of 
the surface. 'RI check our answer we take the hexagon, put it into the 2 x 2 unit 
cell, and calculate what the observed intensities should be. ?b do so, we refer back 
to the definition of Fhkl in equation (7), as the sum of the atomic form factors of 
each atom in the unit cell. Up until now we have found it best to think of Fhkl 
as the Fburier transform of the unit cell density, equation (9), hut for the present 
calculation equation (7) provides the more convenient definition. We therefore arrive 
at 

. 

6 

l q k l e i a i k  = C f j ( q h k ) e x p ( i 2 ~ ( h ~ j  + kyj))  (34) 
j=l 

where the six atoms in the 2 x 2 unit cell are at coordinates ( zj , yj ) and have form 
factors f j ( q h k ) .  mom this the predicted intensities of the various spots can be de- 
rived. However, the results are found not to agree very well with the observed values. 
This may be discouraging, but the Patterson function analysis gives us confidence that 
our distorted hexagon h at least a major part of the structure. Clearly, we need a 
method to tell us v a t  we have ,+sed. The next technique does exactly that. 

5.3. Difference Fourier map 

We bean by using equatiri;: $6) to write down the unit cell density for the true 
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Figure 12. (a )  Repeating unit of the Patterson function calculated h m  the intensities 
shown in figure 10. Positive mnlour levels above zero are shown. Broken mirror 

lines surround the asymmetric repeating unit. The shaded circle is the origin peak. (a) 
Distortion of a hexagonal arrangement of atoms taken from the projected unreconstructed 
InSb(ll1) surface. (c) Pair-comlation peaks 1 to 4 derived from vectom 1 to 4 in (b). 
Reproduced f h m  Bohr et ul (1985). 

structure, p0(z,  y), and the initial model structure, pc( z, y), 

po(z,  y) = IFhDLJeiaIk exp(-i2.rr(hz + I C Y ) )  (35) 

p c ( z ,  y) = l ~ k l e i a ~ k  exp(-i2n(hz + I C Y ) ) .  (36) 

hk  

hk  

Here the superscript '0' refers to the observed values while 'c' refers to the values 
calculated from the distorted hexagon in equation (34). Note that we do not yet 
know aik; it is the set of missing phases. 

Next we need to assume that, even though the model density is not completely 
correct, it is close to the true density. In particular we assume that our model is only 
wrong in a few places; that it has the proper location of most of the atoms but is just 
missing one or two. Since the phases a" from the structure as a whole, it follows 
that the unhown, true phase is close to the phase calculated from the model, 

aik aik. (37) 

With this approximation we can now calculate the difference between the two electron 
densities, which will be a map of the positions of all the mistakes we have made in 
the structure, 

~ ' ( 2 ,  Y) - P Y X ,  Y) = CIIF~~I - l q D L l ) e i * ; k  exp(-i2a(hz -I- ICY)). (38) 
hL 
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Figure 13 is the resulting difference Fourier map. Centred on me of the three- 
fold axes and accented for clarity is the distorted hexagon we obtained from the 
Patterson function. Upon examining this map we discover that the only place where 
there is a significant peak is at the other three-fold axis. Thus, we can see from this 
ditference calculation that we need one more atom in the structure and that it should 
sit at this three-fold position. When we put that seventh atom in the unit cell we get 
extremely good agreement between the observed and calculated structure factors. We 
can then conclude that we have arrived at the correct structure. 

Figure W. Difference Fourier map of one InSb(ll1) unit oell. Positive mntoum above 
zero are shown. 'Ihe distorted hexagon of figure 12(6) is drawn with thick full lines. 

Figure 14(a) shows the final picture, true for both InSb(ll1) and GaSb(ll1) 
(Feidenhans'l et af 1987). The top panel is an overall view of the surface with an 
enlarged view of one 2x2 unit cell in the centre. Starting with the eight a t o m  of 
the unreconstructed unit cell we find that there are only seven atoms left, meaning 
the one in the comer is missing, producing a vacancy site. The antimony closest to 
the vacancy moves towards it, distorting the hexagonal bonding of the bulk stucture 
viewed along (111). Meanwhile, the seventh atom is able to stay where it was. At the 
bottom of figure 14(b) are listed some of the bond lengths and angles for InSb(ll1) 
and GaSb(ll1) as well as GaAs(ll1) ("g er af 1984), which has a similar structure. 
The surface bond lengths, seen here as their w projections, are found to be very 
close to the bulk values in all three cases. This is a strong argument suggesting the 
surface iS flat. Consequently the projected bond angles which we observe are close to 
the actual bond angles. The trend in bond angle from As to Sb reflects the increasing 
tendency down the group V elements to form p-type bonds (90' angle) instead of 
sp3 ( 1 0 9 O  angle). All atoms h the bulk have the 109' sp3 configuration. Similarly, 
the group 111 element (indium or gallium) has bond angles around 120°, typical of 
sp2 bonding, which it prefers in small molecules (Wells 1985). Thus we find that both 
the group III and group V elements in the surface revert to molecular configurations 
rather than the fully ionic sp3 state they achieve in the bulk. 
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Figure 14. (a) Overview of a large region OF the 111-V(ll1) surface with its 2x2 
reconstruction. (6) Enlarged view of the reconstructed unit cell defining projected bond 

lengths and angles. ( c )  Values of the structural parameters for various 111-V(ll1) 

surfaces. InSb(ll1) is from Bohr ef ul (1985), GaSb(l11) from Feidenhansl et al (1987) 

and GaAs(ll1) from Tong er af (1984). 

5.4. Intetference at truncation rod positions 

We now turn to the next level of detail in this structure, which allows us to discuss 
another technique of 2~ qstallography, the use of the crystal truncation rod infor- 
mation. Up to now we have considered the structure to be an ‘isolated monolayer’ 
in the sense of figure 3. Rather than just looking at the fractionalader intensity we 
are now going to consider the intensity at the integral-order positions, where we have 
contributions both from the known bulk structure and from the surface structure we 
have just derived. The reason we would want to do such a thing is that we do not 
know the ‘registry’, or how the surface layer sits on top of the bulk. It turns out 
there are six possible registries, as drawn in figure 15. Firstly, there are two possible 
rotational orientations for the surface layer. The bulk layers of an FCC crystal viewed 
along (111) alternate in an triple sequence, usually denoted ABCABC. . .. This raises 
the question of which is the last bulk layer beneath the surface: A, B or C? Stated 
another way, we have to choose which of the three three-fold axes in the p3ml surface 
unit cell lines up with the corner of the bulk unit cell. 

Under each candidate in figure 15 is written the x2 value. This is a measure of 
agreement of the intensities of four integer-order spots, where ’ 

where N is the number of measurements (four here), P is the number of free fit 
parameters (0 here) and crF is the measured uncertainty in the value of lF&l. This 
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Figure 15. Possible registries of the GaSb(ll1) 2x2 reconstruction with the bulk. Values 
of x2 given by equation (39) for the agreement of the integer-order intensities with the 

measured values clearly identify the bottom right ambination as the correct one. 

function is widely used as a goodness-of-fit criterion in the optimization of a model 
with data (Bevhgton 1969) to correctly account for the measured errors. In figure 15 
the arrangement in the lower right of the figure has the smallest x2 by far and so 
is the correct choice. We notice that it makes the fewest possible changes from the 
bulk structure, a reassuring result. Some of the wrong candidates are unrealistic in 
that bonds could not be connected. The correct answer has neither a stacking fault 
nor a reverse top layer, and it has the same order in the stacking sequence that we 
would expect &om ordinary ABC stacking. 

5.5. Further linprovements on the InSb(ll1) structure 

The final structure detailed in figure 14 was refined in two dimensions by least-squares 
minimization of a x2 given by equation (39) to obtain the final parameters listed. 
Debye-Waller temperature factors were included at that time and found to be slighly 
enlarged from the values from bulk InSb and GaSb (Bohr et a1 1985, Ridenhans'l 
et a1 1987). Nevertheless, the final x2 values were 3.8 and 4.2, respectively. Now 
x2 is a measure of the total error in standard deviation units, and the uF values 
input were derived carefully from the reproducibility of the data and so believed to 
be representative. The value of x2 greater than unity informs us that something is 
still missing from the structure. 

Belzner er a1 (1989) considered this point and suggested some possibilities. They 
found that anisotropic temperature factors were not sufficient and concluded by means 
of difference maps as used above that extra density was needed in the vacant site at 
the corner of the 2x2 unit cell. They proposed that the vacancy was partially filled 
by a disordered In present in a fraction of the unit cells. In this way they obtained 
x2 close to 1.0. 

