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ABSTRACT

The design of airplanes, ships, automobiles, and so-called "'sculptured
parts" involves the design, delineation, and mathematical description of
bounding surfaces. A method is described which makes possible the description
of frce-form doubly curved surfaces of a very g neral kind. An exiension of

thesc ideas to hyper-suc-faces in higher dimensional spaces is also indicated.

This surface technique has been specifically devised for use in the
Computer-Aided Design Project at M.1.T., and has already been sucressfully

implemented here and elsewhere.
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SECTION 1

INTRODUCTION

The purpose of this work is to present the mathematics of a certain class
of surfaces which are suitable for the design and description of arbitrary shapes.
In tne past, the subject of surface mathematics has been investigated, in ana-
lytical geomeiry and in differential geometry, from the standpoint of the analysis
of geometric properties of surfaces that already exist, but very little literature
has b:een produced on the subject of the creation of such surfaces. As a typical
example, the design of the hull of a racing yacht requires the description of a
surface of considerable subtlety and complexity, and the process is traditionally
carried out by purely graphical procedures which are exceedingly laborious,
since they entail a large amount of trial and error iteration in order to assure
that th< surface is completely described, and is smooth and "fair.” The design
of automobile bodies and airplane fuselages is similarly tedicus and time con-
suming, aithough mathematical techniques have been applied to aircraft design

for a number of years.

A few papers have been written on the ssbject of fitting existing ship hull
shapes by means of various tvpes of polyvnominals, with the two-fold purpose
of smoothing and interpolating the information contained in prelimirary graphi-
cally der:ved hull lines, and of replacing this graphical information with for-
mulas and equations that will permit further analytical techniques to be applied,
such as structural analysis and the discipline of fluid mechanics. But these
mathematical techniques are applicable only when the surface has already bcen
designed t¢ some degree of completeness, so as to furnish enough 1..formation

to make the mathematics work.

The mathematical structure of the surfaces to be described in the follov.-
ing discussion has becn devised to implement the surface design process itself,
so as to make it, from the designer's standpoint, extremely natural and easy.
The designer himself need not know or care about these internal mathematical
details, any more than he needs to know the specific composition of the pencils

with which he writes or the mechanics of the splines with which he now draws
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SECTION |

curves. The mathematics is relatively simple, but it is nevertheless too com-

plicated for hand calculation, and is designed fcr use on a computer.

In the design of a three-dimensional object , whether it be an sirplane fuse-
lage, an automobile body, a ship's hull, or a siagle sculptured part of a machine,
the designer requires a system which will permit him to define a surface with a
minimum of input information, and then to modify this surface, if he feels so

inclined, either by changing the original input, or by adding more design con-
straints to the system.

As a specific example, suppose a designer wishes to design an airplane

fuselage, using the SKETCHPAD system. 1,2,3 He would like to be able to draw

the outline of the airplane as seen from the side, the outline of the airplane as
TEY

seen from above, and some arbitrarily selected section midships. With these

i

e
el

2

three arbitrary curves designed, he would like to have the computer automati-

(A ‘;e;fs‘.,e-

cally and immediately generate a "fair" surface and display this surface to him

ot Lkl

in sufficient detail so that he could make appropriate judgmentws. If the surface
so generated does not satisfy him, he would perhaps like to modify his original
design curves, or else he might perhaps like to add other new sections and have

the computer automatically and instantly re-fair the surface to fit this additional

i information.

i
.

The following sections describe a very simple, flexible and general class
of surfaces which are able to fulfill these requirements. It will be shown that
a single algorithmic structure and essentially only two symbol types serve to

provide the following features:

1. Smooth, fair surfaces can be defined by a minimum number of curves,
and then adjacent surfaces can be designed to match cosition, slope,
curvature, and indeed any desired order of derivative along the ad-

E joining boundaries.

2. The design curves that define the surface can be of any kind whatso-
ever, including circles, second-degree curves, polynominals, trans-
cendentals, and alsc sketched curves with no known mathematical
formula whatsoever.

M
bt

3. Some classic surfaces are not necessarily members of the family
of surfaces to be described; nevertheless, these classic surfaces
can be matched along their boundaries to any ovrder of derivative
desired.
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4. The arithmetic involve ' ‘n constructing these surfaces is extremely
simple and, we have found, easy to implement on a digital computer.
1t also lends itself to special-purpose computing hardware, such as
digital or analog different.al anaiysers. In addition, by virtue of the
form of the algorithm, the parameters that define the shapes are ex-
tremely easy to compute. (In some cases they may require no com-
putation at all.)

We intend to develop a method to construct complex arbitrary surfaces by
piecing tegether surface "patches.”" Each such patch will be defined by four
boundary curves, in principle, although it is harmless for cne of the boundary
curves to be degenerate, and to appear as a point instead of a curve segment.
In the Jesign of a surface, it is intended that the designer begin with a single
surface patch, or a very small number of patches, and then subdivide these
regions with additioral design curves defining boundaries of smaller patches
only when the internal surface needs modification. This is somewhat at variaace
with the customary procedure for mathematical curve fitting and surface fitting
of exisiing curves and surfaces, in which a relatively large number of surface
points already defined by some otiier procedure are used to obtain mathematical
expressions for a surface that best fits them. Instead, th2 system to be de-
scribed is intended to be used by the designer at the outset, in the process of

designing the surface, rather than later on as a means for making it mathe-

matical.

This is not to say that the surface~patch technique cannot be used to for-
mulate patch-wise mathematical expressions for existing surfaces, but rather
to indicate that the primary purpose of this surface technique is to facilitate
the initial design process itself.

When the design process is completed, the surface will be completely
mathematically defined, since this definition occurs automatically and concur-

rently with design.

Ordinarily a ship's hull or an airplane fuselage is described by certain
important curves such as, in the case of the hull, a keel curve, a midships
section, and a curve representing the sheer or deck line; these curves are
sufficient to determice a surface, since they form the boundaries of a surface
patch. However, ordinarily this primary surface will not have certain desired
characteristics, and it will have to be raodified by introducing additional
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4 SECTION 1

information, such as for instance one or two other section curves. When these
additional curves are introduced, the surface algorithm permits the computer

to "re-~fair" th2 original hull form to contain these curves.

Similarly, an airplane fuselage can be designed by drawing a profile curve,
a maximum half-breadth curve, and a mid-section of the fuselage. Again these
curves suffice to define a primary surface, which in most cases will require
modification by the a.ldition of a few more curves to make more explicit the
designer's wishes. A. these additional curves are introduced, the original
surface will be sub-divided into patches, but the algorithm will automatically
insure contimiity of surface slope and curvature (if desired) and will incorporate
these additional curves into the surface automatically. This should make initial
surface design virtually painless, and is intended to remove the tedious process
of surface fairing as it is now practiced in naval architecture. Airplane fuse-
lages are usually somewhat simpler shapes than, say, yacht hulls, and for a
number of years second~degree curves have been successfully used for fuselage
design; on the other hand, naval architects have steadily resisted the use of such
methods in their work, since the complexity of yacht shapes makes it necessary
to pay attention to the irksome details of the geometry involved, and second-

degree curves prove to be cumbersome in such applications.

The system that is described in this report is intended to furnish the flexi-
bility that second-degree curve techniques lack, and to remove almost entirely
the need for the designer to be an analytical geometer. With this system imple-
mented on 2 computer, there is reason to believe that the computer can take
over all of the geometrical and mathematical burden of the design process, and
leave the user free to be a sculptor assisted by an exquisitely skillful mechan-

ical slave.

Ultimately, when a graphical input-output hardware for a computer is
available in the engineering design office, these methods will permit designers
to delineate complex shapes withi great ease, by simply drawing the salient
curves that define and describe them. Already experiments along these lines
ave in progress in a few isolated laboratories both in universities and in

industry. Very soon the two severe handicaps that have inhibited the wider

use of such graphical devices will be removed. These inhibiting factors have
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been high cost for the terminal hardware and small size of the working area.
Rapid strides are being made on both these fronts, and within a few years it will
be possible not oaly to draw on a virtually unlimited drawing surface, but to
draw objects directly in three-dimensional space, and to view these constructed

objects as one would view an actual physical thing.
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SECTION II

NOTATION

We shall in what follows relate the x, y, and z coordinates of points on a
surface to two independent variables u and w, so that we could write

x=f@,w
y =g, w)
z = h@, w)

If the functionr f, g and h were specified, then for a pair of values of u and w,
a pcint in space would be defined. If we held one of the independent variables
fixed, say w, then by allowing u to vary, the point in space would trace out a
curve, If subsequently we set w 10 a new fixed vaiue and again allowed u to
vary, we would trace out another curve, and so on. Clearly by stepping the
values of w by small iscrerents and allowing u to vary after each such step,
we could produce a farmily of space curves that would lie on the surface and
define it. All that is needed is some convenient and systematic way of arriving
at the functions f, g, and h.

It will turn out that the form of all of these three functions is the same;
only certain internal numerical values are different. In vector notation we can

write
[x y z] = [f u,w) g (u,w) h(u,wg

Since V = {x y z] is a suitable conventional abbreviation for the vector
on the left, we introduce a similar abbreviation for the right hand side:

@ = [fawm gaw hew)

Here, in the abbreviatzd symbnl on the left, we shall omit the comma between
the two letters. Laier on, when no ambiguity can arise, we shall omit the
parentheses as well, and write simply uw to stand for the vector. It is to be
remembered that uw does not stand for the ordinary product of the two quan~
tities, but is merely a bi-literal symbol starding for a vector whose components

are functions of the two variables.

-t

P




ey

Lo et e <

We plan to build up surfaces by adjoining surface "patches," in an analogy
of the piecewise fitt.. of complicated curves by curve ;| gments suitably joined
together. Accordingly, we shall at the beginning focus our attention on one such
surface patch. To simplify arithmetic, we shall stipulate that the independent
variables, or parameters, u and w can take on only values between 0 and 1,
Then a surface patch caa be considered to be a surface segment bounded by

four space curves, (0 w), (1 w), (u 9) and (u 1).

11
01 ul
1w
ow
u0 10

00

Here, typically, the symbol (0w stands for the vector describing the x, v, and
z coordinates of points along the curve generated by allowing w to vary conti-
nuously from 0 to 1, while u is held fixed and equal %0 0.

We shall introduce two scalar functions, F, and F 1 each a function of a

0
single variable, These will be referred to as ""blending functicns® for reasons

that will become clear.

1n order to compress the surface equation, ard the proofs that we wish to
demonstrate, we shuil use a kind of indicial notation; we introduce the indices i
and j, which can assume only the values ¢ and 1, and we invoke the customary
summation convention for terms with repeated indices. This convention in our
case simply means that when an index is repeated in a term, we write out all

the possible {¢rms that the actual indicial values generate, and then add them.
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SECTION I
TiIE SURFACE EQUATION

With these conventions and notational peculiarities in mind, we write
(uw) = (iw)Fi(u) * (“i)Fj(W) - (ii)Fi(“)Fj(“')-
{Typically, the first term on the right expands as follows:
(w)F,(u) = QW) F ) ¢ AWF ).

Thus the complete expansion would consist of eight terms, if carried out.) We
shall proceed to demonstrate that this surface equation represents a surface

that contains the four boundary curves, and is thus defined by them.

We must make a stipulation, a weak one, on the nature of the blendirg
functions F_ and FI;

0
Fy 0 =1 F, (1) = 0
F,(1) =1 F (0=0

A further stipulation is that Fo and I-‘1 be continuous and monotonic over the
interval.

Now set u = a, where a can conly be either 0 or 1. Then, substituting in
the surface equation,

(aw) = (%)F.(@) - @)F j-(W) - (ii)Fl(a)Fj("fL

Consider Fi(a) which occurs twice in the equation. By the stipulation, ifi - a,
Fi(a) =1,

Otherwise, ifi #a, Fi(a) =0,

Hence all terms in the expansion that contain i # a vanish; we can seti = a and

what remains is
{aw) = (aw)Fa(a') - (ai)Fj(W) = (aj, Fa(a)Fj(w;
= (aw) + (33)th“') - (a))F}.(W)

= {aw).

9
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10 SECTION IlI

This shows that for a = 0 or 1, and hence (aw) = (Ow) or (1w), the surface equa-
tion reduces to an identity. This implies that the surface contains its houndaries.
An entirely parallel argument would show that the equation also reduces to an
identity for the other two boundaries (u0} and (ul).

Provided a pair of functions F_ and F_ are chosen once anu for all that

satisfy the stipulations, the surface ‘:quatiotlx may ke constructed immediately
and uniquely for any set of boundary curves (u0) (ul) (Ow) and (lw). It is to be
observeid that no restrictions have been placed on the form of the boundary
curves; there is perhaps the restriction that they form a closed boundary, at
least at the corners (ij) = (00), (01), (10), and (11) otherwise there will be mul-
tiple values within the surface segment; similarly they should be continuous
functions, but apart from these raiher obvious restrictions, they can be of any
shape whatever, including curves that can only be represented by tables of

values.

We can gain intuitive insight into the nature of such a surface if we look
at one of the terms, say (uj)Fj(w).

