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ABSTRACT

The design of airplanes, shtips, automobiles, and so-called "sculptured

parts" involves the design, delineation, and mathematical description of

bounding surfaces. A method is described which makes possible the description

of free-form doubly curved surfaces of a very g.,neral kind. An exiernsion of

these ideas to hyper-suraces in higher dimensional spaces is also indicated.

This surface technique has been specifically devised for use in the

Computer-Aided Design Project at M.I.T., and has already been successfully

implemented here and elsewhere.
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SECTION 1

INTRODUCTION

The purpose of this work is to present the mathematics of a certain class

of zurfaces which are suitable for the design and description of arbitrary shapes.

In Mie past, the subject of surface mathematics has been investigated, in ana-

lytical geometry and in differential geometry, from the standpoint of the analysis

of geometric properties of surfaces that already exist, but very little literature

has been produced on the subject of the creation of such surfaces. As a typical

examole, the design of the hull of a racing yacht requires the description of a

surface of considerable subtlety and complexity, and the process is traditionally

carried out by purely graphical procedures %%hich are exceedingly laborious,

since thev entail a large amount of trial and error iteration in order to assure

that the surface is completely described, and is smooth and "fair." The design

of automobile bodies and airplane fuselages is similarly tedious and time con-

suming, although mathematical techniques have been applied to aircraft design

for a number of years.

A few papers have been britten on the sibject of fitting existing ship hull

shapes by means of various types of polynominals, with the two-fold purpose

of smoothing and interpolating the information contained in prelimitlary graphi-

cally der, ved hull lines, and of replacing this graphical information with for-

mulas and equations that will permit further analytical techniques to Ie applied,

such as structural analysis and the discipline of fluid mechanics. But these

mathematical techniques are applicable only %then the surface has already been

designed to some degree of completeness, so as to furnish enough i.dformation

to make the mathematics work.

The mathematical structure of the surfaces to be described in the follov,-

ing discussion has been devised to implement the surface design process itself,

so as to make it, from the designer's standpoint, extremely natural and easy.

The designer himself need not Imob or care about these internal mathematical

details, any more than he needs to know the specific composition of the pencils

with which he writes or the mechanics of the splines bith %hich he no% draws



2 SECTION I

curves. The mathematics is relatively simple, but it is nevertheless too com-

plicated for hand calculation, and is designed fkr use on a computer.

In the design of a three-dimensional object , whether it be an airplane fuse-

lage, an automobile body, a ship's hull, or a single sculptured part of a machine,

the designer requires a system which will permit him to define a surface with a

minimum of input information, and then to modify this surface, if he feels so

inclined, either by changing the original input, or by adding more design con-

straints to the system.

As a specific example, suppose a designer wishes to design an airplane

fuselage, using the SKETCHPAD system. 1 2 He would like to be able to draw

the outline of the airplane as seen from the side, the outline of the airplane as

seen from above, and some arbitrarily selected section midships. With these
"Wit

three arbitrary curves designed, he would like to have the computer automati-

cally and immediately generate a "fair" surface and display this surface to him

in sufficient detail so that he could make appropriate judgments. If the surface

so generated does not satisfy him, he would perhaps like to modify his original

design curves, or else he might perhaps like to add other new sections and have

the computer automatically and instantly re-fair the surface to fit this additional

information.

The following sections describe a very simple, flexible and general class

of surfaces which are able to fulfill these requirements. It will be shown that

a single algorithmic structure and essentially only two symbol types serve to

provide the following features:

1. Smooth, fair surfaces can be defined by a minimum number of curves,

and then adjacent surfaces can be designed to match obiAtion, slope,

curvature, and indeed any desired order of derivative along the ad-

joining boundaries.

2. The design curves that define the surface can be of any kind whatso-
ever, including circles, second-degree curves, polynominals, txrans-

cendentals, and also sketched curves with no known mathematical

formula whatsoever.

3. Some classic surfaces are not necessarily members of the family

of surfaces to be described; nevertheless, these classic surfaces

can be matched along their boundaries to any order of derivative

desired.



4. The arithmetic involvr ' ;n constructing these surfaces is extremely

simple and, we have found, easy to implement on a digital computer.