Robinson et a1 (198%) reconsidered the data also to explain the discrepancy in 
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x2. Their model was of small second-layer displacements that slightly perturb the 
structure factor. This gave x2 values of 1.5 and 1.4 for InSb(ll1) and GaSb(ll1) 
which are close to unity too. The final calculated structure factors are compared with 
the data in figure 10. It is important to note, however, that on the grounds of x2 
alone it is impossible to distinguish between this model and the one of Belzner et 
a1 (1989), although second-layer displacements makes a less exotic explanation. The 
measurements needed to make the distinction between the disordered one-layer and 
the two-layer models are out-of-plane diffraction intensities, which are the subject of 
the next section. No more than a tiny range of perpendicular momentum transfer 
was available at the time of the original study because of instrumentation limitations. 

5.6. Results obtained by 20 crysrallography 

Reconstruction is relatively rare among elemental metals. Adsorbates on metals, 

on the other hand, are frequently seen to order into superstructures that can be 
analysed in just the same way as reconstructed surfaces, and there are many cases of 
these known. Historically it was once assumed in the absence of structural data that 
adsorbates simply attach to metals without modifying the substrate. The commonly 
used language of ‘hollow sites’, ‘bridge sites’ and ‘atop sites’ on surfaces reflects this 
assumption. As more and more systems were examined in detail, s u b h q e  adaption 
was found to be present as well. This can be dramatic when the density’of surface 
atoms changes to form vacancies or added clusters. 

This is clearly seen on Cu(ll0) and Cu(100) surfaces that both reconstruct in the 
presence of oxygen to form ’missing row’ structures. In-plane x-ray studies were done 
by Gang et a1 (1985) and Ridenhans’l et a1 (199Oa) for Cu(ll0) and by Robinson et 
a1 (199Ob) for Cu(lOO), respectively. The two structures are closely related in having 
the same basic structural element: a chain of Cu-0-Cu-0-Cu structure along one 
of the in-plane crystallographic [loo] directions. Adjacent to the chains there is an 
entire atomic row missing. Coulman el af (1990) showed with scanning tunnelling 
microscopy (STM) that the chains assemble on existing clean terraces of (110) and so 
they suggested the term ‘added row’ would be more appropriate, although the final 
fully ordered 2x1  state is identical. At higher coverages, oxygen gives rise to a 06x2 
structure on Cu(l10). Ridenhans’l et a1 (1990b) analysed this structure as well to 
find that the extra oxygen is accommodated in a closer packing of Cu-0-Cu-0-Cu 
chains, two per three substrate unit-cells, and also in 0-Cu-0 bridging arrangements. 
This structure is shown in figure 16. 

Semiconductors are covalent crystals for which the topological properties of the 
chemical bonds tend to lead to a rich variety of reconstructions. Most notable are the 
clean Ge(Oll)c2x8 and Si(111)7x7 structures studied with in-plane x-ray difbaction 
by Ridenhans’l et a1 (1988) and Robinson et a1 (1986a, 1988b), respectively. The 
Si(111)7x7 structure has been a major milestone in the history of surface science, 
and is itself the subject of a recent review by Haneman (1987). Both the Si and Ge 
structures are based on a local configuration called a T4 ‘adatom’ that is constructed 
by adding a Si or Ge tetrahedron face down over three otherwise dangling bonds 
emerging from an ideal (111) surface. As we will see further below this is a widespread 
element of almost all semiconductor (111) surfaces. It has an interesting distribution 
of strain that was shown by Northrup (1986) and later by Vanderbilt (1987) to be 

energetically favourable mainly because of the reduction of dangling bonds. The 
pivotal role of strain in the story of the stability of the 7x7  has been revealed by the 
analysis of the crystallographically derived coordinates of the atoms by Pedersen el 
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Figure 16. (a) Oblique and (a) plan views of the Cu(110)/0 ~ 6 x 2  structure determined 

by Feidenhans’l et ul (1990b). Black atoms are oxygen and the white ones are copper, 
with the top-layer bridging sites shaded for clarity. 

a1 (1988) and by Robinson (1988b). There are two independent T4 adatoms in the 
unit cell, both of which demonstrate the same pattern of inward lateral displacements 
of the near neighbours. Ge(ll1) also forms both a 7x7 and a closely related 5x5 
structure in the presence of Sn (Pedersen 1988). Here Sn, which lies immediately 
below Ge in the periodic table, acts to form a surface alloy since its occupation at  the 
various sites in the structure appears to change with coverage. The order of phases 
for increasing Sn coverage on Ge(ll1) is fi x a, 7x7 then 5x5 (Ichikawa and In0 
1981). GeSi alloys obtained by Gossmann er a1 (1984) by deposition of Ge on Si(ll1) 
also show the 5x5 reconstruction. Even pure Ge(ll1) was found by Gossmann er a1 

(1985) to switch to the 7x7 structure when a moderate (1-2%) compressive strain is 
applied by suitable epitaxy on Si( 11 1). 

Meanwhile, the 7x7 was shown by ’Bkayanagi el af (1985) to contain, in addition 
to the adatoms, an elegant network of triangular stacking faults and bordering dimers 
that have p6mm symmetry, while the ideal bulk has only p3ml surface symmetry. 
This increased symmetty was confirmed experimentally by Robinson (1987) and is 
an interesting exception to Jona er af ’s (1982) rule of surface structures with lower 
symmetry that give rise to corresponding twin domains. 

Si(100) and Ge(100) have 2x1 reconstructions that were first studied by Jedrecy 
er a1 (1990b) and by Eisenberger and Marra (1981) using in-plane x-ray diffraction. 
Both structures are simple dimers in which surface atoms pair together to share one 
of the hvo covalent bonds that would be dangling into the wcuum. The difference 
between them is that, at least at room temperature, Si(100) has an asymmetric dimer 
with its centre of mass shifted to one side, with the effect of buckling the dimer by 
tilting it. That Ge(100) has a symmetric dhner has since been contirmed by Grey et 

a1 (1988) in a more coniprehensive out-of-plane study (see below). 
The GaAs(100) surface has a number of stable ordered configurations that depend 

on the surface stoichiometry, and hence on the preparation conditions. One readily 
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achieved state lies filly at the As end of the stoichiometry spectrum, under As 
saturation conditions. ?his is the d x 4  structure studied by Sauvage-Simkin et af 

(1989). Surprisingly it is not a pure structure but composed instead of a mixture of 
two structures: one has WO parallel As-As dimers per unit cell (similar to those in 
Ge(100)) and an effective As coverage of 0.5, while the other has three dimers and 
a coverage of 0.75. It seem probable that the ratio that forms depends on the exact 
pressure of As4 during growth, but this was not investigated. As/Si(lOO) also has a 
dimer structure in a 2x1 unit cell, but unlike the clean Si(100) surface, the dimer 
is symmetric (Jedrecy d af 1990b). Conversely, the hydrogen stabilized GaAs(100) 
surface exposes Ga as the top layer and forms a 4x 1 structure containing asymmetric 
Ga dimers (Kisker et af 1990). 

Deposited metals on semiconductors can often produce incommensurate struc- 
tures with peaks at irrational positions or high-order commensurate structures. The 
examples here are Pb/Si(lll) studied by Grey er af (1989) and Au/Si(l11) studied by 
Feidenhans'l et af (1989), respectively. These are close-packed structures involving 
noble or less reactive metals where the commensurability is determined by the rel- 
ative lattice parameters of the metal and semiconductor. These systems may show 
interesting commensurate/incommensurate phase transitions, analogous to the well- 
studied noble gadgraphite systems (Horn er af 1978, Mcngue er a1 1982, DAmico et 
af 1984). 

Similarly, a number of studies have been made of metal-on-metal structures. 
Crystallographic analysis has been used to identi@ the phases concerned. Heavy 
metals such as Pb on Cu(ll0) and Cu(100) have shown an interesting series of 
structures, both commensurate and incommensurate (Marra et af 1982, Brennan er af 
1986, Lee a a1 1990). 

Structural determinations have also been carried out for a variety of buried inter- 
faces by measurement of in-plane superstructure reflections: SiO,/Si( 100) by Renaud 
er a1 (1991) and by Ourmazd er af (1989), and buried reconstruction of GeSi(ll1) 
5x5 under a-Si by .Mizuki er al (1988), the GaAs(lOO)/AI interface by Akimoto er 
af (1987), and ZnSe(100) under growth by chemical vapour deposition (cvD) by Fu- 
o s  et af (1989a). Fuoss er af (1989b) showed that the structure of this CVD grown 
ZnSe(100) face contains symmetric Se-Se dimers. 