We have the expansion

(uj) Fj(W) = (UO)Fy(w) +{&1)F, (W),

This represeris a weighted average of the quantities (u0) and (ul}. When
w =0, Fo(ﬁ) =1 and FI(O) =0, and the expression becomes simply (0). As w
increases, the weight of Fo(w) decreases, while that of Fl(w) increases, so that
the surface partakes of the nature of both boundary curves. As w approaches
the value 1, the influence of (u0) on the shape of the surface gradually disappears,
whi’ 2 the influence of (ul) gradually becomes dominant. Finally, atw =1, the
curve (ul) represents the shape of the surface. We can say that the surface is
generated by a gradual transition from (u0) to (ul), and that these two curve
shapes are "blended” together by virtue of the blending functions Fo and F 1
This discussion is somewhat oversimplified, since we have omitted the term
(iw)l-“i {u) and it too plays a part in determining the shape of the internal surface,
as does of course the term involving the correr coordinates, (ij)l“i(u)l?j w).
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THE SURFACE EQUATION 11

The entire surface equation is seen to be symmetric in u and w, and n
virtue of this and a secondary symmetry in the functions FU and F, v can
abbreviate proofs aboui the behavior of the surface along all boundaries by

exhibiting a typical proof for any one boundary.
3.1 BOUNDARY SLOPE CONTINUITY

It is our aim to design and delincate complicated surfaces by adjoining

surface patches, in a piecewise fashion. Consider two such patches A and B.

with 2 common boundary. For patch A the boundary is (1w}: for patch B it is

(0w), and the vectors of coordinates are equal,
A (1w) = B (0w).

Then the two patches will be continuous across their common boundary. They
will however in general be discontinuous in slope across the boundary, and we
wish to investigate this and make some amendments that will correct this dis-

continuity of slope.
We take the partial derivative with respect to u; Our symbolism for this

partial derivative is (uw)u = %%‘-‘)- , and when we substitute, say, u = 0, we can

write (()w)u to n.ean the value of the pactial derivative so obtained, Then
= (iw) Ft i N - i FY g
(l“")u iw) Fi (u) + (uJ)qu(“) (13} Fi (v) Fj(“)~
Now substitute u =2 =0 or 1, as before.

@w), = W) F] @) + @j), F,(%) - (i) F} @F ).
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If we now place additional constraints on the blending funct:ons, that their first

derivatives
Fl‘(a) =0 (a = either 0 cr 1)
we obtain the result
(aw)u = (aj)“l-‘j(w),
all other terms vanishing,
This impli 2s, for example, that whena =0,
((‘W)u = (00), Fo(w) +(01) F. (W),

or, the dzrivative anywhere along the boundary ir the u direction (across the
boundary) depends only upon the derivatives at thc end-points of the bound.ry;
it is entirely independent of thc shapes of the four boundary curves, inc’ ading
ihe houndary (0w) itself.

Thus for the two patches A and B, if

A(10) = B(0O)

Ay =B
i.e., if the boundary curves are continuous in slope in the u direction at the ends
of the contiguous boundary between patches, we are guaranteed to have

A(lw)“ = B(Ow)n everywhere along the boundary regardless of the
shapes of the boundary curves of A and B. This is a remarkably powerfvl and
useful property, achieved at the slight expense of extending the stipulations on

the Fi'

Similarly, the second derivative with respect to u is
. ] 3 — i3y P
(W), = (W) F}' (@) + i) F (W) - @) F}' @F (W)
and if we further stipulate that F;' (a) = 0 we obtain

@w),, = @), Fi%).

s




THE SURFACFE EQUATION 3

This establishes second derivative (or curvature) continuity as an auto-
matic and inherent property of adjacent patches, provided their boundary curves
have this kind of continuity at the end-points of the boundary. It is easy to see
that we may escalate in this way to any level of derivative continuity we wish

along contiguous boundaries,
3.2 SLOPE CORRECTION SURFACE

The surface equation already described is very general, in the sense that
it can contain virtually any boundary curve we wish, and it has certain benign
properties of derivative matching along boundaries; nevertheless it is not a
universal formula for all surfaces, and there are many that do not belong to 1ts
family. We have already seen that surfaces generated by the surface equation
have a definite intrinsic slope along boundaries, whose variation is rigidly
prescribed by a simple formula, Obviously surfaces exist whose boundary
slopes do not match this intrinsic slope, except at the end-points of boundaries.
Nevertheless, we wish to be able to patch together such other surfaces with our
special surfaces, so as to have slope continuity (or continuity of any level of
derivative).

To do so, we introduce a new surface equation, describing a slope-correc-
tion surface, which when added to the first surface equation has the property of
leaving the boundaries unchanged. but causing the derivatives across boundaries
to vary in any arbitrary way we wish, as we move along the boundary.

The equation resembles the first form very strongly. It is

Here, typically, (iw)u is a function of w only, and describes the arbitrary
variation of the derivative with respect to u as w varies, along the curve (iw),
and similarly for the other boundaries, The vector (ij)uw represents the cross

derivatives of the four corners. Typically,

2
©0) =2 %) u=0
uw  Judw w=0

fre - -
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i

The functions Go and (31 are again blending functions or weighting func-
tions, but they have properties different from the functions Fo and Fl' We
¢ stipulate

Gy(0) = G,(0) = Gy(1) = Gy (1) =0
Gi(0) =1 Gy(1) =1
Gy(1) =0 G!(0) = 0

or in the indicial notation used earlier,

o

Gi(a)=0,aandi=00r 1.

Gi(a) =0, a #1.

G;(a) =1, a=1i.

IR S A

We need to ensure that the vectors describing the boundaries vanish
; identically, and that the vectors describing the slope variation along boundaries

are indeed given by the equation. The proof proceeds along precisely the same

lines we used before. First, substitute u =a. The equation becomes
o (aw) = (iW)uGi(ﬂ) + (8J)ij(W) - (lJ)uwGi(a)Gj(W)-
= (3i)ij(W) .

Consider (aj)w. We wish to have the correction surface leave the original
boupdary vectors unchanged, and hence the boundary vectors of the correction

surface must vanisk; ie,
(iw) =0
(uj) =0

Then the derivatives of these boundaries must also vanish; in particular,
(iw)w =0 and then (13)w =0, whenw = j. Hence (a))w =0.

Thus (aw) = 0 indicates the desired behavior of the correction surface along a
» boundary. Similarly (ua) = 0.
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equation with respect to u:
w) = (iw)uG; () + (ui)uij(W)
- (@), C ; (u)Gj(w) .
Now substitute u =a
@aw), = (iW)uG; (@) + (ai)uij(W) - (), 6 ; (a)Gj(w)

As before, Gi(a) =11if and only ifa =1i,

80 we get
- ] 3 A 3 ] g
(aw), = @W), G, @) + (@), G, - @) G} @G(w)
=@w), + (al)uij(W) - (al)uij(W)
= (aw)u.

This demonstrates that the surface has the slope variation along the
boundary as required. To make use of this slope correction surface, we must
first determine what the intrinsic slope of the surface to be corrected is, and
then we must subtract this slope from the desirea boundary slope, to yield the

correction slopes that enter into the equation, Thus if (OW)u is the desired
slope, and

I (Ow)u is the intrinsic slope, then
C (Ow)u will be the correction slope,
C (0w)u = (Ow)u -1 (Ow)“.
The correction slopes C (iw)u and C (uj)‘v are the four functions that enter

into the slope correction surface. The desired surface is obtained by adding

thz correction surface to the first surface:

(uw) =1 (uw) + C (uw)

where we use the symbol I (uw) to represent the surface whose boundary slope
is being modified.
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16 SECTION II

3.3 HIGHER-ORDER CORRECTION SURFACES

Analogous forms may be obtained for correction of higher derivatives along

boundaries. For second derivative correction, the surface equation s

uw) = (w) H.@) + (“i)wwﬂj(w) = (i) (“)HJ.('W)-

H
uuww i
In this equation, the blending functions Hi have the stipulations that, for a =0
or 1 as before,

H,(a) = 0
1
H (@)=0
e
H (a) =0,ifa
"
Ho 4)=1,i=a.
With these constraints on the Hi’ it is easy to arrange matters so that this
sccend-order correction surface is zero eveiywhere on the boundary, has zero
slopes across toundaries, and has second derivatives across boundaries speci-
fied by (iw)u“ and (uj)ww whatever these functions may be, The addition of this
surface vector to a given surface vector will then provide a means for boundary
second-derivative correction without disturbing either the boundary shapes or
boundary slopes.

Although we have already carried out 4 similar proof for slope correction,

it might be well to exhibit once again the course of the argument.

First, to show that the boundary vectors are zero, substitute u = a:
(a=00r1l,))

(aw} = (iW)WHi(ﬂ) + (al)wwﬂi(w) - (il)mwﬂi(a)ﬂj(w)
= (al)wﬁi(w) .
The term (aj)ww refers to the second derivative in the w sense at each of the

four corners, such as, typically, (00). As in the case of slope correction, we

must have

(iw) = 0 along boundaries,
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Then (iw) =0, 4ij) =0, and in particular (aj) =0, so that the
ww ww ww
equation satisfies the boundary condition.

For boundary slope vectors, differentiate with respect to u:

(uw), = w), Ho) & () o Hw) - ) H ()

Setu =a;:
(aw)u = (aJ)“, |Hj(w) .

We wish to have the slope vectors vanish along boundaries, so typically
(iw)u =0 for all w,

But then (iw)uw =0 and (iw)uww = 0 by taking derivatives, The order of
differentiation is immaterial, so

iw) = (iw) , and finally we can conclude that
uww wwu

@j) = 0; again the right and left hand sides of the equation are
in agreement.

Finally, we differentiate again with respect to u:

12
@W)yy = GW) H @) + @il Hw) - @) o B @B ).
Set u = a; only terms in which a =i remain;
(@w),, = @W), B, 0@ - @) o Hw) - @ H @H (W)
- (aw)uu

Again we have demonstrated an identity. The escalation to any level of

boundary derivative correction vector is obvious,
3.4 MATRIX FORM

The surface equation

(uw) = Aw)F, (u) + (“j)Fj(W) - (i.i)Fi(“)Fj(“-')

ok
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may be expanded directly into matrices, to yield:

.
(uw) = [uo ul] Fow + [Fou FluJ Ow
Flw 1w
- F.u %
[Fou "1“4 00 01 X Ow
10 11 Flw

In this we have treated the indicial form term by term in a straight-
forward way. We shall in what follows omit parentheses, since n. misunder-
standing can arise. Thus typically F u is written in place of F (u) as a matter
of convenience and economy . Slmllarly, typically 00 is written instead of (00);
the reader should be reminded that this is merely a compact way of exhibiting

the X, y, z coordinzizs al point (00).
It means;
00 = [x(OO), y(00), z(OO)} when written out completely.
The three vector (matrix) products are equivalent to the following three products:

0 uf ul 1 ]
0 0 0 Fow
0

0 F w

[lFuFu I
i 1]

r F,
+ [1 Fou Fu] 0 0 0] :

1
ow 0 o! ‘Fow
llw 0 01 iFle

1 ) | |

+ [1 Fou Fuj [0 9 0 ‘1 }'
’o -00  -01 R
lo -10 -11j i}*lw

ard in this form we car perform tke addition, obtaining
(aw) = {1 Fou Flu] 0 uo ul [1
ow -00 -01 F w

0
1w ~10 ~11 { Flw

-
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It is slightly more convenient to rewrite this in the equivalent form

h
(uw) = - [—-1 Fou Flu] 0 uf ul -1

Oow 00 01 F Ow

1w 10 11 Flw

so as to avoid the awkward minus signs in the 3 x 3 matrix.

Two facts should be noted. The ieading row vector in front of the matrix
and the trailing cciumn vector following the matrix are transposes of one
another, but with different arguments; the matrix represents the bourdary con-
ditions of a patch. The partition rOO 01 l is redundant, since its elements

Lo 11 |

must agree with uj and iw for uand wequal to O or 1,

We have already suggested that we can rnaintain slope continunity across
boundaries by suitable stipulatioas on Fi’ and we have also already suggested
that when desired we can adjust slopes across boundaries by a second additive
vector with suitable stipulations on its Gi' We shall now investigate the com-
bined form of the surface equation. To do so we shall prefix a symbol to the
vector uw to indicate whether we are talking about the first surface equation,
or the correction surface equation, and we shall omit tke prefix symbol when

we are talking about the combined form. Thus

uw = suw + cuw, with
suw = the primary surface
cuw = the correction surface

uw = the combination,

Accordingly, using this notational convention, we will take derivatives, with
respect to u, of the surface equation suw in order to determine its slope vector

in the u direction.

THE Y. ey
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20 SECTION III

= [OF'P" 0 0 sul 1]

suwu = - 0 u 1 “J su -
s0w s00 801 Fow
slw s10 sll Flw

- [-1 Fou Flu] 9 suou sulu -1
0 0 0 I-‘ow
l‘0 0 0 Flw

We substitute ¢ = 0, and obtain

sow = [s00 s01 ] [Fow ] .
v
Now consider, for example, soou and the desired oon. The symbol 300u
refers to the slope vector at a corner; we have already seen that at corners the
correction surface c{)()u =0, and s0 0()u = sOOu. This is bourne out intuitively
by the reflection that at (ij) corners, the two crossing boundary curves com-

pletely define the slopes there; since this is so, no correction of sicpe need or

can be applied,
Hence we should write
80w, = [0(.u 01“] Fow]

I-‘lw

By analogy and symmetry we can write the remaining three statements:

slw = [10 11 Fw]
u u ud 0
Fi¥

suow = [Fou Flu‘ 00w
10

L. W

9 [ 2

sulw— [Fou Fl“. 01w )
11

L w
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In order to obtain a desired slope vector along any of the boundaries, we add

the correction surface, whose equation is

CUw = - [—1 G u Gu} 1) cuo cul -1
0 1 w w
ciw c00 c01 G W
u uw uw ]
clw ci0 cll {G w
u uw uw i

As we have already remarked, the desired surface uw is the sum of the vectors
suw and cuw, Hence the correction slope vector, such as, typically, cuow, is

= - 1]

cu0_ =uo_ [Fou rlu} {oow j
10

w.