It also lends itself to special-purpose computing hardware, such as

digital or analog differental enalysers. In addition, by virtue of the

form of the algorithm, the parameters that define the shapes are ex-

tremely easy to compute. (In some cases they may require no com-

putation at all.)

We intend to develop a method to construct complex arbitrary surfaces by

piecing together surface "patches." Each such patch will be defined by four

boundary curves, in principle, although it is harmless for cne of the boundary

curves to be degenerate, and to appear as a point instead of a curve segment.

In the design of a surface, it is intended that the designer begin with a single

surface patch, or a very small number of patches, and then subdivide these

regions with additional design curves defining boundaries of smaller patches

only when the internal surface needs modification. This is somewhat at variance

with the customary procedure for mathematical curve fitting and surface fitting

of exs~ing curves and surfaces, in which a relatively large number of surface

points already defined by some otiier procedure are used to obtain mathematical

expressions for a surface that best fits them. Instead, th2 system to be de-

scribed is intended to be used by the designer at the outset, in the process of

designing the surface, rather than later on as a means for making it mathe-

matical.

This is not to say that the surface-patch technique cannot be used to for-

mulate patch-wise mathematical expressions for existing surfaces, but rather

to indicate that the primary purpose of this surface technique is to facilitate

the initial design process itself.

When the design process is completed, the surface will 1e completely

mathematically defined, since this definition occurs automatically and concur-

rently with design.

Ordinarily a ship's hull or an airplane fuselage is described by certain

important curves such as, in the case of the hull, a keel curve, a midships

section, and a curve representing the sheer or deck line; these curves are

sufficient to determize a surface, since they form the boundaries of a surface

patch. However, ordinarily this prizrary surface will not have certain desired

characteristics, and it will have to be modified i)y introducing additional
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information, such as for instance one or two other section curves. When these

additional curves are introduced, the surface a~gorithm permits the computer

to " re-ar ghoi~nal hull form to contain these curves.

Similarly, an airplane fuselage can be designed by drawing a profile curve,

a maximum half-breadth curve, and a mid-section of the fuselage. Again these

curves suffice to define a primary surface, which in most cases will require

modification bi the addition of a few more curves to make more explicit the

designer's wishes. A. these additional curves are introduced, the original

surface will be sub-di-ided into patches, but the algorithm will automatically

insure continuity of surface slope and curvature (if desired) and will incorporate

these additional curves into the surface automatically. This should make initial

surface design virtually painless, and is intended to remove the tedious process

of surface fairing as it is now practiced in naval architecture. Airplane fuse-

lages are usually somewhat simpler shapes than, say, yacht hulls, and for a

number of years second-degree curves have been successfully used for fuselage

design; on the other hand, naval architects have steadily resisted the use of such

methods in their work, since the complexity of yacht shapes makes it necessary

to pay attention to the irksome details of the geometry involved, and second-

degree curves prove to be cumbersome in such applications.

The system that is described in this report is intended to furnish the flexi-

bility that second-degree curve techniques lack, and to remove almost entirely

the need for the designer to be an analytical geometer. With this system imple-

mented on a computer, there is reason to believe that the computer can take

over all of the geometrical and mathematical burden of the design process, and

leave the user free to be a sculptor azsisted ty an exquisitely skillful mechan-

ical slave.

Ultimately, when a graphical input-output hardware for a computer is

available in the engineering design office, these methods will permit designers

to delineate complex shapes with 6reat ease, by simply drawing the salient

curves that define and describe them. Already experiments along these lines

are in progress in a few isolated laboratories both in universities and in

industry. Very soon the two severe handicaps that have inhibited the wider

use of such graphical devices will be removed. These inhibiting factors have
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been high cost for the terminal hardware and small size of the woriing area.

Rapid strides are being made on both these fronts, and within a few years it will

be possible not oaly to draw on a virtually unlimited drawing surface, but to

draw objects directly in three-dimensional space, and to vieu' these constructed

objects as one would view an actual physical thing.

ii

I
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SECTION H

NOTATION

We shall in what follows relate the x, y, and z coordinates of points on a

surface to two independent variables u and w, so that we could write

x = f (u, w)

Sy = g(u, w)

z hc(u, w).