6. 3D structure analysis 

The next development is to include the 3~ information of the rod profile. This 
simultaneously incorporates the two previously discussed techniques, "R analysis and 
2~ crystallography, and allows us to analyse multilayer reconstructions at a surface or 
at an interface between two different materials. Historically this generalization of the 
technique has been a recent development in the field for instrumental rather than 
conceptual reasons. 

Figure 17 is a sketch of the general form of the 3D data. Recall that in 3D 
crystallography the structure factors would be written Fhki. We now write Fhk(l) to 
emphasize the continuous nature of diffraction of 2D objects. 'Ib be even more clear, 
we will use the explictly continuous variable qt, the oomponent of momentum transfer 
normal to the layers, in place of 1. Both notations are used in practice and differ 
only in t t e  units: qz is in A-1, while 1 is in units of lb31 according to equation (16). 
Figure 17(a) shows the variation in the intensity, which is proportional to lFhk(q,)12, 
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as a function of qr for a single layer structure. For 2D crystallography we have been 
focusing all our attention on qr = 0. Recall from the discussion of figure 4(a) that 
the diffraction intensity along a rod from a 2D structure (e.g. a monolayer of atoms) 
is independent of qt.  The only modification that has been made in figure 17(~) is 
the inclusion of a form factor and possible Debye-Waller temperature factor that 
causes the curve to drop slightly with total Iql. Figure 17(b) shows the situation for 
a multilayer structure where we see the appearance of wiggles in the diffraction. As 
explained in figure 2 and the section on c r ~  analysis, an N-layer film will produce 
a characteristic N-slit diffraction pattern with IV - 2 subsidiary peaks between the 
primary maxima, just as in optics. A multilayer reconstruction will produce the same 
pattern and so the depth of the reconstruction can be found by just taking the period 
of the oscillation in A-' and dividing it into 27r. 

i \  

- 

Figure 17. Illustration of diffraction along a fractional order md. (a )  Simulated diffrac- 
tion from a single reconstructed layer. (a) Simulated diffraction from several recon- 

structed layers. (c) Measured diffraction (dots) from the Ge(100) 2x 1 surface compared 
with a model in which the first eight layers participate in the reconslruction (full curve). 
Reproduced from Grey and Feidenhans'l (1988). 

6.1. Ge(100) surface 

Figure 17(c) shows real data for the Ge(100) surface (Grey and Feidenhans'l 1988). 
This has the 2x1 dimer reconstruction we encountered above. This is similar to that 
of figure 8, except that Ge is a crystal of the diamond structure instead of simple 
cubic. A large set of half-order rods were measured (Grey et af 1988) by moving the 
detector out of the plane of the surface. ThiS represented the state of the art at that 
time. 
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The rapid oscillation of the data with qz calls for a model with reconstructiord 
going deep into the crystal. E;or the dimer structure shown in figure 17(c), this implies 
a strain field originating from the displacements in the surface associated with the 
formation of the dimer. The number of layers can be estimated directly from the 
period of oscillation in qz, which is 1 reciprocal lattice unit (27r/ao) here. This 
implies approximately one direct space unit cell spacing (ao), which is the required 
depth of reconstruction. There are four layers in a unit cell in Ge. 'Ib get a good fit, 
Grey et af (1989) made a model with significant displacements eight layers into the 
bulk, as shown. Since the deeper displacements are very small, the effective average 
depth is consistent with the four layers. The model gives the full cume through the 
data in figure 17(c). 

6.2. W(lO0) surface 

Another good example is the measurement of the reconstructed W(100) surface 
(Altman et af 1988) in figure 18. The measurements shown were obtained with 
a four-circle difiactometer by tilting the sample to gain perpendicular momentum 
transfer. The necessary ditfractometer setting calculations to control the incidence 
and exit angles for such an instrument were derived both by Mochrie (1988) and 
by Robinson (1989). A fairly severe resolution correction to the intensity was also 
required to account for misalignment of the rod with the resolution direction in this 
geometry (Robinson 1!388a). 

'1 
2 . 2  

Figarc 18. Half-order diffraction rods for the W(100) fi x 4 R45O surface. Measured 
intensity (points) is mmpared with a model (full curve) in which the top two layers 
nxonstruct. The broken c u m  corresponds to a one-layer model. The perpendicular 
momentum transfer 1 is the same as qz after mnversion into units of 2n/ao. Reproduced 
from Altman et d (1988). 

Again, sinusoidal oscillations in the intensity as a function of qt are apparent. 
This time the period is closer to 2 reciprocal lattice units, implying a direct space 
distance of half a unit cell or one layer spacing. In fact the layer spacing is determined 
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in the fitting of the data (solid curve, see below) to be 1.52 slightly relaxed from 
the bulk spacing of 1.58 A 

At small q, each curve shows a fairly narrow feature that we have not encountered 
before. The intensity rises from zero at qt = 0 through a peak and then drops back 
to the level of the rod structure factor. This is a dynamical effect due to refraction 
from the surface. The enhancement of intensity occurs when either the incident or 
exit rays (or both) come close to the critical angle for total external reflection. It will 
be dealt with fully in the next main section on evanescent wave techniques. 

lhngsten has the BCC structure in the bulk This means the ideal W(100) surface 
is not close-packed and has the relatively low coordination of 4 for the surface atoms. 
Debe and King (1977) showed that it reconstructs by lateral displacements of the top 
layer into chains, as shown in figure 19. The chains add two extra bonds per surface 
atom bringing the coordination up to six. The resulting fi x fi R45O unit cell is 
indicated with broken lines. The observation of oscillation along the rods implies 
immediately that the structure is more complicated still: a single reconstructed layer 
would give the broken intensity curves with no oscillation in figure 18. Altman et 
nl (1988) showed that in addition to the zig-zag pattern of displacements in the top 
layer, a layer of similar but smaller displacements was needed below. Figure 19 shows 
the final structure. The top layer displacement is 0.24 8, and the second layer 0.046 A 

Side View 

Figure 19. W(100) fi x fi R45O structure showing top and side views of the atomic 
positions in the surface. Displacements in the first and second layers from ideal BCC bulk 
sites are denoted A1 and Az. Prior to the x-ray work only the top-layer displacements 
were known to exist. 

Steady improvements in instrumentation have further increased the accessible 
range of perpendicular momentum transfer, either by moving the detector out of the 
plane of the surface or more recently by use of a fifth difbactometer a axis that 
effectively rotates the incident beam direction (Vlieg et a1 1987). Nowadays per- 
pendicular momentum transfers of 5 A-* are routinely available, with corresponding 
improvements in accuracy of structures in the perpendicular direction. 

6.3. Results obtained fy 3D stnrcture analysis 

A simple example of a 3~ structural determination is of the Cu(lOO)/S p2x2 adsorbate 
structure studied by Vlieg er a1 (199Ob). Because the single S atom sitting in a four- 
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fold hollow site induces a reconstruction in the substrate, there is beating of the 
intensity along the half-order rods. The period of beating establishes the spacing 
(1.19 A). The amplitude of modulation determines the sign and magnitude of the 
substrate displacements (0.03 A away from the S). 

We previously met the T4 adatom structure on clean semiconductor (111) surfaces. 
Here the adatom lies directly above a third layer atom but is not bonded directly to 
it, except by a so-called ‘backbond’. Both atoms have radial bonds to three second 
layer atoms that are drawn inwards. The closest packing of such units is in a f i x  fi 
unit celL In such a state, T4 was predicted by Northrup (1984) to be considerably 
more stable than the apparently more openly bonded H3 site. The fi x df T4 is 
also an ideal arrangement for an adsorbate on a semiconductor (111) surface, and 
represents the structure of SnlSi(ll1) studied by Conway et a1 (1989), Pb/Ge(lll) 
studied by Ridenhans’l et a1 (1386) and Pedersen et a1 (1987), Bi/Si(lll) studied by 
Bkahashi et a1 (1985, 1987a, b) and Sn/Ge(lll) studied by Pedersen et a1 (1987). 
In each case, the induced strain leads to inward contraction of the immediate Si 
neighbours of the adatom. This results in perpendicular displacements in layers 3 
and 4 and consequently to outward relaxation of the three fourth nearest neighbours 
in the fifth layer. The pattern of inward motion in layer 2 and outward motion in 
layer 5 is faithfully reproduced in all the above-mentioned examples. 