This is an entry in the correction surface matrix.

Now we introduce a new fact: the corner cross derivatives of the primary
surface equation are all zero. To show this, differentiate the indicial expres-
sion first with respect to u, then with respect to w, and finally setu =a, w =b,
where a and b are as usual either 0 or 1. We have

uw, = {wWF; @) +uj) F j(W) - )F (u)Fj(W). and

uw = @w) Fy () + @i), Fj' W) - @)F] (u)Fj' ).

Evidently this expression vanishes for {uw) = {8 b). This shows that the corner
"twists", or cross derivatives, of the original surface all vanish; itis a
peculiarity of the first fundamental surface equation.

Hence we can assert that

djuw = ijnw; This says that the desired twists at corners are
identical with the correction surface twists, since the fundaments surface has

no twist, We shall use this result .o replace the partition coouw c01uw

cl0 cll
uw uw

with

8"\

01
uw uw
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We can rewrite the exp, ession for cuoW as follows;

cuow= [1 -Fou -Flu] qu
00
w
10
L W
and
il = [1-Fu -F u] (a1 ]
w 5 0 1 w
01
w
11
e w‘
and of course, perhaps trivially,
0= [1 -Fou -Flu] 0
0
0

Each of these matric products represents an element of the top row of the

correction surface matrix,

Since the row matrix {1 -Fou —Flu] is common to these three products,
it can be factored out and intreduced into the matrix [-1 Gy Gyu] to yield

[— [1 -Fou -Flu] Gou Glu]

which iz the same as the vector

[-1 Fu Fou G G,u]
We replace the elements of the top row of the correction surface matrix
by the three matrices K ’uow and ’ulw']
0 00 01

Oj 10 11
s w
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R

This causes it to become a 5 x 3 matrix, and we now have the intermediate

result,
-_ [ 1 Jo uo a1 T
i cuw = [1 Fou Flu Gou Gluj w w 1
0 00 01 G w
w w 0
0 10 11 C.w
w w 1
cOw 00 01
u uw uw
clw 10 11
L uw uw |

By similar procedures, we can write for the elements of the first column

of the correction surface matrix,

cow,_ [Owu 00, Olu] 1

clw_ [lwu 10, nu] 1

and again trivially, perhaps,

0 = [o 0 o] 1
-Fow
-Flw

When we factor out the common column matrix as before, and replace each
entry of the coluran matrix [0 by the above expressions,
0
0
cow
!’ u
! clw

e
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g
g we obtain the complete matric expression for the correction surface:
g“
== 1- 2 [ 0 ul_ |
§ aw =~ [-1 Fu Fju Gu G,u] o | oo |uo, .
f“ 0 0 |0 joo, |O1
3 0 0 0| 10 i1
5 w w
OW“ OOu 01u 00uw 01“w
11
I lwu 10“ 11u 10uw uw

LR G R BRI,

“

If now we border the original surface equation matrix, it can be written,

suw = - [-1 F: Fu G GluJ 0 |w | u ] ojo
ow |00 | o1} oo
w (10| 11| oo
0 0 o| olo
0 0 o] ofo
L pe .

In this bordering process, the value of the matric product is unchanged.

F w
Flw
G w
le

Since the pre- and post-multiplicative matrices in this equation are the

same as those of the correction surface equation, we can add the two 5 x 5

matrices and pre~ and post-multiply by the two vectors. We shall perform, in

fact’

uw = suw + cuw, and obtain

uw = -~ [—1 Fou Flu Gou Glu] 0 uf) ul uow ulw
ow 00 01 06 (131
w w
iw 10 11 10 11
w w
Owu oou 01u Oouw Oluw
i lwu 1()"l llu louw lluw‘

This is a general expression for a slope-matching, slope contimious surface patch

with entirely arbitrary boundaries and entirely arbitrary slopes across these

RS

e b
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boundaries., There are no stipulations whatever on the nature of the boundary
slope function. The stipulation on the F and G functions have already been dis-

cussed,

Now that we have constructively arrived at a general expression for sur-
faces that have a prescribed boundary vector and a prescribed boundary slope
vector, it might be interesting to apply a proof to a conjectured higher order
surface equation in which not only boundaries, boundary slopes, but also

boundary second derivatives are vector quantities under control,
We postulate, therefore, that by analogy the surface equation is

uw = - [-—1 Fu Fu Gou Glu Hou Hlu]

0 1
_ 7 -~ .
0 uf ul u0 ul ul ul -1 1
w w ww ww
Ow 00 01 00 01 00 01 F w
w w uww wW 0
1w 10 11 10 11 10 11 F.w
w w or ww 1
X | Oow 00 01 oce 01 00 01 G w
u u u uw uw uww uww 0
1w 10 11 10 11 10 11 G.w
u u u uw uw uww uww 1
Oow 00 01 00 01 00 01 H w
uu uu un uuw uuw uuww uuww 0
1w 10 11 10 11 10 11 J H.w
| uu uu uu uuw uuw uuww uuww |1 ]

It represents a surface patch whose vectors of coordinates, slope, and curva-
ture as well, are everywhere arbitrary along its boundaries. The first column
and first row of the 7 x 7 matrix represent these boundary conditions; the re-
mainder of the matrix is redundant, since the quantities this partition contains

must all come from the column and row by differentiation,

We can test this equation by seeing whether it contains a boundary curve,
To this end, set u = 0, so that we check whether it contains the boundary (0w).
We obtain, invoking the stipulations on the F, G, and H functions,

s e¥ g,

"1

Wit 5o o
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™
[-H]

[0 00 01 00 01 00 a1 -1 ]
w w ww
Ow 00 01 00 01 00 01 F w
w w ww ww 0
—_ Flw
X\ _ _ _ Gow
—_ le
— How
- - - h -l b led

In the boundary matrix we have omitted irrelevant terms, because of the
zero's in the pre-multiplying vector. We obtain, by performing the raultipli-

cation,

0w=-[0woooooo] -1

= 0w, which is the hoped-for identity.

We can next try to see whether the equation also conforms to the boundary
second derivative conditions, It will be more convenient in what follows to

introduce some abbreviated notation,

Set

[fu] = [-1 Fou Flu Gou Glu ch Hlu]

and a similar expression for [fw] .

[Py
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PP
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Set the 7 x 7 boundary condition matrix equal to [B] )
With these abbreviations, the surface equatica is
oo o] [ o]
We differentiate with respect to u:
o= ([ [+ [u] [8)) [o] 7
and again;
o= (0] [ <2 [o] [) « [8] [3,])() "

We wish to investigate the right hand side of this equation for u = 0, that is,
for uw = 0wuu. The biending function vector and its derivatives become

E"'Z%i[000001q
[©0]

As for the first and second partial derivatives of the [B] matrix, all

{] {
frmeanany
t
| ]
| o ]
[T ]
S
[— N ]
o QO
S L

elements of ‘.Bu. and [Buu] vanish except for those in the top row,

Then

:
[f"()] -B] - [owuu 0011\1 01{.‘.!! Oouuw muuw OOUUWW OIEUW‘"']

2 [f'O] FB ] = [ the null vector]

L
[f(}] B ) =[ 0 -0 -0i -00 -01 -00 -~01 ]
“uu uu uu uuw auw uuww uuww

The sum of these vectors is evidently

[Owuuoooooo]

Finally,
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u o mensd e mesonlom o e e Py . T |
We have chowmn tha! the extended surface equation satisiies the secoid

derivative boundary conditions. In a similar way it can be shown to satisfy the
first derivative boundary condizions, but this was skipped in favor of the proof

for the higher derivative since the prucedure exhibits a few interestirg pointi.

By analogy we could cons.ruct matrix products to represent surfaces

which satisfy even higher derivative conditions across boundaries.

3.5 BOUNDARY CURVES

It is often convenient to use particular boundary curve functions defined
by the curve end-points and end-point tangent vectors., We can use the blending
functions themselves to define such curves. For example, the v0 boundary
curve can be described by the equation

- -

u G ou Glu] 00
10
00
u
10

- -

u0 = [Fou F1

where the column vector contains the end-point information. We cbserve that
the row vector becomes [1 0O 0 o0 ] when u = 0; it becomes [0 1 0 0] 3
when u = 1. Again, if we take derivatives of this row vector with respect to u
s 1 * i r =
we obtain [Fo'u F1 u q) u G u] and this becomes L0 01 0] foru=0,

1
and it becomes [0 (i 1] 1] foru=1,

With this behavior of the row vector, it is easy to see that the equation
does indeed represent a curve satisfying the end-point conditions.

The matrix form of the surfacc equation has been shown to be

= - L M H —0 Hi -
uw [1 Fgu Fu Gu clz.] w0 ul ud ul, 1

Ow 00 O01 00 01 F.w
w w 0

ow 00 01 00 01 G.w
u u u uw uw 0

1w 10 11 10 11 G, w
[l u u u uw uw 1
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Now when, in computing uw, we perform the matrix multiplication from

the left, we have for the second column

o
_ 0
[1 Fou Fu G Glu] u
00
10
00
a
10
Ll
= M i r ] = + =
0 + [Fu Fu Gu Gu] loo uo +u0 = 0.
| 10
' 00
' u
t
| 10
u—

Now if similarly uil, qu and ulw are functions of the same kind, their
corresponding column products vanish just as in the case of u0. Accordingly,

the resulting product of the threc matrices has the form

u=-[Pooo] -1 = p,

where P is the product of the row vector and the first column of the matrix, or

-~ -

P [—1 Fou Flu Gou Glu] w

ow

1w

{Fou Flu G

u Glu} ow
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For the complete column vector we have
ow = 00 01 00 01
w w
1w 10 11 10 11
w w
Oow 00 01 00 01
u u u uw uw
1w 10 11 10 11
[ L u u uw uw

-

likewise functions described as outlined, we can write typically

Gow

‘le

e

equation
uw = [Fou Flu Gou Glu] 00 01 oow Olw
10 11 10 11
, v w
!
00 01 09 01
u u uw uw
10 11 10 1
. u u uw uwj

SECTION I

If again the elements of the column vector, 0w, 1w, ()wu and 1wu are

Wher we substitute this result for the column vector, we obtaiz the sur .ace

le

-

This is a particularly convenient form for computation. The 4 x 4

matrix contains nothing but information about the corner coordinates, corner

slopes, and corner twists; all entries are constants, and the partitions of the

matrix systematically group these quantitics.

The leading row vector and

the trailing column vector are transposes of one another, (but with different

arguments, of course.)

We shali refer to the 4 x 4 matrix as the "boundary condition" matrix,

and shall assign to it the symbol B, so that the matric equation for the surface

could be written
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uw = [Fou Flu Gou Glu} B F w1

It must be remembered that each of the entries in B is a three-vector,
whose components are x, y, and z coordinates and slopes and twists, This

means that B is really a tensor.
3.6 BLENDING FUNCTIONS

We can relate the blencing function vector to a so-called basis vector
in the following way. Let | U u,uu 4] be a vector whose elements are a set
of linearly independent functions of the variable u. Then we can postulate

the existence of a matrix M such that

u, ] M.

[Fou F.u Gou Glu] = [ul u, u, u,

1

To evaluate the M matrix, we substitute u = 0, u = 1 on both left and right
hand sides of the equation. Then we take derivatives of both sides, and
again substitute u = 0 andu = 1. There results

FOO Flo G00 G10 = 01 02 03 04
Fol Fll Gol Gll 11 12 13 14 "
\ ) \j 4 t 1) \ \
FOO FIO GOO GIO 01 02 03 04
1 1] ) 4 1 ] L 1
_FOI Fll Gol Gll | _11 12 13 14“
The matrix on the left is the identity matrix '1 0 0 0’ by virtue
01 0 0
0 0 1 0
0 6 v 1]
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of the stipulations on the blending functions and their cerivatives. From this,

we conclude that

0, 0, 0, 0
L 1, 31
Ml
\ ] ] ] ]
0 % 05 9
] -t 1 ]
1 L 13 4

and we need only find the inverse of this matrix (if possible) to obtain M,

(In the matrix, the notation 1'2 means d(uz)

du u=1

typically. )

In the next section we shall for the first time be specific about the

basis vector [u. u, u

o Ug u4] , but it is interesting and important to realize
that so far in the discussion nothing has been said to diminish the generality
of the matkematical structwe. It is hoped that the reader will not loge

sight of the fact that the surface equations in their several forms can be

implemented in many ways. We propose to develop one such implementation
in detail, but it is only oge of many.

3.7 CUBIC BASIS VECTOR
Let the basis vector te

[u1 u, u, u4] =

[u3 u2 u 1j.

