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Surfaces away from horizons are not
thermodynamic
Zhi-Wei Wang1,2 & Samuel L. Braunstein 2

Since the 1970s, it has been known that black-hole (and other) horizons are truly thermo-

dynamic. More generally, surfaces which are not horizons have also been conjectured to

behave thermodynamically. Initially, for surfaces microscopically expanded from a horizon to

so-called stretched horizons, and more recently, for more general ordinary surfaces in the

emergent gravity program. To test these conjectures we ask whether such surfaces satisfy an

analogue to the first law of thermodynamics (as do horizons). For static asymptotically flat

spacetimes we find that such a first law holds on horizons. We prove that this law remains an

excellent approximation for stretched horizons, but counter-intuitively this result illustrates

the insufficiency of the laws of black-hole mechanics alone from implying truly thermo-

dynamic behavior. For surfaces away from horizons in the emergent gravity program the first

law fails (except for spherically symmetric scenarios), thus undermining the key thermo-

dynamic assumption of this program.
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In 1973, Bardeen et al.1 derived the laws of black-hole
mechanics which are in direct analogy with the laws of ther-
modynamics. Together with the discovery of Hawking radia-

tion2, the truly thermodynamic behavior of black-hole horizons
became well established. Indeed such thermodynamic behavior is
now well accepted for all spacetime horizons, including those due
to accelerated observers3,4 and cosmological horizons5.

Later, other surfaces were also attributed with thermodynamic
properties. Firstly, stretched horizons were claimed to be ther-
modynamic, effectively acting as radiating black bodies6 with a
temperature T= κ/(2π) determined by their local surface gravity
κ and an entropy (a “state variable”) associated with a statistical
mechanical interpretation of black-hole entropy6,7. An explicit
rederivation of the laws of black-hole mechanics has not been
previously carried out for stretched horizons. More recently, a
class of ordinary surfaces has been conjectured to behave ther-
modynamically, forming the key assumption in the emergent
gravity program8. This thermodynamic attribution was justified
in part by using it in a heuristic derivation of the full Einstein field
equations in static asymptotically flat spacetime8.

Here, we ask whether canonical general relativity is consistent
with the assumption that such ordinary surfaces can be rigorously
seen to behave thermodynamically. We attack this question by
focusing on the analogue to the first law of thermodynamics.
Originally, this law was derived in an analysis that was specialized
to the behavior of horizons1. We remove this specialization to
reveal the behavior of ordinary surfaces in an analysis of the first
law. Here, we report that the first law holds to an excellent
approximation for stretched horizons. Finally, with the exception
of fully spherically symmetric scenarios, we find that for ordinary
surfaces in the emergent gravity program that the first law fails to
hold.

Results
Energy conservation. For a static asymptotically flat spacetime
with timelike Killing vector Kμ one may derive the total grav-
itating mass M as an integral over a spacelike hypersurface Σ that
is truncated (or bounded) internally by an ordinary two-surface

∂Σin (see Fig. 1)
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(See the Supplementary methods for a detailed derivation and
definition of each term.) This expression is a straightforward
extension of that used in 1973 by Bardeen et al.1 in their deri-
vation of the first law of thermodynamics for black holes, though
there the internal boundary was a horizon. Here, κ is a natural
extension of the surface gravity for nonrotating spacetimes.

Local temperature. Following the results for horizons1, it is
tempting to seek to interpret κ/(2π) from Eq. (1) as the local
temperature at any point along an arbitrary two-surface ∂Σin.
However, this would be unsatisfactory if true for arbitrary sur-
faces, since this local temperature would not be in thermal
equilibrium with an actual physical screen held fixed at the same
location; the temperature now coming from the Unruh effect3,
and the local proper acceleration required to keep each portion of
the screen stationary. Only for surfaces of constant Newtonian
gravitational potential ϕ, where the proper acceleration of a sta-
tionary observer and the local normal to the surface are parallel, is
such thermal equilibrium possible (see Supplementary methods).
Thus the temptation of such a thermodynamic interpretation
should be restricted to the family of ordinary surfaces satisfying
ϕ= constant.

Indeed, this restricted temptation appears to have been satisfied
in the emergent gravity program, where for static asymptotically
flat spacetimes, ordinary surfaces of constant ϕ are dubbed
holographic screens and are claimed to have a local temperature8

given by T= κ/(2π), and even to possess a “state variable”
quantifying the number of “bits” on the screen. These putative
thermodynamic properties are then used in a heuristic derivation
of the full Einstein field equations8. If correct, such a claim would
mean that the emergent gravity program would already subsume
many decades of results associated with full general relativity in
this setting.

First law of thermodynamics. Here, we test this thermodynamic
assumption by asking whether perturbations of Eq. (1) reproduce
the first law of thermodynamics. After all, thermodynamics is
primarily a theory about how energy transforms under change,
and this aspect of the theory is embodied in the first law. In the
simplest case, where the hypersurface Σ is empty of matter, this
law should read

δM ¼ 1
8π

Z
∂Σin

κδðdAÞ: ð2Þ

We start by following Bardeen et al.’s original analysis1,
generalizing it where necessary to deal with a boundary ∂Σin
which is an arbitrary ordinary surface instead of a horizon. Under
diffeomorphic metric perturbations we find (see Supplementary
methods)