The B/Si(lll) fi x f i  structure is the first exception to this pattern. Here the 
fifth layer displacement is in the opposite sense and considerably smaller. Headrick 
et a1 (1989b) explained the anomaly by showing that the B atom occupies an alto- 
gether different site, the substitutional S5 site. The B-Si bondlength is around 15% 
shorter than Si-Si, whereas each of the metals forms a longer bond, so the S5 site 
is accommodated with less resulting strain than the 7’4 site. It consequently results 
in very different behaviour of this surface towards overgrowth of Si and explains why 
a single layer of B can be largely retained at a Si/Si crystalline interface, while this 
situation is untenable with Ga for example (Headrick et af 1989a, 1990). 

The Ag/Si(lll) fi x & structure is the secnnd exception. This is one of the 
most widely studied surfaces of all because of its apparently simple structure coupled 
with its technological importance in semiconductor contacts. The first controversial 
issue is the Ag coverage itself: the majority of evidence favours one monolayer (ML), 
implying three Ag atoms per fi x fi unit cell. This coverage already implies it 
cannot be the simple T4 structure. Wilson and Chiang (1987) published STM images 
showing a hexagonal mesh of protrusions resembling a honeycomb. The problem here 
is that there are only two protrusions per unit cell, inconsistent with the coverage of 
one ML They mncluded instead that the coverage was i. 

Then came two independent 3D x-ray diffraction studies of Ag/Si(lll) fi x fi. 
One was by Tmkahashi et a1 (1988) using the novel approach of energy dispersive 
diffraction at a fixed 133’ scattering angle. They used thin samples to reduce back- 
ground. Their data included nine integer orders and seven fractional orders but were 
limited to rather large values of perpendicular momentum transfer. They concluded 
that the Ag atoms do indeed have one ML coverage, and form a ‘trimer’, in the sense 
that they are displaced away from ideal high symmetry sites in a three-fold symmetric 
manner to form a monolayer structure with a variety of interatomic spacings. The 
pattern was apparently inconsistent with Wilson and Chiang (1987), however. The Si 
layer immediately below was unmodified and found to be a distance of 2.9 A away. 

The second x-ray diffraction study was by Vlieg et a1 (1989a) using 3D data of 
fractional-order rods only. They found a h a  Ag structure similar to Zikahashi et al’s, 
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but with an extra top layer of Si containing two atoms per unit cell which gave rise 
to the honeycomb pattern seen in the STM. Refinement of a large in-plane dataset 
revealed that reconstructions were present also in the underlying Si layers. 

Ding el ral (1991) performed a total energy calculation on this same system and 
found consistency with Tikahashi et al’s (1988) Ag trimer model. They did nor need 
to include the Si honeycomb of Vlieg et a1 (1989a), but othewise agreed with the 
atomic positions they found for the remaining layers. The calculation clearly ruled 
out models containing Ag honeycombs, as suggested by Wilson and Chiang (1987) 
using STM. However, they were able to explain the honeycomb appearance of the STM 

images as unoccupied electronic states on the Ag trimer layer. The peaks in the STM 

image align with the centres of the trimers, not where the atoms themselves are. 
The surfaces of Au(ll0) and Pt(ll0) have a simple ‘missing row’ reconstruction 

in which alternate r w s  of atoms are present and absent. This was first studied 
with LEED by Moritz and Wolf (1979). The structure exposes (111) facets on the 

surface, which, due to relaxation of the coordinates, leads to a greater effective 
coordination of these atoms, and hence higher stability. The first application of x-ray 
disraction to Au(ll0) was by Robinson (1983). That experiment proved the missing 
row structure and led to the discovery of large subsurface relaxations. Later Vlieg et a1 

(1990a) measured extensive 3D data for both Au(ll0) and Pt(ll0) and found further 
subsurface relaxations, including significant contributions from the fourth layer. The 
presence of relaxations was confirmed with WED by Moritz and Wolf (1985) who 
discovered in addition a third-layer buckling. The result is one of the most accurately 
known surface structures of all and secves as an interesting benchmark of precision 
in structure determination. vpical errors for x-ray surface crystallography are 0.01 8, 
parallel to the surface and 0.1 8, perpendicular to it (Vlieg et a1 199Oa), while for 
KED crystallography they are more like 0.1 A parallel to the surface and 0.01 8, 
perpendicular (Fery et a1 1988). The complementarity of the two techniques arises 
from the different ranges of total momentum transfer typically used. 

7. Evanescent wave method 

Here we discuss the meaning of the features we saw in figure 18 at small qr values 
where the surface diffraction intensity was observed to rise. All of the methods 
described up until now have relied on the kinematical properties of x-ray diffraction 
that arise from the first Born approximation. This allowed us to use linear analysis 
techniques such as Fourier transformation. Here we will forego those advantages 
to make use of simple dynamical effects that can exaggerate the surface sensitivity. 
The relevant theoly was first related to surface diffraction by Vineyard (1982) and 
developed further in the context of phase transitions by Dietrich and Wgner (1984). 
First-order perturbation theory is used to describe scattering within the classical total 
reflection situation and leads to a ‘distorted-wave Born approximation’. We sometimes 
refer to the resulting characteristic diffraction features as ‘Vineyard profiles’. 

Z 1. Basic formalism 

The entire process is governed by the refractive index, n. Inside condensed matter 
at x-ray frequencies, n is slightly smaller than unity by about one part in lo5. In 
general it is a complex quantity that accounts for both the change of group velocity 
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and photoelectric absorption of the x-ray wave h i d e  a medium. It is usually expressed 
as 

with 

p = Xp/4lr (42) 

where p is the photoelectric absorption per unit length, F(0)  is the structure factor 
(in electrons) at zero q and V is the unit cell volume. 

When an x-ray beam is incident upon a surface at grazing angles it is refracted in 
just the same my as light on entering a denser medium. The sign of the difference 
in index implies that an x-ray beam is steered away from the normal, rather than 
towards it as for a light beam. At sufficiently grazing incidence angles ai (of order 
0.2 to 0.5 degrees), the refracted beam cannot travel further inside the medium and so 
undergoes ‘total external reflection’ instead. The threshold angle is the critical angle 
for external reflection, or just ‘critical angle’ ac. Below the critical angle the x-ray 
beam is reflected without transmission as from a mirror; above it propagation occurs. 
Both cases are described by the angle-dependent (complex) transmission coefficient 
T( ai) of a dielectric boundary, obtained by matching the parallel components of the 
electric field vector (Born and Wolf 1986) 

2sin a 

sin a + ~ I I Z  - cos2 cx ‘ 
T ( a )  = (43) 

This describes the wave amplitude just inside the surface (dielectric boundary). The 
intensity seen in an experiment will therefore be modified by IT( ai)I2 which is plotted 
for two cases at the top of figure 20. ‘No absorption’ refers to ,@ = 0,  while ’with 
absorption’ has the value of p for gold, which is a typical dense solid. 

Z2. Scattering depth 

The incident wave vector ICi is also modified upon crossing the boundary. Its parallel 
components are unchanged, but its perpendicular component k,, becomes complex 
due to refraction and absorption: 

27r 

x biz = -J n2 - cos2 ori. (44) 

In the case of no absorption, p =  0, ICi, switches from purely real to purely imaginary 
at the critical angle, defined by COSCY, = n. When the wave vector is imaginary it is 
called ‘evanescent’ because this causes the wave amplitude to decay exponentially with 
depth. finite =lues of ,L3 have the effect of softening the switching: the propagating 
wave at ai > a, has a small imaginary component describing the normal absorption 
process, while for ai < a, there is always a real component as well. In either 
situation the penetration depth Ai is simply related to the imaginary part of ki, by 

Ai = l /Ini(ki2) .  (45) 
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F@n 28. (a) Calculated transmission coefficient IT12 for x-rays crossing a dielectric 
boundary at grazing angle a;, expressed as a multiple of a=. (b) Vineyard profiles of 
in-plane bulk Bragg peaks calculated for gold at X = 1.5 A using equations (SO) and 
(51). The upper dashed cutve is for 5 A of dead layers, the lower 20 A. 
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Figure 21. Universal curves of the variation of scattering depth A with incidence and exit 
angles ai and af, expressed as multiples of aC. Thc units of the vertical scale depend 
in general on the photoelectric absorption of the sample, but have been calculated here 
for gold at A = 1.5 A using equation (48). 

For small incidence angles, this characteristic depth is small and increases with angle 
according to the universal curve of figure 21. 
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Before we can describe how this affects the diffracted intensity, we must consider 
the wave leaving the surface, le,. This is easy because it behaves exactly the same as 
lei due to the-reversal symmetry. Thus a beam emerging from the surface at exit 
angle cy, must have had a perpendicular wave vector inside the medium of 

27r 
kfz = X J  n2 - cos2 at. 