The vector on the right contains four specifically chosen linearly independent

functions of u, the powers of u, and when multiplied by a coefficient vector

yields cubic polynomials:

[u3 uzul] [

= Au3+Buz+Cu+D.

Sy |
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By the reasoning of the last section, we have for this vector basis,

e e O

00 1]
11 1
01 0
21 0

from which we can obtain the desired inverse

- -

2 -2 1 1
M= [-3 3 -2 -1
0 0 1 0
(1 9 @ 0]

Now we can write
FuFuGuGu—u3u2 11 M
[Fou Fyu Ggu Gul =1 u 1] M.
We shall abbreviate the notation for the basis vector in what follows. We
shall write

[u3 u2 u 1] = U
3 2
ad (W W W 1].= W,

The matrice surface equation
uww = [Fu Fu Gu Gu] B { F ¥

Flw

Gow

(6" ]

now becomes, simply and compactly,

t. t

w = UMBM W, {Superscript t means transpose, )

K U and W are cubic basis vectors, then the surface patch is the so-called
hi-cubic surface. Such surfaces are very easy to compute, particularly
since the basis vector is so easy to evaluate. In passing it is important to
remark that the above compact surface equation is not limited to cubics;

33
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U and W are not restricted to cubic basis vectors, and M is simply the matrix
that generates the appropriate set of blending functions. Among other pos-
sibilities, U and W might be higher order polynomial basis vectors; or they
might be any set of linearly independent functions. Provided the associated
M‘1 matrix has an inverse, these basis vectors are acceptable.

We can write, for w held fixed, an expression for a u - varying curve

on the surface:
uw = U(MBMtWt) = UA

where A is 8 column vector of constant coefficients. We c2a write a simi-
lar expression for u held fixed and w varying, The matrix product MIBMt

is the same in either case. This suggests that for any surface patch this
rroduct should be evaluated first; thereafter, we can either obtain u-varying,

w-~constant curves or w-varying, u-constant curves in an obvious way.

We shall investigate another basis vector that iz composed of another
set of linearly independent functions (not powers of u) in a later article.

3.8 DIFFERENCE EQUATIONS

If the basis vectors are polynomial bases, we can invoke the techniques
of finite differences to calculate points on the surface patch.

Consider the matrix

r -

L = 1 000
1100
1110
11 1 1]

Then a [ a ]

L b = a+b
c a+b+c J
d a+b+c+d

Ifa, b, ¢, d are respectively third, second, first and zero-order differences
of the cubic n3, then the column matrix on the right of the equation represents
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the corresponding differences for the cubic (n + 1)3. The differences for
(n+ k)3 are given by

2 b
Lk a where Lk means k. successive
b
c
~ d -

multiplications by the L matrix.

When n = 0, we can easily find that

a [ 6 ]
b -5
= for cubics.
c 1
d 0]

Using this,
i = pooor) ¥

6
-6
1

_0.-

In this expression, the vector [0 0 0 1] serves to select the bottom element
of the resulting column vector after k multiplications by L.

By extension, we can write the more complete statement

(il ki1y=0001315 [6 0 o o]
% 2 0 0
1 -1 1 0
(0 0 0 1

We shall call the [0 0 0 1] vector 1; and we shall call the 4 x 4 matrix N,

8o that :

(S K k1 = 105N
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%
1 § Now let the usual parametric variable u be represented by u = k&, where
%i' k=20,1,2....and where d is an increment size. Then
&
5 ;
3 |u3 uzul] = [k3 kzkl] Fss
52
: 3
3¢ o 1 -
g Call this last square matrix A. Then
£ v = 115Na.
: This expression states that we may step aloug the u parameter, in S incre-
§ ments, by successive multiplications by the L. matrix, and thus evaluate
g the U vector at these steps. In order for u to go from 0 to 1, k must start
§ athndgoto-é-,sincekS:l.
2
& We ~2n also write, for the W parameter
W= 1 Lk NA
The surface equation in difference form can now be written out in
full:
w = 100N8a M B Mt At & ¥
j Call the partial product NA M B MtAtNt= Sﬂa,asquare4x4matrix.
Then L S‘.’o = 810 a new square matrix,
and j _ .
L Soo = Sjo, after j multiplications.
We remember that for any column of Soo the multiplication by L is a process
of cumulative addition, as shown by
| a]  [a '
L b = a+b
c a+b+c
| d 2 +b+c+d]

-~
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We can write in general that

t
LBy L =8 4 kel

where the new square matrix is obtuined from the old by cumulative addition
of column elements, followed by cumulative addition of row elements, These
operations are furthermore commutative, which means that we cbtain the same
result if we first add row elements and then afterward add column elements:

* ’ ‘p L . ¥

We have, finally, thatastu=0, w=0 ’éé\\
the surface equation is
00 = lsw ltandingeneral

uw = lsjk 1% whereu = i, w=k3S, andsjkhasbeenformed

&omswbyjeohxmnmsandkmadditiom.

f A ' .
e s L
g
LM LA
e ey e, ot

N
e ds

This obviously furnishes an extremely simple way to generate discrel, M&s
on a surface patch. The pre-multiplier 1 has the effecs of stlecting the hol »m

LI y
P i

“
AR
S

row of S, and similarly the post-multiplier 1* has the effect of sxlecling the
lastcohxmnofsjk. nebottomﬁglﬁhﬂulmmekmcm{ﬁsﬁ‘mﬁwvahe

of the coordinate for a point on the suriace, atuzjr'}, v = k8.

Consider 1sjo. This represests the row vevtor obtained after j cumula- § 3
ﬁveaddiﬁonoperaﬁonshmbcenmrﬁvrme'tmﬁmoolnmmofsm. The %
right hand element of thie vector is ke vafue of the coordinate atu = §3, %? :
w=0. We can bold u fixed a2l stey out successive values of the coardiraie |
for w ~ varying, sinplv by mvaw addition on this row vector alone. In :’5 :
thia case, the resulting right hand element is the marching coordinate value., ﬁ;

5

afet

Anmbgmremnrxcmbemadeﬁorthepromctsok lT. This is a

cobana vector, and successive cumulative additions of its elements marches
out values of the surface coordinate for w = kO fixed, and u varying.

Although the arithmetic of the foregoing difference method is very
attractive, it possesses c-rtain drawbacks that must be made explicit. The
coordinate values are precise if and only if no truncation error whatever is
allowed in the arithmetic. Error is cumulative, and the leust departure from

Rl AT
ahiadh




THE SURFACE EQUATION 37

We can write in general that

t
LSy L =8 1 kel

where the new square matrix is obtained from the old by cumulative addition
of column elements, followed by cumulative addition of row elements. These
operations are furthermore commutative, which means that we obtain the same

result if we first add row elements 2ad then afterward add column elements:

We have, finaily, that atu=0, w=0

the surface equation is

00 1s,, 1 t and in general

00

uw = lSjk lt whereu = j&, w=k3, andsjk has been formed

from S0 0 by j column additions and k row additions.

This obviously furnishes an extremely simple way to generate sdiscrel. poirts
on a surface patch. The pre-multiplier 1 has the effect nf sclecting the hi v

row of Sjk

last column of Sjk' The bottom right hand corner clenont of Sjk is the value

of the coordinate for a point on the surfuce, at u = jf; LW = KO,

and similarly the post-multiplier lt hag the effect of sxiecling the

Consider 1 Sj o This rcvresents the rovw vevtor obtained after j cumula-
tive addition operations have tven per et an the columns of SOO' The
right hand element of thi¢ vector is ine 1 fuc of the coordinate at u = j3,
w =0, We can hold u fixe? azl stepr ot successive valuvs of the coordinaie
for w - varying, simplv by cunwlative addition on this row vector alene, In

this case, the resulting right hand ele ment is the marching coordinate value.

An znalogous remark can be made for the product Sok 1 T. This is a
cobana vector, and successive rumulative additions of its elements marches

ot vaiaes of the surface coordinate for w = kO fixed, and u varying.

Although the arithmetic of the foregoing difference method is very
attractive, it possesses cortain drawbacks that must be made explicit, The
coordinate values are precise if and only if no truncation error whatever is

aliowed in the arithmetic, Error is cumulative, and the leust departure from
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SECTION IV
RY PERSURFACES — HIGHER DIMENSIONS
Ve cau readily extend the surface equation to describe hyper-surfaces

imun rsed in hyper-space. For this purpose we shall iniroduce a slight variant

~4 gur notation, We shall write typically

Fiu. i=0orl.

This will be a standard replacement for the blending function notation. The

stipulations on the Fi are as before, sothat ifu =a, a =0 or 1, we can write

a

i Owhena#i

i

1 when a =1i.

For slope continuity across boundaries, typically
\J
? = 0 where this symbol means the first derivative of the biending

function with the argument = a.

For higher order continuity across beundaries, the additional stipulations
on the blending fucntions are the same as for ordinary surfaces with two degrees

of freedom and have already been discussed.

The general surface equation for hyper-space is, in indicial form,

vV w

uvw . . .) =(ujk...)jk...

+(ivk . . ‘:‘i: ..

uv

*(iiw---)ij

-+
e & e @

. uvw
- (N~-1) (ijk . ..)i jET
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SECTION IV
- in this eGuation, N 18 {he number of lndependent pavametlers in (U v w...); it 15
;; the number of degrees of freedom of a point on the hyper-surface. The indices
%;?% i, j, k etc. can take on only the values 0 or 1.
e

Let us proceed to prove that this surface contains a poundary, say for

&
A

§
*
K

8 Qe

example the boundary (u0 0. . .). We hope that the following equality holds:

00
ikTCC

o

i

00...)=@jk...)

whrshes

el t A4

e R Y

+a0k...)?2...

4
g *’{‘l

9

b
A

+u;o..4??...

%
¥
+

(: Hy \@;%ﬁ%’%

AN
PP+

N g
[
@
(=4

~(N-D(jk.. ')ijk' .
The last term in this expression is non-vanishing if and only if ali indices other

than i are zero, i.e., j =0, k =6, etc. We can accordingly rewrite this term
as

N-1) 600...)?.

Nes.- consider the second term on the right:

. ud
(iok. ")ik" .
It is non-vanishing if and only if k = 0, etc.
We can accordingly rewrite it as

(ioo.. )"

i

w

A similar consideration applies to

(ijo.. )?? . . which also becomes
(ioo. . )i'

e R

e e e Y

%’E QJ’ Wé D e
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There are evidently N-1 such terms, all identical, and they are removed by the
last term. All that is left is the term

00
(ujk.. .)ik. ..
but siave j = 0 and k =0, we finally have (u 0 0 . . .) on the right, This establishes
the identifv, and the surface equation has thus been shown to contain this boundary
curve. It is trivial to show that the surface contains all boundaries, and is defined

by them.

We can also show that the hyper-surface contains boundary surfaces
of lower order. We shall content ourselves with the case for N =3, and show
that it contains surfaces for N = 2 which are identical with our ordinary surfaces.

We have
_ vw
(uvw —(ﬂik)j Kk

uw

+(ivk)ik

+ujw§;

uvw

-2ik

Set v = 0. Then substituting, and retaining only ron-vanishing terms,

v_0_
j oD

(which means that j must be replaced by 0 whenever it occurs, and
womamon:

w

+(i0k)rk

+(i0w)?

-ZGOR)?:




"

42 SECTION IV

or

(u 0 w) =(u0k):’

T VN

+(:0w);‘

e eiw

uw
-0k, .

This is the two-degree-of-freedom surface

RN e Sl

@w) = @) ¥ +aw) | -k

We shall next consider the slope vector of such a hyper-surface. We take
partial derivatives with respect to vne of the variables, say u, and get

@vw...) =@jk.. .)u;': e

u'w

'l-(ivk...)i R

T RN A R R

+(ijw...)r ;’

uwvw
ijk

-(N-1)(ijk...)

In this, setu =0.

Ovw.. .)u=(0jk. . .)u;:. .o

. 'w
~{ivk.. ')i I

. 0'v
'l~(i]v«'...)i K® "

0'vw

SNk

st i s
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or

. vw
Ovw. . .)u=(0)k. . ')ujk' . oy

since all other terms vanish by virtue of :) 0.

This result is analogous to the one obtained for boundaries of ordinary
surfaces; it says that the slope anywhere on a boundary is a function only of the
slopes at the "ends" of the boundary, and are otherwise independent of the

boundary shapes. Slope continuity across boundaries is a consequence.

The hyper-surface equation just developed is defined by ordinary curves,
or single-degree~of freedom boundar.es; we can also write a hyper-surface
equation for N degrees of freedom, defined by boundaries with N-1 degrees of
freedom. We shall exhibit the result for N = 3:

(uvw) =(ivw);l
+mjm;
+(uvk):

. s uv
-(lJW)ij

+ajm§;¥

The proof that this space contains, for exampiz2, the boundary subspace
(0 v w) follows the preceding proofs in principle and will not be carried out.

e ot st 0l
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SECTION V
SURFACE NORMAL VECTORS

5.1 GENERAL SLOPE CONTINUITY CRITERIA

The surface normal vector furnishes a convenient mechanism for the in-
vestigation of general criteria for continuity of surface slope across boundaries
between surface patches. It will be seen that the continuity conditions already
established are much stronger than are necessary, but that they are expedient.