δM ¼ �1
32π
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Here, θ(l) and σðlÞj (j=+, ×) are the expansion and shears of null
normal congruences of geodesics, the change in the expansion
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Fig. 1 Schematic of the spacelike three-dimensional hypersurface of
interest, Σ, with an inner boundary ∂Σin and a boundary at infinity ∂Σ∞.
Here N̂μ is the spacelike four-vector normal to the boundaries of Σ (note
the direction convention on the inner boundary). We assume a general
mass distribution within the inner boundary and no matter outside it
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under the diffeomorphism is given by

δθðlÞ ¼ � k2
2
θðlÞ þ 1

2
k3 þ k6ð Þ;ρN̂ρ; ð4Þ

and the kj are functions corresponding to independent compo-
nents of the metric perturbation. As the expansion and shears
vanish identically on the horizon9, we see that Eq. (3) trivially
reduces to the first law, Eq. (2), thus reproducing the famous 1973
result1. Similarly, it follows straightforwardly that for surfaces
sufficiently close to the horizon (so-called stretched horizons), the
corrections to the first law will be negligible.

Surfaces away from horizons. So far we have assumed that the
inner boundaries before and after the diffeomorphic perturbation
are arbitrary. But could the perturbed boundary be chosen in a
specific manner so as to cause the unwanted terms in Eq. (3) to
vanish? As already noted, holographic screens correspond to
surfaces of constant Newtonian potential ϕ= constant. Thus, the
perturbed screen relies on a specification of the constant δϕ. It is
easy to show that δϕ ¼ 1

2 k1 (see Supplementary methods), where
k1 is a metric perturbation of which the unwanted terms in Eq.
(3) are wholly independent. Thus, the ordinary surfaces used
within the emergent gravity program cannot generally satisfy the
first law, Eq. (2).

One caveat to this claim comes when we consider a fully
spherically symmetric scenario; where both the initial spacetime
and screen are spherically symmetric, so the initial shears σðlÞj
vanish, and also the final spacetime and screen are spherically
symmetric, placing further constraints on the kj. In this case,
Birkhoff’s theorem10 for spherically symmetric metrics imposes
extra constraints between the metric components so that a
perturbed screen may always be chosen so as to satisfy the form
of the first law11. However, as noted above, this form will not be
preserved under arbitrary metric perturbations.

Discussion
The implications of our results are now described for (i) stretched
horizons, and (ii) ordinary surfaces

(i) Stretched horizons have long been considered to act as black
bodies6, effectively radiating with a temperature κ/(2π). Thus, our
demonstration that they also satisfy the first law to an excellent
approximation hardly seems surprising. Nevertheless, we do not
believe that our result here should be interpreted as implying that
the surfaces corresponding to stretched horizons themselves
should be imbued with actual thermodynamic properties.

In particular, we may consider an alternative spacetime,
identical from the stretched horizon outward, but instead of a
horizon, we consider an infinitesimal shell of matter just outside
what would correspond to its Schwarzschild radius were the shell
to collapse further, yet still within the “stretched horizon”. In this
latter spacetime, there is no horizon and hence no Hawking
radiation. Notwithstanding this, our work proves that the
“stretched horizon” still closely satisfies the first law.

We conclude from this that the laws of black-hole mechanics
are not sufficient in themselves to guarantee whether any parti-
cular surface is truly thermodynamic in nature. For stretched
horizons, we interpret this reasoning to imply that their full
thermodynamic behavior is only inherited from the presence of
an underlying horizon, but is not intrinsic to stretched horizons
themselves. This conclusion appears to mimic the initial reluc-
tance of general relativists1 from accepting black-hole horizons as
truly thermodynamic despite the deep analogy to thermo-
dynamics uncovered in the laws of black-hole mechanics. By
contrast, these laws should still be considered a necessary
condition.

(ii) Our analysis further rigorously shows that the family of
ordinary surfaces called holographic screens will generally not
obey a first law of thermodynamics, in contrast to the long-
standing result for horizons1. (Other families would not even be
in thermal equilibrium with a physical surface at the same loca-
tion.) Recall that the first law is more general than thermo-
dynamics: the “temperature” is merely an integrating factor
relating changes in energy to changes in some state variable
(entropy in the case of thermodynamics). Failure of the first law
means that the putative state variable is not a variable of state at
all. Therefore, even in static asymptotically flat spacetimes, where
the emergent gravity program claims to derive the full Einstein
field equations, our results show that the key assumption of this
program is actually inconsistent with general relativity.

Methods
Energy conservation under diffeomorphisms. In order to attempt to derive a first
law for ordinary surfaces we closely follow in the footsteps of Bardeen et al.’s 1973
classic paper1. The first step is to obtain an integral equation for the net energy in a
static system, Eq. (1), where instead of an inner boundary located at a black-hole
horizon, this boundary is an ordinary surface. Next, we consider small “changes” in
the net energy corresponding to shifting to a parametrically nearly solution to the
Einstein field equations. This “differential” version is determined by studying the
behavior of the net energy under spacetime diffeomorphisms of the initial metric1.
As in Bardeen et al., “gauge” freedom in the choice of coordinates is used to ensure
that the hypersurfaces before and after the diffeomorphism are covered by identical
sets of coordinates.

Study assumptions. Our analysis is limited to static asymptotically flat solutions,
with zero shift vector, βμ= 0. For simplicity, we assume that the spacetime of
interest is nonrotating, and that there is no matter exterior to the holographic
screen (Tμν= 0). We work throughout in natural units where G= c= ħ= kB= 1.
Full and extensive details of the analysis are provided in the Supplementary
methods.

Data availability. The authors declare that all relevant data of this study are
contained in the article and its Supplementary information
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