The exit beam distribution coming from the sample therefore probes a range of 
characteristic depths A, given by 

A, = l / Im(kfz) .  (47) 

Furthermore, the intensity distribution of the outgoing beam is also modified by 
IT( a,)I2, where T( a) is the transmission coefficient of the dielectric boundary given 
by equation (43). 

The difhaction profiles are always derived as functions of the momentum transfer 
q = k, - lei, which has a perpendicular component inside the crystal q, = k,, - ICi, 
that depends on ai and a, via equations (44) and (46). Since qr is a complex 
quantity, it also has the evanescent property and allows us to define a characteristic 
'scattering depth' A that also depends on both ai and a, (Dosch 1987): 

A = l/Im(q,) = l/Im(lcf, - ki,) 

The scattering depth is a fundamental parameter that allows control of the depth of 
sample contributing to a given measurement. It can be systematically varied using ai 
or a, (or both) to perform depth-sensitive experiments, as shown in figure 21. The 
range of values attainable in practice is approximately 10 to SO00 A depending on 
the material. While it is impossible to isolate a single layer in this way, it gives us a 
very useful range for the study of surface-induced phenomena (see below). 

23. Vieyard proJiles 

Finally we can calculate the shape of an in-plane Bragg peak under grazing hci- 
dence/exit conditions, which is the Vineyard profile referred to above. If the deriva- 
tion of the crystal truncation rod is carried out with complex qt,  the result will hold 
for all values of qz because the attenuation due to absorption is automatically taken 
care of. Summing only along the t direction over layers separated by a3 = la3l, as 
in equation (19), 

j =O 

1 

1 - exp( -ip, u3) 
- - 

giving an intensity profile 

(49) 
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This is the function plotted at the bottom of figure 20 denoted ‘full surface’. Here 
we have calculated the curve for gold with ai = 1.5aC, but the full series has 
been obtained by Mailander et a1 (1990) for other values of ai. These all have 
the characteristic skewed shape of surface modified Bragg peaks. The maximum of 
intensity is substantially shifted from q, = 0, which corresponds to ai = af = 0 for 
an in-plane B r a g  peak, to a position closer to the critical angle a,. This is a clear 
indication of refraction. 

The broken curves at the bottom of figure U) show the effect of p ‘dead layers’ 
that do not contribute to the diffraction: 

i = p  

(51) 
- - exP(-iq, a 3 d  

1 - exp(-iq,a3) 

giving rise to the intensity profiles indicated. These were calculated for gold with firstly 
5 A then 20 A not contributing. The dead layers participate in the absorption of the 
evanescent wave through the exponential part of the numerator in equation (51). 
This has a dramatic effect on the leading edge of the Vineyard profile where the 
scattering depth is still quite small. Conversely, if the falling edge is attenuated this 
must be due to roughness of the surface (Dosch et al 1991b). The Vieyard profile 
is then modified in a way analogous to equation (23). 

The Vieyard profile of a purely surface diffraction feature (as opposed to an 
in-plane bulk Bragg peak) is the Ii-’(ai)12(T(af)12 function taken from equation (50) 
times the structure factor squared, which is approximately constant over the small 
range of 4,. When a wide detector slit is used, the af resolution becomes broadened 
and the IT(af)12 variation is integrated away. This applies to CTR features associated 
with out-of-plane Bragg peaks or surface superstructure peaks such as the half-orders 
of W(100) in figure 18 where the I T ( C Y ~ ) ~ ~  variation is clearly seen. 

Z4. Examples of the evanescent wave method 

The evanescent wave surface diffraction technique has been used to study defect 
distributions and implantation profiles in the surface region of silicon. Because Si 
diffracts as a perfect crystal, Bernhard et a1 (1987) found it necessary to include the 
dynamical aspects of the problem. The dynamical theory of diffraction under grazing 
incidence conditions has also been considered by Aleksandrov et a1 (1984),Cowan et a1 
(1986) and Hashizume and Sakata (1989). The dynamical versions of the cyf profiles 
look very much like those of figure U], but have subtle differences. When a Si sample 
is implanted with charged ions, the energy deposited gives rise to an amorphized 
layer. When this is present it affects the profile by introducing dead layers, as we saw 
in equation (51). In addition, there is the possibility of residual crystalline material 
at the surface. The result is of profiles, such as that shown in figure 22, containing 
oscillations of intensity due to beating of these two components (Wallner et a1 1988, 
1989, Rugel er uf 1992). 

The analysis of of profiles as a function of temperature has been used by the 
group of Dosch et ul (1986, 1988, 1991a, b) as a powerful way to study surface phase 
transitions (see also the next section), The phase transition, for example, might be 
beween two structures, order-disorder or even melting. According to theory, such as 
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Figure 22. L y f  profile of the in-plane 220 reflection of a Si(lO0) sample implanted with 
1015 100 keV Si+ ions per anz. The sample was subsequently annealed at 630° C 
for 10 s, which led to partial recrystallization. The oscillations of intensity arise from 
interference between a thin (about 100 A) surface slab of crystalline Si and the substrate, 

separated by about 1000 A of amorphized material. Reproduced from Rugel et 01 (1992). 

that explained by Lipowsky and Speth (1983), a phase transition in the bulk can be 
modified at the surface in a variety of ways, leading to a characteristic depth profile 
of the order parameter associated With the transition. This depth profile varies with 
temperature in a characteristic way as well. FGllowing Dietrich and Mgner (1983, 
1984), Dosch (1987) has derived a general formalism for analysing these profiles. 
Mailander er af (1990) and Dosch er a1 (1991b) have shown agreement with the 
theory of Lipowsky and Speth (1983) for the Cu,Au order-disorder transition at the 
(la) surface. Dosch er af (1991a) have examined the surface melting of Al(110) in 
the same way. 

In general it is possible to vary either the incidence or exit angle independently 
of the point in reciprocal space being measured. Vlieg et af (1987) showed how 
to do this with the five-circle difhactometer. Fbr example, if ai is varied, the cut 
direction of the sample and the reciprocal space point will fix af. When this is done, 
it does not matter whether a surface or bulk feature is being probed; the signal 
is proportional to ~T(ai)~z~T(af)~2 and depends on the scattering depth which is 
known from equation (48) or from the universal curve in figure 21. 

This method was used by Zhu et a1 (1990a) to search for surface-region modifi- 
a t ion of the charge density wave (cDW) h &,,Moo,. The CDW is incommensurate 
and appears below a second-order phase transition at 175 K. Neither the amplitude 
nor the incommensurate period was found to change near the surface, however, so it 
was concluded that the CDW exists at least to within 5 A of the surface. 

8. Lineshape analysis 

This final method is going to lead away from details of structures at the atomic level 
towards questions of surface structure in the sense of morphology and its statistical 
representation. Important questions concerning the thermodynamics of surfaces can 
thereby be answered. Instead of performing crystallographic analysis we are going 
to see what information can be derived from examining the shape of the diffraction 
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peaks parallel to the surface, obtained by scanning the momentum transfer along the 
in-plane direction, which we generally denote qll. By convention we define qll = o 
at the position of the Bragg peak Up until now, we have considered our surface 
diffraction peaks to be perfect 6 functions in the qII direction. However, this is only 
true if the surface structure is perfectly periodic across the entire sample with no 
defects, dislocations, domain boundaries, etc. Such a surface would be said to have 
correlations of infinite range. If a surface is poorly correlated, the peaks will be 
broadened. Here we discuss how we should analyse these peak shapes. 

8.1. Correlation firnction 

Recall equations (31) and (32), which discussed the Patterson function, P(T). These 
showed that P(T) = ( p ( ~ ) p ( O ) ) ,  the unit cell electron density-density correlation 
function. There P ( T )  was obtained by taking the Fourier transform of all the 
lFhk1I2, assuming these to correspond to ideal &function peaks. When the peaks 
are no longer ideally sharp this Fourier sum (equation (31)) must be replaced by the 
Fourier integral. This is then conventionally called C( T ) ,  the electron density-density 
correlation function, 

C(T> = ( P ( T ) P ( O ) )  

= / I (  q )  exp( -ip - T )  d3q 

where we have chosen to ignore the proportionality constant in the second relation 
for convenience. We are only interested in the large-7- limit of C(T) ,  when the q 

integral is just over a small region in reciprocal space around the peaks. In this 
limit we can ignore the overlap with surrounding peaks and, since they will all have 
the same shape, we only need to consider one. Consequently, by taking the Fourier 
transform of a lineshape parallel to the surface, I( qll), we will obtain the correlation 
function for the surface in that particular direction. For example, if the correlation 
function is a Gaussian of width 0, the lineshape will also be a Gaussian with width 

l/a; if the correlation function is a two-dimensional exponential exp(-lTI/[) with 
a characteristic length [, the lineshape will be a Lorentzian raised to the power $, 
(1 + t2q1;)-3/2, with width l/r. The characteristic decay distance of C ( r )  is called 
the correlation length, and is usually denoted [. We now have a language suitable 
for talking about the diffraction associated with disordered systems and surface phase 
transitions. 