Put

U= [xll y\l zu]

we [x v ]

for the tangent vectors of a surface patch at some point. Let us assume that
another adjacent surface has a common boundary curve along u = constant, w
varying, so that W is common to both patches. Let the parameter for this second
patch be v, and for its tangent vector put

V= [xvyv zv] .

COMMON
BOUNDARY
CURVE

i R RPNV I S

e o Rl S Ry
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46 SECTION V

The two surfaces wiil be continuous in siope across the boundary at the poimnt in

question in case the three vectors U, W, and V are coplanar there,
The surface normal vector for one surface is
N=UxW,
If V is perpendicular to N,
Ve N=0,

But then in this case, the three vectors U, W and V are coplanar since they are
all perpendicular to N.

In detail, thir gives

N=UxW= [JnyJz]

a vector whose components are the familiar Jacobians, and

VN =VNT
- [xvyv zv] Pqu - -xvyvzv 1 =0
Jy X Yu %
LJz *w Yw Zw

(This is the so-called "scalar triple product” of the vectors.) Thus the vanishing
of the determinant of the matrix of the three tangent vectors is the general condi-
tion for slope continuity between two patches, at any point on their common
boundary.

This equation also shows that we may have slope continuity of surfaces
even though the curvilinear coordinates of the two surfaces are not slope -

continuous across the boundary.

If the tangent vectors U and V are equal everywhere along the boundary
curve, the determinant is sure to vanish; similarly if the tangent vectors U and
V are scalar multiples of one another, even when the scalar multiplier is a
variable quantity.

LT
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Suppose that a surface A already exists, defined bv the parametric vector
equation

A= [x¢ ) y$8) =4 9).)

Let a be a curve on the surface; it is always possible to write the vector equation

for a in either of two forms:

ab )= [xd) v) wp)]

or
a(0)= [« 8) v(6) =8)]

Suppose we wish to attach a surface B to surface A, in such a way as to make
curve a common to both surfaces, and suppose furthermore that we wish to

maintain slope continuity across this mutual boundary.

We shall consider curve a to be the boundary (Ow) of the B surface. We
are at liberty to design, arbitrarily, a projection of the other three boundaries,
(29), (ul), and (1w). Say for example that we design these curves in the xy pro-
jection. Then the curves represent the x and y components of their coordinate

vectors.

ot ————
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48 SECTICN V

We identify the new independent variable w with either ¢ or 8 along curve

a. The identification is arbitrary, and we might for example use the linear form

$¢-do _
?.-%

.

With this identification, ¢p and w and, (by virture of curve a,) 8 are all related,
so that knowing any one of these quantities enables us to find the other two.

We now have a correspondence between curve a and curve (0w).

We plan to construct an F-type surface,

- - - -

{(uw) = [1 Fou Fl“] 0 u ul 1
ow -00 -01 Fow
lw  ~10 -11 i _Flw‘

and then modify its slope along (0w) in order to match the A~surface slope, by the
use of the G-type slope correction surface

- - - -
(uw) = {1 Gou Glu] 0 uow ulw 1
Ow -00 -01 G w
u uw uw 0
lw -10 -11 G wi}.
L u uw  uw | L 1]

We shall confine our attention to the boundary (Ow) where slope-matching is to
take place. We shall elect to accept the x and y components of the tangent-vector
across (Ow), as given by the F-type surface, and shall achieve slope matching by
proger choice of the z component of this vector. We obtain x and y components
of the tangent vector across (0w) by the use of

(Ow)u = (00)u Fow + (01)1: Flw.

This is possible because (0())u and (01)u are known from (u0) and (ul).

kit
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SURFACE NORMAL VECTORS 49

We are now ready to obtain the missing = component of the tangent vector
across (0Ow). We first compute the surface nermal to A along curve a, For this

purpose we can use any one of the expressions
b8y x (b Oy
or $8)y xalf)y

or a($)y x ($8)g

Each expression yields a surface normal N; the three results are identical.
We can evaluate this surface normal vector at any point on (0w) since we have a
correspondence between w and the variables ¢ and g .
We also have the equation
(Ow)u NT = 0. This is the familiar condition for surface slope
continuity.
let N= {a b c] after evaluation at w.

Then the equation becomes

[x(Ow)u y(ow), z(Ow)u] a
bi =0
{c]

c
We already have the x and y components of this equation, and can solve for the

z component:

b
20w, = a x(0w) *+ b ylw)

-C

This z component has a magnitude that ensures that the complete vector
(()w)u is coplanar with surface A at w. Hence (Ow)u is the desired tangent vector

of surface . across (0w).
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50 SECTION V

We next find the z tangent vector components 2(00)“ and z(()l)n from (Ovv)u,

and use them in the equation
1 _
z(0w) a - z(OO)uFow + z(Ol)uFlw.

Here the 1 superscript indicates that this is an intermediate result; it is the
intrinsic boundary tangent vector for the F~type surface, and dces not yet match
the z(Ow)u vector function obtained from the A surface.

Accordingly, we must add to the F~-type surface a G-type tangent vector

correction surface, so as to make the combination have the desired slope along

(ow).

This G-type correction surface is, as we have already shown,

C _ [ (] ~ - -
{uw) [1 Gou Glu] 0 uow ulw 1
ow’  -00° -01° G w
u uw/ uw 0
we  -10° -11° Gw| .
! u uw uw_j 1 )

The superscript ¢ indicates that this is a correction surface,

Slope correction is necessary only along the boundary (0w); we can enter
the value for Ow_ in the matrix, but the other entries must be looked at in detail.

We have, for the slope correction across (0w),

ow® = ow - ow! .
u u u
These latter two quantities have already been found for the z compernent, and so
Ow:i is known.
Consider lws . This is at 2 free boundary, {lw), remote from (0w), and
we can set it equal to 0. Then 1o‘°1 and lli are both zero also. On the other
hand uoxv and uI:I are connected to (Ow) at (00) and (01) and sco we must specify

them in such a way as to sctisfy the conditions at these points. Elsewhere, they

too are arbitrary.
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SURFACE NORMAL VECTORS

We write the G function expression:

= " - 1
@) =[16ucu [o w = w 1
ow ~00 -01 G w
u uw uw 0
G
i 0 0 0 ] IW‘

(we omit the ¢ stper-script temporarily. )
Performing the first multiplication, we have

(uw) = [oquo“ ‘ 0y 00" f uly -OluwGou] G,w

Consider the element uow - OouwGou in the row vector. Since uow is
& “hitrary, it would be convenient to choose it so as to make the entire vector
element vanish. We therefore write

w =00 G u.
w uww 0
Then 00W = 0 as it should, and
since w0 =00 Glu,
wu uw 0

00 = 00 as it should.
wu uw

Similarly, we may set

ul =01 G u.
w uw 0

The result of these choices of uow and ulw is to reduce the G equation to

uwc=0wcGn.
u 0

This represents the correction surface z componant which must be added to the

z component of the F surface in order to obtain slope continuity along (Ow) between

the given A surface and the designed B surface,

—

————
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5.2 ADJACENT-PATCH SLOPE CONTINUITY

It is sometimes desirable to define the boundary curves for two adjacent
paiches so that at the junction between the curves the tangent vectors have the
same direction but are of different magnitudcs. This is particularly useful when
the boundery curves are parametric cubics, because then the magnitudes ~f the

tangent-vectors at the erd points control the behavior of the curve segment.

As a specific case, consider the boundary (0w} cominon to two patches; let
the tangent vectors at (00) and (01) for the first pat<h be 004 and 01 ¢ and let
the tangent vectors for the next patch be OOu and Olu

-

If the tangent vectors have the same direction, they are scalar multiples of one

another,

or 00u =m 00‘#>
3a = ] .

ana 01u n 0 ¢

Suppose that the patch (S‘-‘« w) already exists. We need to obtain an appropriate

expression for (uw) so as to match surface siopes across (O0w). By the resuits
of the preceeding article, we can accomplish this in very general! ways, but in
our present case let us make a special requirement on the tangent vectors: let
us assunm e tiiot everywhere across (Ow) the tangent vectors have the same

Girection, and diff.r only in magnitude. Then for any w,

A A aw
O“u 0“4,

eaialane d
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SURFACE NORMAL VECTORS 53

where X is & scalar. We know that A takes the value m at w =0, and takes the
value n at w =1, and we conclude that ) therefore must be a scaiar function

of w.

With this relationship between {Owu) and (Ov.;#) the vectcr cross preduct is
always the null vector:

(Ow)u X (0w)¢ = {0 0 0]

Hence the scalar triple product of (Ow}u, Ow) e a:id ((}w)w vanishes for any
(OW)W. This ensures that the two surfaces will be continuous in slope across
(0w) for any shape of {Ow) and for any A=A (w} ths o  the proper behavior
at w =0 and w =1,

We could for example {ake
Mw) = m(l-w) *+ nw.

This is a linear variation of X with respect to w. It has cne disadvantage,
however, in fhat it introduces un-wanted cross derivatives or twists at (00)

and {01). Ia order to aveid this, we might use

Aw) = m FOW + nFlw.

Then the reguired siope function across (Ow) for the (uw) patch is
0*:-,u = {mn Fow +n Flw; 0'5&¢
We can cheek o find the cress derivatives introduced by this relationship.

The cross-derivative is ohtained by differentiating with respect to w, and
vieids

i . = £\ t + ¥ va-
Nuw {m Fow n Flw) Qw¢
= v I~ > »
+ im rﬂv& +n .iu) 0u¢,w.
At (00}, (}Ouw = m w¢w
and at {01), Gluw = no\&é‘:w,

TSR R
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54 SECTION v

This shows that tae X function dwes not introduce additional twists at the
coerners of the patch, Levond, »f course, those already inherent in the {Pw)
surface,

If the (uw) surface already evists, defined perhaps by an F-type equation,
its invinsic tangent vector across (Ow) is a known function of {Ow), say 0&’“,
where tha 1 superscript indicates that it is an intermediate result. Then,

as before, the correction of slope is

c 1 .
Owu = w:u - qu. ‘The correction surface
¢ C .
w) = Ow u.
is uw) muuo

Wken this correction surface is added to the original surface, the combination
«ill be continuous in slope with the ($w) surface across (Ow). The u and ¢
curvilirear coordinates of the two patches will be continuous in slope across

{0w), but their tangent vectors wiall be different in magnitude.
5,3 APPLICATIONS
Let dU represent a differential vector, sc that

v = [ axay dz], in which

—ax i ax -
d =5 W ey o

-1 dy
=gy W * ow

- 92 9z
dz = du du + dw
If dU is tangent to a u-varyving, w-fixed curve, these becoeme

dx = %Xdy = x qu
du U

dy = Yu du.

dz = zu du, since dw = o,

Hence aU = {x“ ¥a zu] du.
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Similarly, if dW is a differential vector tangent to a w-varying, v-{fixed

curve,

The normul differential vector at a point of the surface will be given by

the vector cross product:

dn = 4y x dW
v i z x y |
“u“u u'u u’u
= du dw.
: yw z“' z“ x“ x“' y“

The determ.nants that comprise-the ciements of the vector are the

jabobians Jx’ Jv and Jz so thai we may write
dn = [I Jd d ] du dw.
Xy z

The magnitude of c¢n is egual to the differential area of the elemental paralleic-
gram described by dU and dW. This magnitude is

‘dn! =,/dn - dn (orW

= dudw-\,/ng + Jyz + ng.

From this, we can constiruct an algorithm for finding surface areas of patches;

we simply perform 1umerical integration of the expression

3 1
A= ff “,/J2+J2+J2 di du.
o 0 X y z

Again, if N is the unit normal vector to the surface at a poirt, theu

dn = N|dn|, irom which

., . fn
Y7 )
J J J
= X X _z
S S S

. + +J .
\/ng J‘_g ng .

-

where S

P
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}
. d. I 4 .

The quantities _x, _y, _z are the coordinate components a, b and ¢
S S S

of the surface normal.

AR R R (e

v If the surface is to be manufactured by milling with a ball-end cutter of
radius R, then the cutter-center vector [xc Ye zc } is related to the surface
vector [x y z] by the simple expression

[xc Y, zc] = ix ¥ z} + R [abc;f.

This describes a "parallel” surface spacod a distance R away from the

R A M T ARy A

designed surface.
P | The normal vector can also be used to calculaie volumes enclosed by
surface patches and planes, as fuilows.
Suppose we wish to calculate the volwme contained between a surface
patch and the xz plane.
S :
¥
: y
: !
IR RN
: y
® Y XZ plane
% ‘NVe can imagine the volume broken ug into a number of slender prisms
; whose axes are all parallel to the y axis (and perpendicular to the xz plane.)

The arca of the base of one of these prisms is the projection of the small

element of surface area, or

dA = J dudw.
y v

@ -
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The volume of this prism is
dv = ydAy = va du dw

f
J f yd _dudw.
t w 3

-
1

Ak

S

s

(M}




59

CORNER TWIST VECTORS

6.1 THE QUASI-SPHERE

It is possible to choose a parametric cubic that very nearly approximates
a circle for one quadrant. We shall go into detail about this shortly; intvition
suggests that similarly we ought to be able to construct an approximation of an
octant of a sphere by means of a bhicubic surface, bounded by these approxi-

mations to circles.

For the circle approximation, let us assume that we will be content to }
make the quasi-circle pass through a point on the true circle atu 1/2. (This
is not the best possible approximation, but it yields quite good results and the

arithmetic is simple.)

We shall assume a circle of unit

radius, centered at the origin, with

end-point values of the parameter u
as shown. The tangent vectors are
symmetric, but have yet undefined
magnitudes .
We have
X = [us u2 u 1] M [ 0 ] Where the column vector on the
1 right represents the end conditions ' !
a for the curve. x
h 0 P
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60 SECTION VI

When u = 1/2, thiz becomes

x=1 [1248] (2 2 1 1] (o
-3 3 -2 -l 1
6o o 1 o a
1 0o o o 0
-l L. -
1 [ 7
='§ [1 2 4 8} -2+a
3-2a
a
L o
1 1
=-8'(-2+a+6-4a+4a) =§(4+a)

a= 8x-4, Butatu=1/2, x= —‘?- since it is a point on the circle

(by aymmetry, at -Z-),
Hence a = 4 (V2 - 1). This is the required magnitude of the two tangent
vectors at u =0 and u = 1, (Calculation reveals that the quasi-circle has a

radius of about 1.00016 at u = 1/3 (at % or 30°) so it is a good approximation.)

We now establish a coordinate system for the sphere, and show its
boundary curves.

10y, 11,
z
ud = degencrate curve
boundary
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The boundary curves 0w, 1w, and ul are all unjt circles; the boundary u0

however is a degenerate circle. and aprears 2z 3 poiit.

SV

We shall first investigate the z comyponent of the uw surface vector

2(uw) = [Fou Fju Gyu Glu] oo o1 {oo 01 ][rw
10 11 10 11 F.w
w w 1
oG 01 00 01 G w
u u uw uw 0
10 il i0 11 G.w
| U u uw uwj o 1 j

= 1 K P i i
{Fou Fucucp] [i oo -a x-*ow"{ . |
1 0 4] -a Flw '
e olo o Gyw
6 o|o0o o G.w
L .. L 1

When we perform the first multiplication, we obtain

i}

Z(uw) [Fou + Fpu L o]o] -a(Fgu + Flu)] Fw

But ¥ u + Flu 1, by virtue of the definition of the F functions.

0

Hence

z{uw) = [1 0 0 oa] F w

=Fw-ale.
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The curvilinear coordinaies for w constant thus yield constant z; this implies
that z is independent of the other variable u, and the w curves are plane curves.

They must of course be quasi-circles.

We have obtained the value of the number a by investigating a unit cirole.
For a circle of radius r, the tangent vector magnitudes must be proportional to

r, or equal to ra, We can find these radii for various vaives of w from either

i
i the quasi-circle y(0w) or x(1w}.
§ We have
Fd
i x(lw) = {10 1110 11 ] frw]
§ w wj 1‘0
? i |
é G w :
3 0
:
3 S1v_ :
'5; and
- 1  w ] ;
yow) = [00 o oo o] [re 1
Flw
Gow
Lle‘ ;

in either case,

r(ow)=[01ao} Fw
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|
; For w fixed, the x and y coordinates cf a quasi~circle are given by
= 1 r ]
x = [Fu Fu Gu G4 0
r
ar i
0 o
and ]
%
3
y = [Fou F,u G Gu] r
0 3
s 3
0
-ar
3
where r is a function of w, shown above.
But i
- - p— b r -
0 ¢ c 0 0 F w 3
r 0 1 a O Flw
4 = 2
: < }ar 0 a a 9 Gow
| 0 | [0 0 0 0] | G, | 3
and é
[ r] o 1 a o] (Fow]-
0 0 0 0 0 Flw
0 0 0 o O Gow
- 2
| ~ar ] 0 -a -a 0] _le_‘

We dbtain these last results by simply writing rows in the 4 x 4 matrix that ’
correspond to elements in the vector of the ieft side. When we combine

results, we have
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3

= P 3 < ~ <
x(uw) [Fou Fju Gu Glu] 9 0]0 O Fow
0 1ia 9 Flw

0 aja’ 0 W
0 ¢jo o] {Gw

yaw) = [Fo Fu G cu] [o 1]a o] [Fw
9 0,0 0 F,w

o 6|0 0O Gyw

2
0 -aj-a ¢ le

The equation for z{uw) has already becn shown.

The striking thing about the B matrix as it appears in these equations is
that is has non-zero entries in the botfom righ* partition,

T NN S B L ARG S
i ik Sils £

-

00 01 :
uw uw 5
10 11 By comparison, we see f
L ow uw !
2 |
that x(oo“‘) = a
2 »
and yo ) = -a”. 1

These are the cross-derivatives at the corners 00 and 10. All other cross
derivatives vrnish, We shall refer to these cross-derivatives as "twists™ of

the surface; uw 18 the twist vector at a generalized point on the surface.

6.2 THE EXACT SPHERE

E ‘ A bi-cubic surface cannot fit a sphere exactly, and it would be interesting
to see whether by an appropriate choice of ¥ and G functions other than cubics,
an exact equatior can be constructed,

o7
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The functions

2
FOu cos T_," u
and
2 T
| nd s — 3
rlu sin 2 U

0 k)
= 1 - .
FIO 0 F 1 1 ]
We shall choose these functions, and determine appropriate G functions P Q

so that the equation

® = {Fou Flu Ggu Glu} r.lO) ] :
1)
),
;(l)u g

represents an exact circle, and not the approximation of the last section.

We already have the well-known parametric equations for a circle;
X - sinau

”
y = cos au vhere a = 7

v

i
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We can compare the x equation with

HTCH B ABUMI AN 4 ot ot st e s
4

2 2 A ¥
x(u) = [cos au sin au Gou Glu] 0
1
a
L 0
. 2
i = sin au + aGou
i
Then sginau = sin2 au + aGou, whence i
Gu = 1 (sin au - sinzau)
0 a :
Again,
2 2 o
Yy = cosau = [cos aul sin au Gou Glu] 1
0 3
0
-2
2
cos au = cos au -~ aGlu
whence

' Glu = i (coszau - cosan).




We can easily verify that these G functions satis{v the same stipulations
as the cubic G functions:

= 1 =
GOO GO 0

Gl() = Gll =0
? ]
GOO =1 Gol =9
1 4
GIO = 0 Gll = 1.

If we now use the same boundary value matrices as were used ia the

. . . ” .
previous case of the quasi-sphere, hut with a = - throughout, we obtain for 5

the z component of the surface vector

z{uw) = FO\\' -—ale.

This is, with the new F and G functions

it

2 2
z{uw) cos aw - (cos aw - cos aw)

COS aw,

As before, this shows that the z coordimate of the surface is infependent

of u; the w curves are plane curves, and they are indeed circles., Their radii

are given by

xw) = [10 1 10 11 ] [Fw

N

- w H
F]w a GO

2 . .2
sin aw -+ (sinaw - sin aw)

i
|
|

or r sin aw,
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: Then ‘

£

3 Auw) = [Fou Fu Gu Glu] 0 i
= r

3 [ar

2 = r(Flu + aGou) = sin aw s1n au,

§ and

g y{uw) = {Fou Flu Gou Glu] [ r ]

g 0

%

0

= -ar %

= r(Fou - aGlu)

&

< 2 2
ginaw (cos au - cos au + cos au)

dha g b S B bt

= sin aw cos au.

IREPIRAe A Y B s s B
i

The resulting parametric equations, when collected, are

x = sinaw sinau
y = sipaw cos au
Z = COS aw

and these are well-known.

This demonstrates that the sphere is a special case of the general surface
equation, provided the blending functions are suitably chosen,

The F and G functions are by inspection, seen (o be linear combinations of
the linearly independent functions of u,

[cos2 au sin2 au c¢osau sin au} .

and this may be taken as an appropriate basis vector. Then

{Fou Flu Gou Glu] = {coszau sinzau cosau sinau] {M]

Gy
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where the M matrix is, in this case,
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SECTION VU
RULED SURFACES

The locus of straight lines connecting corresponding points on two curves

(u0) and (ul) is a surface. The lines are called "rulings" »f the surface.

ul

ul

The equation for a generzlized line of the surface is also the equation for
the surface:
aw) = (@l)w -~ @@O)w + (ud).
This is equivalent to
aw) = (hw + @O) (1-w).

From this equation we obtain the derivatives

(W) = (D) w > @O) (1-w)
@Wy, = @) - @o)

‘“"’)uw = (ul)u - (uo)u.

7.1 DEVELOPABLE SURFACES

A special case of such rulec surfaces is of importance and interest, If
the ruled surface has the property of being tangent, along the rulings, toa
moving plane which roils around the surface, then it may be deformed by simple
bending and flattened cut into a plane. Such a process is called "development”
of the surface. We call such surfaces ''developables™ or "wrapped surfaces™.
(A sheet of paper can be wrapped around the two curves {u0) and {ul) to form

the surface. These surfaces are also known as “convolutes™.)

geaitey
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72 SECTION VI

The tangent-plane condition can be established by showing that the tangent
vector at a point on (u0), the tangeni vector at a corresponding point on (ul), '
and the tangent vectors along the line joining these points, are all coplanar. We
need to form the scalar triple product of these vectors, and show that it
vanishes.

The tangent vectors in question are (uO)u, (ul)u, (uO)W and (vi,w.

First observe that, for a ruled surface,
(uw)w = (ul) - (0). This tangent vector is independent of w, so
that (u())w = (ul)w. Moreover, the vector is simply the line segment joining

the two points, as might be expected, We can write, for the scalar triple
product,

(uO)u
(a1), = 0 1
(ul) - (o)

whersa the notation represents the determinant of the matrix of the three (row)
vectors, If the determinant vanishes for all values of u, the surface is
developable.

The preceding describes an analytical test to ensure that a ruled surface
is developable. We shall now describe a construction that will enable us to
define a ruled surface by means of two space curves. Suppose that the two
space curves are defined by vector functions of two different parameters,

u and ¢

.~¢£@¥ .

ul

-

2l
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The scalar triple product is

(u0)

u
$hy | = O
(@1) - @o)

If we consider u the independent variable, the equation enables us to find
¢ for any value of u; this value of ¢ determines the point on (1) which corre-
sponds to a point on (u0), so that the line joining these points is coplanar with
the tangent to (¢b1) and the tangent to (u0). We allow u to vary, and obtain
related ¢ values; these values of P enable us to evaluate the components of the
vector (¢1). These components are the same as the components of the desired

{ul) vector.

Provided we remember that the (unspecified) functions of u and ¢ are
different, the symbolism
(u) = @P1), ¢ =¢ @
represents the statement that the [x y z ] vector is the same for both.

-

With the correspondence established between points on the two curwes,
we can write the equation for the developable surface,
@w) = @)w + (@) (1 - w).
This is the ruled surface equation, but with a special relationship between

curves (u0) and (ul).
7.2 PLANE/SURFACE INTERSECTIONS
The generai surface equation can be cast in the form

uw = Uf.’owT where U and W are vector functions of u and w
respectively, and where B is a square matrix describing the boundary curves.

For example, we might be dealing with the first F-type surface equation,

uw=-£~1 Fu Flu] o w =] -
ow 00 o1 Fow

1w 10 11 ] FIWJ i

s——

in which these vectors and the matrix are explicit:

- —

2
I
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T4 SECTION VI

Since uw is in reality a vector consisting of an x, a y and a 2 component,

there are three B matrices which we can call Bx By Bz.

We wish to find the i{atersection of this surface with the plane
ax + by ~ ez +d =0,
We can substitute x = UBxWT, y= UByWT and z = UBZWT intc this equation,
and write the result in the form

U [an + BB + ¢B, | Wl o+d= o

It is permissible to interchange the order of multiplication from aU, bU,
cU to Ua, Ub, Uc because a b and ¢ are scalars. In this form, the sum
[an + bBy - cBZ] = S, a square matrix function of u and w, and

USWT = -d is an equation in the two variables u and w. If wis

assigned a fixed value, there results an equation in u whick when soived will
yield a point on the intersection curve of the surface with the plane, {provided

of caurse such a point exists for the chosen value of w.)

If the surface in question is a bi-cubic, the matrix S is no longer a
function of the variables u and w, but consists of constant elements. In this
case the above procedure reduces to the solution of a4 series of cubic equations
in u, where the coefficients of ihe cubics are determined by successive fixed

values of w,

In any case, if the spacing of the w values is close, the old vaiue of u
just previously determined for a particular choice of w can appropriately be
used as a first trial solution for the new value of w. Algorithms for the
improvement of this initial trial value of u are not difficult tc construct, and

wiil not be discussed in detail.

If the plane is given by, say, the equation
y+d=290
the solution procedure is unaltered. Not much simplification results.

L

s
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SECTION VI
RATIONAL POLYNOMIAL FUNCTIONS

8.1 BOUNDARY CURVES AND BLENDING FUNCTIONS

Two kinds of curves have for many years been traditioaally used in air-
plane lines design — cubic polynomials, and conics. Unfortunately, each of
these curve forms for itself has certain drawbacks. In the parametric form,
for ordinary cubics, the entire shape of a curve segment is governed by end
tangent vectors. Sometimes these end tangent vectors lead to unwanted hooks
and bulges in the curve segments., On the othec hund, conics, although more
benignly behaved, cannot by their very nature yield curves with points of
inflection. Yet such curves very often exist in aircraft shapes — as for in-

stance in the case of wing fillets,

Becausc of these short-comings, a new curve type has been developed,
It is based upon rational polynomiai functions. It contains both conics and

ordinary cubics as special cases, ard provides a great degree of generality
and flexibility.