Figure 23 depicts what is meant by the correlation function for the specific case 
of a surface broken into domains of average size [. Within each domain the surface 
is well ordered and so has C( T )  - 1 for T [, However, domains are separated by 

boundaries called domain walls, shaded in the figure. Each domain wall has a specific 
structure such as a step, a change of unit cell registration (called a phase boundary, 
typically ‘antiphase’) or a reorientation of the axes of the reconstructed unit cell. 
This results in adjacent domains baing badly correlated or uncorrelated with respect 
to each other, giving C(r) - 0 for T >> 4. This explains the general trend of the 
correlation functions sketched in figure 23. 

8.2. W(lO0) surfiace phase transition 

Our example comes again from the W(10) surface. In figure 24 a top view of both 
the fi x fi reconstruction and the relevant section of reciprocal space are shown. 
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Figure 23. Viualization of the correlation function for the case of a surface broken into 
domains of average size 6. The shaded lines represent domain walls. 

The spots represent slices across the truncation rods while the ellipses represent the 
fractional order peaks due to the reconstruction. If scans were taken along the qII 

and qL directions, as defined by the arrows, the order perpendicular and parallel to 
the chains of atoms would be probed. Such lineshapes were measured as functions 
of temperature by Robinson et a1 (1989b) and are plotted in figure 25. At low 
temperatures we see a sharp peak, indicating that the surface has very large regions 
of ordered f i x  f i  structure. As the temperature increases this peak becomes lower 
in height and broader in both directions, qll and qL, parallel and perpendicular to the 
total momentum transfer, Q. The most important result here is that the integrated 
intensity, integrated under the 2D peak, is constant with temperature above and below 
the transition. Since this quantity is proportional to IFhkl12, we conclude the local 
structure does not change at the transition. This is the chief characteristic of an 
order-disorder transition. 

Flgon 24. Atomic model and diffraclion patlem of the low-temperature 4 X \/z 
reconstruction of W(100). Bulk diffraction peaks, e.g. (OOO), (ON), (110) and (200), 
are full circles, and the half-order peaks unique to the reconstructed layer are ellipses. 
Integerader surface peaks are not shown. Top-layer atoms (unshaded) are displaced as 
indicated to fonn zigzag chains oriented up and down in the figure. The displacements 
of the second-layer atoms (shaded) are not shown. Measurements were made of the 
(4 ,  $,O) peak, with gll and gL defining the radial and transverse Scan directions 
employed. 

Such an order-disorder transition can be viewed therefore as conserving the local 
atomic arrangement, while changing the length scale over which it is ordered. Micro- 
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scopicaliy the surface still looks like figure 24, but the scale of the macroscopic domain 
structure in figure 23 is changing with T. Here there are two correlation lengths 
and anresponding to the two directions. These change dramatically from about 
200 A at low temperature to about 10 A at high temperature, while remaining in 
about the same ratio to each other. The low-T limit is probably constrained by de- 
fects in the surface, while the high-T limit is determined only by the ability to detect 
such broad low peaks with x-rays. Probes which are more surface-sensitive, such as 
He scattering, can indeed follow the peak to much higher temperatures (Ernst et a1 
1987). 

8.3. Examples of ewperiments using lineshape analysis 

Surface phase transitions are widespread in overlayer systems. ’Itaditionally studied 
were adsorbed gases, particularly noble gases, on graphite (Horn er a1 1978, McBgue 
et a1 1982). Here the experiments were performed on powders or oriented powdered 
substrates, but considerable information was obtained with the high resolution of 
synchrotron x-ray diffraction. More recently, single crystal substrates have been em- 
ployed so that phase transitions involving rotation of the overlayer could be examined 
(D’Amico et af 1984) that had previously been observed in LEED. 

There have been a number of phase transitions seen in reconstructed clean metal 
surfaces other than W(100). The rotated hexagonal top layer of Au(lOO), which we 
met earlier, loses its rotation at 970 K and has a further disordering transition at 
1170 K (Mochrie et a1 1990). Pt(100) has similar phase transitions with an important 
difference that the rotation transition is second order (Abernathy er a1 1992). Huang 
et al (1990) showed that Au(l1l) has an incommensurate hexagonal phase at room 
temperature that evokes gradually up to 865 K, then enters a discommensuration- 
fluid phase similar to that seen on Pt(ll1) at high temperature by Sandy er a1 (1991). 
At the electrochemical interface with an electrolyte, both Au(100) (Ocko et a1 1990) 

and b(111)  P n g  et a1 1992) undergo phase transitions as the applied potential is 
varied. 
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Au(ll0) (Held et a1 1989) and Pt(ll0) (Robinson et a1 1989~) have order-disorder 
transitions at 650 K and 1080 K, respectively. Because the elementary excitation that 
leads to disorder involves steps on the surface, the transition has a ‘chirality’ that 
gives rise to a shifting of the peak position. Such shifting was not observed in earlier 
LEED studies for example. 

Phase transitions in metal overlayers have also been studied. Mama et a1 (1982) 
looked at Pb/Cu(llO), while Lee et a1 (1990) looked at Pb/Cu(lOO). Grey et a1 
(1989, 1990) looked at Pb/Ge(lll). The kinetics of island growth of Co/Cu(lOO) were 
measured by Ferrer et a1 (1991). W(100) undergoes a series of coveragedependent 
phase transitions upon dosing with hydrogen; these changes were elucidated by Chung 
ef a1 (1987). Electrodeposited metallic layers have also been examined by Samant et 
a1 (1987) and found to compress under changes of applied potential. 

The existence of surface melting transitions was proposed on theoretical grounds, 
for example by Lipowsky and Speth (1983). Depending on the relative free energies 
of the solid-liquid, liquid-vapour and solid-vapour interfaces, it can happen that a 
thin liquid layer is stable at a surface before the bulk melts. The clearest experimental 
indication is for Pb(ll0) studied by ion channelling by Frenken et a1 (1985) and Phis 
et a1 (1987). Surface melting has also been established in freely suspended liquid 
crystal films by Swanson et a1 (1989) and in physisorbed noble gas films by Zhu and 
Dash (1988). Several surfaces have been examined with x-ray diffraction to look for 
evidence of this: Pb(ll0) by Fuoss et af (1988) and by Gay et a1 (1989); Al(110) by 
Dosch et a1 (1991b). 

Surface modification of other first-order bulk phase transitions has been looked 
for near Cu,Au(lll) surfaces by Zhu et af (1988, 1990b), in addition to the work of 
Mailander et af (1990) and Dosch et af (1991b) on Cu,Au(lOO). 

Lineshape analysis is a powerful way of understanding surface morphology, as we 
will see in the next section. Renaud et af (1991) studied Si(lOo)/SiO, interfaces and 
found multiple peak strucures at the truncation rod positions. This was interpreted 
as due to the presence of interfacial steps in an ordered array. 

8.4. Roughening transitions 

Another kind of phase transition, unique to surfaces, is called a roughening transition. 
In the simplest case a surface can change from smooth at low T to become rough at 
high T.  Such a transition can be driven by other means, such as chemical modification 
by adsorption, or could indeed occur at an interface. 

One kind of roughening transition believed to apply to metal surfaces at elevated 
temperatures is called ‘step roughening’ and is illustrated schematically in figure 26. 
For T Q TR, the so-called roughening temperature, the surface has the regular 
array of steps shown in the upper panel. The crystal is imagined to be made up 
of cubes representing the atoms or unit cells. At high temperatures, T - TR, the 
surface can iower its free energy by introducing fluctuations in the position of the 
steps as shown in the lower panel. By adopting a large number of configurations it 
increases its entropy and lowers its free energy, This only happens at sufficiently high 
temperatures that the energy cost of all the comers (‘kinks’) created is smaller than 
the entropy term. 