We start by establishing the form of this function.

Let v be a vector, so thzt for examplev = {xyzl]Jorv = [xy1}or
v = [x1]. The first of thece can be thought of as the vector (cr matrix) ¢f
coordinates on a space curve; the second is the vector of coordinates for a
plane curve, and the last jis the vector of a single coordinate. Since this last
vector vields the most general case, we shall begin with it, and show how one
might evaluate a set of numbers in a matrix to define each of the parametric

coordinates of a curve,

The product of v and a varisble sralar w is wv = {wx w]. Here both

wx and w are cubic functions of a parameter, v, and obviouslv

WX

X = ——

T w

o e v

Py

Lutd

st
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i
IR
This in the ratio of two cuhie Folynomials (heace the term “rationai func- 3

tion"). We con represent the two cubic Polynomials by the matric equation

“ei

= uduZuij A,

Since wv = [wx w], the matrix A must consist of four rows and two columns

of constant coefficients. We now proceed to show how these numbers may be
found so as to define a coordinate of a curve.

We shall be interested in the end-point coordinates of the curve at v = 1]

andv = 1. These coordinates are Vo = [Xo 1] and V1 = % 1] respect-
ively. A tangent vector anywhere on the curve is clearly

vl = [x' 0]

where the prime mark means differentiation with respect to the parameter v.
The tangent vectors at v = Jandv = 1 arethereforevo' = [x,' 0] and

vl' =~ [xl' 0] respectively.

Now differentiate both sides of

e

= (W3u2ul}] A  andobtain

(wv)' = [3u?2u10] A

e ST it + T ¥
R U RN 1

Substitution of u = 0 andu = 1 into these two expressions yields

%
= ' r 1
= (“’o"o 0001
: w. v 1111
: 11 _ A
R 1 ‘
- ™y ) 0010
vy 3210
; -(w1 1)..1 L o
4
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RATIONAL POLYNOMJAL FUNCTIONS 7

The 4 x 4 matrix on the right has an inverse, and we may write

- 1-1 r -
00601 wOVO
1111 W,V
A = 11
4
0010 (wovo)
L321 0J _(wlvl)
2 -2 1 1 wovo
= =8 3 -2 -1 wlv1 .
4 [ 4
6 0 1 0 wo vo+wovo
1 [}
_.1 0 O 0‘ _wl v1+w1v1-

The square matrix inverse is constant and always the same, and reappears in
the algebra so often that we shall henceforth cail it the matrix M.,

The matrix equation can be factored and r ritten in the form

A=M w0 0o o7 [v,]
0 v, 0 0 vy .
wo' e w, © vo'
0 wl' 0 ¥ | _vl"

The right hand :natrix of v's represents the desired end conditions on the

curve. In our present case, it is of course a 4 x 2 matrix,

The middle matrix is 4 x 4 and contains the four numbers [Wo Wy %o 'w ']
Any arbitrary set of four mumbers inserted into this matrix will serve to deﬁne
a unique pair of cubic functions of the parameter u, from which x can be found,

by using, as we have said, the ratiox = % .

Instead of picking these four numbers arbitrarily, however, we shall
impose further conditions on the curve until enough conditions are imposed
to define [w W Wy 'w '] uniquely.

4
e oty e J
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We hegin by introducing desired second derivative vectors at the end-

points; these vectors are clearly

L}

v"

0 [xo" 6} and

1"

Y1
(Incidentally, in the case of vectors v' = {x'y' 0], v" = [x"y" 0] if
the determinant of the matrix [x' y'} vanishes, the curve will have a

x' yn

point of inflection at v. If the determinant is positive, the center of
curvature will lie on the left as one proceeds along the curve; if the
determinant is negative, the center of curvature lies on the right. If
: two curve segments have equal v' and v'' at a junction, they are contin-
uous both in slope and curvature at such a junction. )

it

[xl" 0].

When we take second derivatives of both gides of

DA L0 | TP U S

wv = jud u2uij A, we obtain é

(wv)" = [6u200] A.

Atu = 0, thisis

(Wo¥p)" = [0 2 0 0] M ’wo A

11

' . ?
Wo vo + v.ovo

« b oo 1 3
(% Y1 Y Y1 Y

But(wov "=w'"v o+ 2W Vv o+ w vo”andsolving forwﬁvo",

0 0 o 0 0 0
" o " o " - 1 1
%o v0 = (w0 vo) o vO 2 w0 vo .
" o_ - [ a- "
Now (wo vo) = [~6 6 -4 -2} %o Vo
* *111 .
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o —r s —

Furthermore, since in general

()" = [ Wy,

the quantity w" is the second component of the vector of (wv)"" and therefore is

associated with the last column of the matrix rwo v0

Y11

U
wo Vo + Wo\’o

IV-I‘WVJ

e

But the last components of Yo and v, are both 1, and the last components of Vo '

and v ! are both zero, Hence
‘ wo" = [~6 6 ~3 -2] "wo'
% )
s '
N %o
i
t W'
; -
: We now can write, by combining results:
"o - ea - 3 - o ! '
Yo Yo [-6 6 -4 -2} we (vo voj 2wo )

¥y Yy~ V)

. 1 - '
%o (Vo= Yo) * %oV

, 8 - ;g b
_“1 (Vl vo) + W, VIJ

L}

i - - . TN BUUES IFVOR { ? - X PR ! e P w T
6“1“'1 vo) 4“0x0 2w, (\.1 xo) 2w v 2w,'v

Collecting,

L]

. " . . 3 v . - - ., t 4
“OVD “o(-ﬁho)-&\\l(ﬁ(‘l \0) 2»})

PW 2 V) 4w 1 2y v

WY e AT
S S s mrarm e wm w a
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We now resgtore this last expression to matrix form:
- ] t " 1

Yo'o ! [wo v, Yo Y, 1 -4 Yo

- - .

6 (v1 vo) 2 A/

- ’
2vo

20y -V

In our present case, the matrix on the right consists of a column of numbers

and a column of zeros. Hence the column of zeros can be discarded, and the

result is a 4 x 1 matrix. On the left, wovo"isascalnr.

Similarly, we can find by analogous algebraic procedures that

o L ] ? ¢ - [
wlvl = [wo W, % W, ] 6 (vo vl) +2 o
4 Vl'
2(vy-vy)
- 29’ !

-l

Then, writing a2 mstrix equation, we have, so far,

(% Yo" Wi¥1"1 = [Wp W, %' W'l [P |Q1

where [P|Q] represents a 4 x 2 matrix consisting of the separate 4 x 1 matrices
for wo vo" and wl vl". written side by side as columns,

We now introduce another condition. Let it be required that the curve
paasthronghtbepointvc = [xc 1} whenu =

2" (This value of u is of
course arbitrary. )
This condition leads to
1 - -
V. = 8 [1248] M Yo Yo
", v

N ¥ B Dt b 0l k5 it R IRINT MmGIR  DEREE, p o e o
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By algebraic manipulstions similar to the prececing, we can rearrange the

equation to read
- ] t [ [
8vc- [wowlw0 w1] 4vo+vo
- t
4 vl vl
Yo
val N

This is an equation in which e has two components, x, and 1., The right hand
matrix is a 4 x 2. Call it the R matrix. Then we can adjoin these matrices,
to obtain

(% VO" W, vl" 8vc] = (W, LA wo' wl'] {PQR].

Now [ PQ R] represents a 4 x 4 matrix; P and Q are each 4 x 1 matrices, but

vo" and W, v " to the right hand

Risa4 x 2 matrix, We next transfer w 1

0
side, obtaining

[008v] = [wy w w' w'] (PQR]—rvo" 0 |06 0

The right hand mairix is now a 4 x 4. Provided its determinant does not vanish,
it has an inverse, and

? L -
[Wo W3 W' W'] = [0jo |8vc] s

where S is the 4 x 4 inverse of the matrix,

Now that { Yo Wy
pletely defined, since the rational function

wo' and wl' ] have been evaluated, the curve is com-
is completely defined.

Sinryiighve _..«AM
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8.2 PLANE CURVES

With some loss of generality and flexibility, we can have v = [x y 1},
a plane curve. We shall next show that for an appropriate choice of
{ L wo' and wl'] , the curve reduces to a conic,

We have the equation

wv

]

(wx wy w]
=[u3u2u1]A.

In this case, A is a2 4 x 3 matrix. Now if the top row of this matrix is
[0 0 0], the equation reduces to

wv=[uzu1]A

when the top row of A has been omitted. A is now a 3 x 2 matrix, and it is
possible to show that this equation is a parametric form for the general conic,
expressed as a quadratic rational function.

For the top row of A, we have the vector equation

(2-211] f(w,v 1 =100 0]

Expanding:
’ - . ] 1] , -
2“0"0 2w1v1+wo Wt% Y% tY1 1tV Y; {0 0 0]
Collecting:
t - v 4 ' =
wo(2\"0«1-v0)-|»w1(2v1+v})+w0 (vo)-rw1 (vl) [0 0 0]

In matrix form,

- ] ' I ]
[0 0 0] = [wo w3 Yo wl] 2v0+v0

- 1
2V +vl

b ot bt

e
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The matrix is a 4 x 3.

Now we can adjoin a column to the matrix and an element to the vecteor,
and write

(000 w,] = {wy, w, w wl'] "2vo+v0' 1]

--2vl+v1 0

A 0

LN 0]

then

(W Wy wo' wl'] = [OOOWO] ~2vo+vo' lqnl

-2v1+v1' ¢
[ 0 ‘

L N 0

If the indicated inverse exists, then a solution can be obtained in terms of w

can be set equal to 1 arbitrarily.

0.
Furthermore, %9

The matrix has an inverse in case the determinant

- ]
2v1+v1 £ 0,

Yo

Y

As a test, construct a conic with end conditions

~ S _ -
v 001 ‘
——

0 v:l V1
v1 . 111

1 ]

VO 100 '

V,_ @meemeceeans V
v{ 100 0 0
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" - . - . §

zv9+v9'1 = [(o0e21+411001 =1 0 2 $

&

2v, +v' (~2-2-2] +[100] -1 -2 -2

v, 001 0 0 1 2
oy i 111 | Ly

We first test to see whether the determinant vanishes:

] =2 -2
-1 =2 ¢
0 0 1 = - = «~1, Hence the augmented matrix
1 1
1 1 1
will have an inverse.
The matrixis |1 0 2 1| anditsinverseis [0 1 0 2]
-1-2-2 0 0~1~1-1
0 01O 0 01 0
(111 0, | 112 -2

then
: ' ty i h
(1W1W0W1]-[°°°1] 0102
0-1-1-1
i3 0010
SN
2o
%t‘ _1‘1-2-2J
w ! ow ] = g -2 -
whence [1 W ¥, wll = [1 -1 -2 ~2]}.
2
2 The conic equation ie
o - 1 - A
- wv = {uduful}] {2-2 11 1000}]001
' -5 3-2-1 0-1 0 0f |1
0010 2010/{{1
’ 1000 |[o0-2 -1 |1 |
S RRAD A s SV T wa— T “

s e ¥V A
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1-1-2 1
-2 010

(du2u1y To ¢ 1-1)
100 ol

r

| ad | ad ed <
© o = o
© O e

]

(wduv2uir [0 0 0] = [vBu1] [-2-1 0
2- 0 1 0-2
1 0-2 001
001

[wx wy w] = [—‘3!:2411 i-uz] -2u+1]

X

"

u

2 2
-u ~X

1-2u i-2x
asymptote at1 - 2x = 0, x = -;—

i

y = . The curve is hyperbolic, with an

It is always possible in all of the foregoing to set Wy = 1. This is
because all equations are homogeneous. It is never possible for w, = 0,

0
since this leads to certain degenerate cases.
We remark in passing that when
(% ¥1 Y
the eguation reduces to the ordinary parametric cubic, given by

'w'l = [1100]

v=(uwuwlul] M [v

and w is constant and equal to 1.  Hence the rational polynomial functions
contain as special cases all conics, ordinary cubics, and of course therefore
straight lines and circles,
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Their use as houadary curves for surface patches is obvious., They
maintain tangent vector continuity between adjacent patches; indeed, if the
Fo and Fl functions are constructed as rational functions, we can establish

the F1 function

u
3
5 Fl(u) : 2 .

u -3u+1l

H This function has the end conditions

r b r~ 7

‘fo 0 01
| v 111
Vo' = 1 00 .
Vl' 1 00
v0" 0 060
.VI"J _0 0 0.4
Since vy = Avo’ = 0{1 0 9]andv," = ).vl' = 0(1 0 0}, the

curve has a point of inflection at u= C and u = 1. Hence its use insures
curvature continuity across boundaries between patches, provided of course

the boundary curves have similar curvature continuity at patch corners.
The cure is symmetric. Furthermore, we can put
Fo(u) =1 - Fl(u)

and obtain directly the FO function, another cubic rationzal function, with

similar properties to Fl'
8.3 AN EXAMPLE

E We shall work out the equation for the F,(u) blending function with the
customary stipulations that

Fi) = 1, Fi(0) = F'0) = F'(1) = 0,

and with the two additional stipulations that Fl"(O) = FI"(I) = 0 as well.
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obtained by direct substitution in the given form,

R inverse is

(0 -6

0

0 -2

0

The matrix [P Q R] -

0
4
0
-1

-~

0
1
-2

L 2

4
4
1
-1

-1

6
2
0

I
|

RATIONAL POLYNOMIAL FUNCTIONS

This blending function will give both slope and curvature continuity across the
commeon boundary between two contiguous patches,

forv = [Fo(u) 1},

[ "
vo 0 o
0 v1 0
0 0 0
9 0 O

-

OO’C\L

0
-4
6
-6

The end-conditions are,
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=[(0048}] [0 -1 0 -4 .
1 0 -4 0
-2 2 6 6
2 0 6 0
= [8 8 -24 24]. y
No\vifwo = 1, instead of 8, the equation becomes
' 1ty . - .
, [wowlwow1]¢[ll 3 3} ;
. £
’é we have
< - - 1
g}; A M wovo
- ' .
Wy Vo F W,
] t
-wlvl-}wlvl
'; i andsubstimtingthevalnesaf[wo v, wo' wl']:
A A=[z -2 1 1} o 1] = 1 o]
: -3 3 -2 -1 1 1 0 3
o 0 1 o 0 -3 0o -af.
1 0 o o |3 3] 0 1
9 —
E Finally, wv = jwx w] = [iu ul} [1 o
3
1
2 -3
0 1 .
r s i .
3 2 f
1 [wx W] = [u¥] Su“-3u+1]} {
1
&
} i
| %
%
i
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wX u3
Hence x = = = F_(u) as required. The other
2 1
u ~3u+1l
F_ function is
0 3
Folu) = 1~F @) = 1- — L
Ju -3u + 1

—n3 + 3u2 - 3u + 1
3n2—3u+1

This is seen to be a rational cubic function a'so.
8.4 PLANE CURVE THROUG1 A POINT

The plane curve vector isv = [¥x 7 i], wWv = [wx wy w]. Here

the polynomial denominators i1 x = -:5 andy = '!wg; are both the same.

As before, the end conditions on the curve are contained in the

matrix vo .

We wish to cause the curve to pass through some arbitrary point Ve
(commonly called a ""shoulder point') and it will turn out that we shall also
be free to choose some arbitrary slope at this point. It is important to
distinguish between the term "slope” and "tangent vector”. The glope of a

curve implies that the direction of the tangent vector is known, but the magnitude
of the vector is not under our control.

We begin by assuming some value of the parameter u to correspond to
Ve For purposes of illusiration, letu = —3—- at this point.

e
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Q 9
Then, romwv = [u” U  ul] A, we write

1 -
vo= (12481 M [wv
111

1 1 ]
Wo vo+wov0

] 1
Lw1 vy * WYy

P

Observe that we have arbitrarily set w, = 1. This is harmless, since
the equation is, as we have observed, homogeneous.

By multiplying the matrices, combining, and collecting terms as we
have done before, we achieve the result
- ' v 1 ']
svc- [wo ¥, Y% Wli 4vo+vo

I |
4v1 v1

Yo

e -

The matrix on the right is 2 4 x 3 matrix; to make it square, so that it
can have an inverse, we need an additional column. This column can be pro-
vided by a scaler equation, and the slope relationship will furnish this equa-~

tion.

We first find an expression for the tangent vector at v e Differentisating,
we obtain as usual,

W) = [3uZ2u10] A

w' = (3u22u101 M 'wo‘
1
wo'
MY

s DA s
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W
Vel

This last equation comes {coin the equation for (wv)' by an argument that

we have used before; that since wv = [wx wy w], (Wwv)' - [ (wx)' (wy)' w']}.

{
{
|
!
{
1
1
L
“ waut o o K MMJ

Hence w' corresponds to the last column of fwo v, ]
W, vy
1
{w 0 vo)
1
.(wl vl)‘
which is rwo"
Y1 ‘
' E]
“o
- 1
%1

Now at Vs we have already set u = -;* We make this substitution, and
obtain, from

wv! = (wv) - w'v

v<'= -%- {-6 6 -1 1] ’wo(vo-vc) 7
W 7Y
Yo YoVt %% | ¢
wl' (v1 - vc) + Wy vl'

Fs - -
When we perform the indicated muitiplications, and then collect results
and restore to matrix form, we have

{ I ' ] [~ - e b
4\7c = [wo w1 wo wll -6(\0 vc) Yo

val—vc)-vl' .

v -V
c 0
vV -V
L c 1 . t

- S -
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Wé are now ready to introduce the slope condition. We could write

L 4
% = 'i.- . but this would yield awkward results when the slope became very

greut and approached an infinite slope. Instead, we choose two mimbers a
and b so that ax' = by'. It is obvious that these numbers can very appropri~
atelybea = sin @ , b = cos @ where 8 is the slope angle. Then, for v ,

This is a scalar equation.

Now x'c is the first component of v'c, and y'c is the second component
of v'c. Hence these quantities correspond tc the first and second colimns of

the matrix in the equation for v’c, respectively. We can write this out in
detail:

- ' ' 3 - 7]
0= [Wy Wy Wy %'} [b 180, -5},

6(y; =y )y,

yc~y°
L e

- B - - x ?] = ] ] " p

2 -6(xo xc) X, [wo . % wl] p

6fx.-x ) ~x_" 9

yx - %y :

% "% | 8 ]
™%

where the brackets on the right enclose the resulting 4 x 1 matrix {or column
vector).

Thefactor4(of4vc')obvionslydropswtoftheequation.

s

LRGN P ok s MR s -

Lot

%
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We now adjoin this to the equation for Vo Again we can drop the 8 (from
8 vc), and obtain
[vc 0] = [w0 L wo' wl'] F4vo+vo' P ‘
4 v1 - \r1 q
Vo r .
L ™ &

The vector on the left consists of four components: [xc Ve 1 0}; the i
matrix on the right is a 4 x 4 matrix. If it has an inverse, S, then we can '

t 14
solve for [Wo ¥, Yo' ™) } by the equation

t ] -
fwy W, W wll = [vc 0] S.

These values of the w vector cause the curve to satisfy the desired
conditions.

8.5 SECOND DERIVATIVE VECTORS
We have already discussed rational functions for
v={[x1] (andofcourse [y 1] and [z 1].)
In particuizr, we showed that curves based upon these functions can
usually have arbitrary tirst and second derivative vectors at the end~points,

and in addition can be caused to pass through some shoulder point 30 also

arbitrarily chosen.

When the vector v = [x y 1], the complete generality of the resulting
curves is somewhat curtailed. We shall investigatc the conditions under which
such a plane curve can satisfy end conditions including second derivatives.

We have already obtaired an expression for the vector }

PR Y T "w — 1 ] ]
[Wo¥g" W, %" = [wy W) Wi w'] 1PlQl

Before, the vectors W vo" and wl vl" were actually scalars, since they came -

from v' = [x" 0]. Butsincev" = [x" y" 0], they are each 2-component
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vectors, and their combination makes a 4-component vector, Similarly P and
Q are now each a 4 x 2 matrix, and their combination is a 4 x 4 matrix.

We carey w, v,." and w, v_"" across the equal sign, and obtain on the left

00 11
the null vector:

— , ' ' - [ " .
(0000 = [wyw w' w'l /[P|Q] vy'[ 0 o

"

00 v1

00 0 0
0 0 |0 0]

The matrix on the right is 4 x 4. Now the condition that must hold, in
order for there to be a solution for (Vo ¥, wo' wl' ], is that this matrix
must be singular; the determinant of this matrix must vanish.

This last remark tells us that vo" and vl" cannot be chosen entirely
arbitrarily. However, it is always possible to make the determinant of the
matrix vanish by the adjustment of any one of the four components of vo" and
vl". Thus if one of the four components is the number a, we can expand the
determinant in such a way as to obtain the equation,

kla+k2 = 0, from which a can be found,

Suppose the matrix is, or has been caused to be, singular. Then, if

P t 1
[0000].[wowlw0 WI]S,

we make it non-singular by an appropriate modification, In some cases, this
might consist in adding 1 to an element in the top row of S. As an illustration,
we might have

0 0 o0 1]
(000 wyj = [wy W, wo' wl'] S + 0 0 00
0 0 o0 o
0 ¢ o0 0]
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It can be seen that this modification is still a valid equation; if the
modified § matrix now has an inverse, we can immediately obtair it and solve
for the w vector.

As an illustration, consider the end conditions

v, | (0 0 1]
vy 111
vo' 1 00
vl' ) 1 60
vo" 1 00

_VI"_ ! a 0 o0

We plan to adjust a in vl" until the matrix is singular,

We require first the matrix { P | Q], which is given by

-

-4 vo' 6 (v0 - vl) +2 vo'.1
6 (v1 - vo) -2 vl' 4 vl'
-2 vc’ 2 (vo - vl)

_-2 (\r1 - vo) -2 vl' )

Substitution of the end conditions gives the 4 x 4 matrix:

(4 o (-6 6] + [2 0]] [-4 0 ~ -6
{6 6] ~[2 0] 4 0 4 6 4 0
=2 0 -2 -2 I PP ~2 -2
| -2 -2 2 0 ] 2 -2 -2 o]

In passing, we note that if our end conditions had beca Vo = | 09 0]
and if also vl" = [0 0 G], the resulting matrix would be singular, because
the first and third columns of { P Q] are identical. However, this is not

our present case.
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. N
BV N 'Nt,

We now subtract the matrix

v" |0 o] [1 o]0 0]

00 Vl" 0 0{a 0

ooloo| 0000

00j006j {00 00
from [ P| Q] and obtain

-5 0 -4 -6
4 6 (@@-a 0

-2 0 -2 -2

e 0

By a series of reductions accomplished by multiplying rows of the matrix
and additions (or subtractions) of rows to remove elements, we can oktain the

determinant
(a-1)-1]| =0
1 -1
This implies
a = 2.

This is the value of a that makes the matrix singular,

The singular matrixis [-5 0 -4 -6
4 6 2 0
-2 0 -2 =2
-2 -2 -2 0]
We make it non-singular by adding 1 to th top left element. The matrix
is now ‘
-4 -4 6] !
; 4 2 0 ;
-2 0 -2 -2
(-2 -2 -2 0] ;
[
j
i
E 1
s b © g T - SRR S 5 S IPR IS G A B0 S s T L R L PR S R i - .
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and corresponds to the vector [wo 0 0 0] on the left of the equation.

The inverse of this matrix is

= |2 16 3
-1 0 3 -1| =R
-1 -1 3 -3
-1 0 2 0,

] 1 -
Finally, [W, ¥; ¥ w1] = [W, 6 0 0] R.

il

If we arbitrarily set vy 2, then the required solution is just the top

row of R, or

[Wy ¥ wo' wl'] {216 3]}.

With these numbers known, the curve equation is completely defined, We
obtain it by substition in the canonical form:

WV = [u3u2u1] M [w, v ]

3 2 r
= fu wull M 002

[00 6] + {20 0]

(3 33] +[100]

a1y (2 -2 1 1] {o o 2
3 3 -2 1| |1 1 1
6 0 1 0] |2 o -6
1 0 o of |4 3 3
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= du?ury a4 1 1]
5 0 6|
2 0 -6 3
0 0 2]

The separate equations for the x and y coordinates of the curve can he
exhibited:

4u3 - 5u2 + 2u

-u3+6u2-6u+2

3
u

-u3+ 6u2-6u+2

Sl e AT i

In the foregoing, certain matrices have occurred. These matrices are

significant nnes, and can be written as transformations of the common

matrix [ Yo ]
"1
vo'
Ny
as follows:

For the conic condition matrix,

_2vo+vo' ] (2 0 1 0] 'voc
~2 v1 + vl' _ 0 -2 0 1 v1

vo 1 0 o O vo' .
i A ) I 0 1 o0 DJ vl' |
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-

For theu = - . vc shoulder point condition,

2

; avgrvy]l T4 0 1 o] v,

4 V1 - VI' ) 0 4 o 4 V1
o i 1 0 0 o vo' .
Yy | _0 -1 0 0_' ] vl'J

;

! For the P and Q matrices aasociated with Wy Vo' and wy v, ",
r“*"o' 1 To o -4 o] (v, ]
6vl—6v0-2v1’ ) -6 6 0 -2 vy
~2 Vo' i 0 0 -2 ¢ Vo'

_-2 v+ 2 ) ] i 2 -2 0 o0 In VI'J

[6v -6v.+2v'] [6 % 2 o] v ]
0 1 0 0

4 v]' _ 0 0 0 4 v

; 2vy-2v, Clz 2 0 o Vo' ) 1

i »-2 vl' J i 0 0 0 -2 11 vl'.l

i

e e S ¢ P vt et

o ———
e~
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APPENDIX

COMPUTER-GENERATED IMAGES

Three orthographic views and a perspective view {upper right) of a single
surface. The perspective was generated by the computer from the three orthog-
raphic views given it. When registered on a cathode-ray tube a change in any
one of the views will automatically cause a change to be made in the other views.

*These computer-generated images were provided by Prof. B, Herzog of the

University of Michigan, and are shown through the courtesy of Ford Motor
Company.
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COGMPUTER-GENERATED IMAGES
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