8.4.1. Theoretical lineshape for U rough surface. We now consider how lineshape anal- 
ysis of the diffraction from surfaces can identify whether a surface is in the rough or 
smooth state. The surface gives rise to truncation rods (CTRS) that emerge from each 
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Figure 26. Morphology of a surface undergoing 
step roughening. Top: zero tempemlure ordered 
stmcture. Bottom: mugh phase above the mugh- 
ening temperature showing meandering steps. 

bulk Bragg peak in the perpendicular direction. The regular step array with a uni- 
form discrete number of atomic spacings on each terrace can be shown to have CTRS 

that join together to make continuous rods, just as we saw in equation (21). A slice 
through reciprocal space parallel to the surface will appear to have superlattice peaks 
spaced apart by the reciprocal of the distance between the steps. This is illustrated 
for an FCC (113) surface in figure 27. We have already seen in equation (23) the 
sensitivity of the &tensity of the m to roughness (Robinson 1986). Here roughness 
implies uncmelated roughness due to the statistical absence of atoms from sites in 
the surface. It is clear from figure 27 that a more general description is possible, 
whereby correlated fluctuations in the step positions will result in uncertainty in the 
effective direction of the surface normal, leading to a broadening of the rods into 
swathes. 

The atomic model we will use to derive the general form of diffraction from a 
rough surface is the solid-on-solid (SOS) model. Here an ideal bulk lattice is assumed 
to be without distortions. The lattice of any low-index surface can transformed into 
one with a perpendicular z direction by a suitable choice of new lattice parameters al 
and a2 parallel to and a3 perpendicular to the surface, as illustrated in figure 27(a). 
All the information about the morphology of the surface is contained in the envelope 
function that truncates this lattice. This is denoted as a discrete vertical height h( x , y) 

for every discrete lateral site (2, y) and is assumed to be single valued everywhere, 
which excludes overhangs. Without loss of generality we can write h(x) where z 
represents both in-plane directions. The kinematically scattered amplitude is then the 
sum of all atoms on the lattice within this boundary, 
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FCC (113) Surface t z  

Figure 27. (a )  Atomic model of a face-centred cubic crystal cut to apose its (113) 
surface. Ihe coordinates are defined, as is customary, with the z direction along the 

normal. (b) The diffraction pattem of this object. The dots are bulk Bragg peaks indexed 
according to the bulk Miller index notation. The lines are the crystal truncation rods 

which follow the surface normal direction, but join together the bulk Bragg peaks and 
give rise to superlattice peaks in he qs direction. 

where al and a3 are the lattice parameters and N is the lateral size of the sample. 
The last summation in equation (53) is the familiar sum over layers that gives rise to 
the normal cra form which we met in equations (19) and (49). It is written as the 
sum of a complex geometric series, with the usual caveat about it being the limit of 
a sum with a small real exponent representing absorption (see section 3.1), 

N 

The diffracted intensity I is (FF' ) ensemble-averaged over all height configurations, 

1 
X 

2 sin2(q,a3/2) ' 
(55) 
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'Ihe surface can now be assumed to have the stationary property h(x) - h ( d )  = 
h ( [ )  - h(0)  where E = x - x', meaning it is the same everywhere on average, 
independent of the choice of origin. 

N 1 

The ensemble average in equation (56) has been evaluated by Villain et af (1985) 
and by Robinson et ail (199Oa) for the case where the height function h ( z )  is a 
discrete Gaussian random variable With a sufficiently Wide distibution. This gives us 
the following final expression for the diffraction lineshape of a rough surface: 

N 

(57) 

where [qz] means q, modulo 2 r / a 3  such that - x / a 3  < [q,] < 7r/a3. This quantity 
enters because it is the nearest Bragg peak that dominates the observed lineshape; a 
correction of a factor 2 in intensity is needed for the worst case [qz]  = 7t/a3 because 
two Brag  peak are equally important there. 

Equation (57) can be thought of as the product of two terms: the second is the 
conventional CTR depending only on qz, while the first describes its cross-sectional 
profile in qz. By analogy with equation (52), we see that the first term is just the 
Fourier transform of an effective correlation function C([), 

C(F1 = e x p ( - ( ( W )  - h(o>)"~: [q* l2 /2> .  (58) 

We say qective because it is a correlation function that depends on the diffraction 
conditions through [q,]. Thus the lineshape is derived in two steps from the statistical 
quantity ( ( h ( t )  - l ~ ( 0 ) ) ~ )  representing the roughness: first by forming the Gaussian 
quantity C ( t ) ,  then by Fourier transformation. 

8.4.2. Erampiles of calculated profiles. Figure 28 shows graphically the evaluation 
of equation (57) for various height-height correlation functions ( ( h ( 6 )  - h(0 ) ) ' )  
corresponding to different kinds of rough surface. Figure 28(a) has linear divergence 
of ( ( h ( t )  - l ~ ( 0 ) ) ~ )  with distance [, giving rise to a Lorentzian lineshape. The 
steeper the divergence with { is, the broader the resulting Lorentzian becomes. Since 
the hrentzian width is proportional to [q,I2, the rod is narrow close to a Bragg peak 
and gets mpidly broader with distance. 

Figure 28(b) corresponds to the stutistically rough surface we met on the left of 
figure 5 and in section 3.2. In the strict language of roughening transitions we must 
now call this a p t  surface, because its height fluctuations are bounded as tends 
to ca. On all distance scales there is a certain finite root mean squarz random 
(uncorrelated) height variation, h,. ( ( h ( t )  - l ~ ( 0 ) ) ~ )  then has the constant value 
2h,. This gives diffraction that is always sharp in cross section, as indicated by the 5 
function in qt. The intensity along the rod varies with q, according to 
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E E q X  

Figure 28. Cross-sectional lineshape of crystal truncation mds from a rough surface 
represented by different height-height correlation functions. The left column is the 

lateral dependence of the height-height correlation function. The middle column is the 
correlation function C(e)  obtained with equation (58). The right column is the Fourier 

transform of C ( e )  which is the cross-sectional lineshape according to equation (57). 

From Robinson et 01 (1990a). 

This is the standard CTR profile (equation (21)) multiplied by an effective Debye- 
Willer term (Warren 1969, Debye 1914) containing the roughness. This expression is 
an alternative to the form given in equation (23) for the exponential height distribu- 
tion (Robinson 1986). They have very similar shapes that become identical in the limit 
of small roughness. The intensity also falls off faster than the ideal 1/[q,I2. Equa- 
tions (23) and (59) are both useful general formulae for obtaining a single measure 
of the RMS roughness h,  from the intensity profile alone, Such a value should always 
be qualified with a lateral length scale: here it is the resolution of the instrument 
used. This measure of RMS roughness is meaningful only if the m cross section 
is seen to be resolution limited; otherwise it is not possible to use such a simple 
uncotrelated description and the details of the correlations must then be referred 
back to the original form of equation (57). 

Figure B ( c )  corresponds to an intermediate case with divergent correlations of 
height at short distance, switching over to saturation at large 6 with the value 2h0. 
The resulting lineshape is a composite of ( a )  and (b) with two components. When 
this situation is encountered in an experiment, the value of h, can then be extracted 
by subtraction of the broad component as part of the 'background' and proceeding 
with the analysis using equation (59). 
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8.4.3. Theories ofroughening. The final row of figure B ( d )  illustrates the case of log- 
arithmic height divergence. This is expected for a rough surface of the kind described 
by the theory of Chui and Weeks (1976) for temperatures above the roughening transi- 
tion. 'Ke lineshape has the characteristicpower-law form shown, obtained by Fourier 
transformation of a correlation function with the algebraic decay form C(() - (-q. 
Because of its relation t . ~  a basic theory, many experiments have sought to verify the 
existence of this lineshape. However, it should be noted that the distinction between 
(c) and (d )  is not that great, particularly when finite resolution, background and 
statistics of he intensity measurement are taken into account. Moreover functional 
forms iatermediate between (c)  and ( d )  could also be composed, for example with- 
out the sharp comer. The experimental distinction between rough and smooth boils 
down to whether the height diverges or remains finite as ( tends to infinity; in the 
lineshape, we must decide whether or not there is a central 5 function. 

An alternative theory by Villain et a1 (1985) relates to the step roughening we 
saw in figure 26. Because the elementary excitation is a bound pair of kinks in the 
step edge bordering a terrace, it is sometimes referred to as a terruce-step-kink (TSK) 

model. The theory evaluates the statistical mechanics of a small density of such 
fluctuations in the ideal terrace structure as shown. Inspection of the (113) surface 
in figure U ( a )  reveals that a sideways detour of a step results in an overall vertical 
change in height by one a3 unit, which is some geometric fraction of the lattice 
spacing ao. We consider that there are two important energies in the problem. One 
is the energy to form a kink, WO, while the other is the energy to have one atom 
within a TOW of atoms displaced, w. These energies are illustrated in figure 26. It 
is assumed that w << kBT << WO. Consequently, the probability of an excitation 
of length p is just the Boltzmann factor exp(-(2Wo + pw)/kBT). We can then 
calculate the expectation value of the height fluctuation by just summing over all 
possible configurations, resulting in 

2 

= 2 (7) exp(-2W0/k,T). 

( does not enter because no interaction between the fluctuations was assumed. The 
expectation value (h2) is simply substituted for hi  in equation (59) to give us the 
variation of intensity along a c r ~  as a function of T, 

This is expected to work only at low temperatures when the excitations can be assumed 
to be infrequent and therefore non-interacting. Equation (61) would be expected to 
break down when T approaches TRY as is found experimentally (Robinson et ai 
199oa). 

8.4.4. Experimental work on roughening. We look first at examples of stepped surfaces 
where the theory of Villain et a1 (1985) might be expected to apply. The theory was 
originally developed for analysis of He diffraction data, and had already been seen 
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to explain data for stepped surfaces of Ni(l15) by Conrad et a1 (1986), Ni(113) by 
Conrad et af (1987) and Cu(115) by Fabre er 01 (1987). It was first applied to the 
analysis of x-ray data for Cu(ll0) by Mochrie (1987), then to Cu(113) by Liang er af 

(1987, 1988) and Ni(113) by Robinson er a1 (199Oa). We will use the Cu(113) data as 
our example, shown in figure 29. 

300 400 500 600 700 

Temperature (K) 

Figure 29. Roughening of Cu(113) as studied by Liang a ul (1987). The integrated 
intensity of the step superlattiw peak is plotted against temperature. Squares were taken 
on heating and triangles on cooling. mica1 unceflainties are shown. "%e full curve is 

from equation (61) which is derived from W a i n  et ul (1985). 

The data show the integrated intensity measured at the point in figure 27(b) where 
the first "R crosses the q, axis. This corresponds to a value of [qz]  = l O ~ / l l a , ,  so 
it is very close to the cTR midpoint, or the so-called anti-Bmgg postion [qz] = 7r/a3, 

where the diffraction is most sensitive to the roughness. The intensity drops abruptly 
with temperature, suggesting roughening with T' about 620 K. The approach to 
roughening fits well to the TSK theory as shown, giving the values WO = 3100 K and 
w = 65 K consistent with the assumption that w e kBT 

The study of Ni(113) by Robinson er a1 (199Oa), when analysed with the same 
theory, gave the values 7'' = 740 K, WO = 3500 K and w = 55 K, and the work 
on Cu(ll0) by Mochrie (1987) gave the values TR = 870 K, WO = 2260 K and 
w = 170 IC The crystal used in the latter study was later found to have been miscut 
and was undergoing a facetting transition (see below), so that roughening (if any) of 
Cu(ll0) would actually take place at much higher temperatures (Ocko and Mochrie 
1988). This resolved the apparent inconsistency with He scattering data for Cu(ll0) 
by Zeppenfeld et af (1989) which placed TR above 900 K 

An example of a surface that disorders at high temperature without any observable 
change of lineshape is Ge(lll), studied by Mak er a1 (1991). Here the uncorrelated 
roughness that leads to the drop of CTR intensity is due to a proliferation of Mcancies 
associated with sublimarion, which was confirmed by a rise of vapour pressure of Ge. 
Similar diffraction behaviour was seen on GejloO) by Johnson # af (1991). Oscillatory 
changes in local roughness were seen during growth of Ge on Ge(ll1) by Wieg er a1 

(1988), caused by partial and complete filling of atomic layers. These are analogous 
to the oscillations seen in WEED and the diffraction lineshape versus coverage can 
be understood in an analogous way (Vlieg el uf 1989b). 

WO. 
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NOW we mm to roughening with the logarithmic height divergence as predicted 
by c h i  and Weeks (1976). Held er a1 (1987) measured the shape of one of the 
m of Ag(ll0) near the anti-Bragg position [qz] = w / u g  and found a lineshape 
suggestive of the power-law drawn in the bottom right of figure 28. As temperature 

increased to around 750 K, the power-law exponent was found to climb from a 
small value to near unity. This was suggestive of roughenhg with TR = 723 K. 

The theory of a c t i o n  from rough surfaces outlined above makes a clear pre- 
diction that the exponent q should be proportional to [q,I2. Robinson et a1 (1991) set 
out to ver@ this dependence for Ag(ll0) but found instead that, for their sample, 
as soon as they departed from [qz] = r / a 3 ,  the lineshape became split into two 
components with different centres. Since the power law cannot be asymmetric, this 
must be more like the case of figure %(e), not (d). It is dear from figure 27(b) 
that if two nearby facet orientations are shultaneously present we expect to see 
split CTRS. Since the two components must come from different parts of the sample, 
Robinson et a1 (1991) concluded that the Ag(ll0) surface had phase separated into 
rough and smooth regions with slightly different orientations. The relative areas of 
the two regions as well as the angle between them changed With temperature until 
the rough region had taken over the whole sample above the roughening tempera- 
ture of TR = 790 K The value of TR would be expected to be dependent on miscut 
orientation. 

This microscopic facetting into ‘hill and valley’ structures was originally proposed 
by Herring (1951). Wortis (1988) showed that such behaviour would be expected 
under certain conditions from consideration of the equilibrium crystal shape. This is 
the same behaviour seen by Ocko and Mochrie (1988) for Cu(ll0) that we mentioned 
above. Reversible facetting was also studied systematically on Si(ll1) vicinal surfaces 
by Phaneuf et a1 (1988) using LEED and by Noh er a1 (1991) using x-rays. Shen et a1 
(1990) made an x-ray study of a Ni(ll1) vicinal. 

Very recently Abemathy et a1 (1992a) have studied Pt(100) at high temperature 
and concluded that it roughens at around 1800 K Above TR they saw the power- 
law lineshape indicative of logarithmic divergence of ( ( h ( c )  - h(0))2) ,  and most 
importantly they saw the quadratic dependence of the exponent q upon [ q J .  No 
details of the roughening transition itself are yet available. 

Thus we have seen that there are at least three kinds of rough surface and 
corresponding roughening transitions that can occur: the statistically rough surface 
of Cu(113) without lateral correlations, the rough surface with logarithmic height 
divergence predicted by Chui and Weeks (1976) and now seen on Pt(100), and the 
inhomogeneous, microscopically facetted or phase separated case of Ag( 110). Strictly, 
only surfaces with divergent height correlations can be considered rough; on these 
there is no &-function component to the diffraction. Frequently the more widespread 
case Of local roughness (figure %(b) or (c))  is included in the definition, even though 
such surfaces are flat in the long range. 

The miCroseopic difference in origin of these classifications lies in the relative 

free energies of terraces, steps and kinks and interactions between them. On the 
macroscopic scale, some of the behaviour can be understood from the surface tension 
versus orientation, through the equilibrium crystal shape (Wortis 1988). ’Ib observe 
the differences it is clear that high-resolution measurements of x-ray diffraction line- 
shapes can play an important role. Presently this is a fairly young field and it is to be 
expected that more developments will take place in the future. 
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9. Future outlook 

There are two central reasons we believe surface x-ray diffraction has a bright future. 
The fust is the confidence that the 60 years of seMce paid by conventional bulk x-ray 
diffraction to most branches of physics and chemistry can be carried Over to surfaces 
and interfaces. There is a general trend towards more and more microscopic length 
scales that inevitably makes surfaces and their properties more important. This is 
as true in the materials science of semiconductor devices as it is in low-temperature 
physics or electrochemistry. It is also apparent that chemical reactions at interfaces 
can be understood and mastered to engineer materials at the atomic level, such as 
Langmuir-Blodgett films or self-assembled monolayer structures. The techniques de- 
scribed in this review are ideal for the characterization of these problems. They make 
a perfect complement to the scanning tunnelling (STM) and atomic force microscopes, 
that are also now widely applied to these problems. While the STM can provide an 
overview of a structure, the diffraction experiment will yield the information at the 
atomic level. 

The second reason is that we are in the midst of a revolution in x-ray sources. 
Fifteen years ago electron storage rings at LURE (Orsay) and SPEAR (Stanford), 
for example, started to receive parasitic users of synchrotron x-rays. Then came ded- 
icated facilities like the National Synchrotron Light Source at Brookhaven, that were 
constructed to support user programs. The technical lessons learned there about 
preparation and customhtion of powerful x-ray beams is presently being applied to 
the construction of new third-generation facilities: the European Synchroron Radia- 
tion Source in Grenoble, the Advanced Photon Source at Argonne and Spring-8 in 
Osaka. Over the two decades since the debut of synchrotron radiation, the brightness 
of x-ray sources will have improved by at least siX orders of magnitude. The View 
of the world of scientific possibilities from this new vantage point will be radically 
different. 
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