If the functions f, g and h were specified, then for a pair of values of u and w,

a pmint in space would be. defined. If we held one of the independent variables

fixed, say w, then by allowing u to vary, the point in space would trace out a

curve. If subsequently we set w to a new fixed value ainl again allowed u to

vary, we would trace out another curve, and so on. Clearly by stepping the

values of w by small Licre.ents and allowing u to vary after each such step,

we could produce a family of space curves that would lie on the sturface and

define it. All that is needed is some convenient and systematic way of arriving

at the functions f, g, and h.

It will turn out that the form of all of these three functions is the same;

only certain internal numerical values are different. In vector notation we can

write

Ix y zj = [f(uw) g(u,w) h(u,wl

2 Since V = [x y z] is a suitable conventional abbreviation for the vector

on the left, we introduce a similar abbreviation for the right hand side:

(uw) = [f (u,w) g (u~w) h (u,w)]

Here, in the abbreviated snmb,)l on the left, we shall omit the comma between

the two letters. Later on, when no ambigui.ty can arise, we shall omit the

parentheses as well, and write simply uw to stand for the vector. It is to be

remembered that uw does not stand for the ordinary product of the two quan-

tities, but is merely a bi-literal symbol standing for a vector whose components

are functions of the two variables.

I!



SQ SECTION 1I

We plan to build up surfaces by adjoining surface "patches," in an analogy

of the piecewise fit.- of complicated curves by curve; gments suitably joined

together. Accordingly, we shall at the beginning focus our attention on one such

surface patch. To simplify arithmetic, we shall stipulate that the independent

variables, or parameters, u and w can take on only values between 0 and 1.

Then a surface patch cba be considered to be a surface segment bounded by

four space curves, (0 w), (1 w), (u 0) and (u 1).

O0

0 10

00

Here, typically, the symbol (0wu, stands for the vector describing the x, y, and

z coordinates of points along the curve generated by allowing w to vary conti-

nuously from 0 to 1, wbile u is held fixed and equal to 0.

We shall introduce two scalar functions, F0 and F each a function of a

single variable. These will be referred to as "blending functicons" for reasons

that will become clear.

In order to compress the surface equation, and the proofs that we %% ish to

demonstrate, we shalt, use a kind of indicial rvotation; we introduce the indices i

and j, which can assume only the values C and 1, and we invoke the customary

summation con',ention for terms with repeated indices. This convention in our

case simply means that when an index is repeated in a term, we write out 311

the possible Werms that the actual indicial values generate, and then add them.
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THE SURFACE EQUATION

With these conventions and notational peculiarities in mind, we write

(uw) - (iw) Fi u) - (uj) Fi(w) - (ij) Fi(u) FM(w).

(Typically, the first term on the right expands as follows:

(iw)F.(u) = (0w)F 0 (u) + (lw)F (u).

Thus the complete expansion %ould consist of eight terms, if carried out.) \•e

shall proceed to demonstrate that this surface equation represents a surface

that contains the four boundary curves, and is thus defined by them.

We must make a stipulation, a weak one, on the nature of the blendirg

functions F0 and FI1.

F0(0) = 1 F (1) - 0

F 1l() = I F I(0) - 0

A further stipulation is that F0 and FI be continuous and monotonic over the

interval.

Now set u : a, where a can only be either 0 or 1. Then, substituting in

the surface equation.

(aw) = (iw)Fi(a) - (aj)FiMw) - (iOjF 1 (a)Fj(w).

Consider Fi (a) which occurs twice in the equation. By the stipulation, if i a,

Fi(a) = 1.

Otherwise, if i f a, Fi(a) = 0.

Hence all terms in the expansion that contain i / a vanish; we can set i a and

what remains is

(aw) = (aw)Fa (a) - (aj)F (w) = (aj, Fa (a)FjwM

= (aw) 4- (aj)F.jw) - (a)) F(w)

(= aw).

J



1O SECTION III

This shows that for a = 0 or 1, and hence (aw) = (Ow) or (1w), the surface equa-

tion reduces to an identity. This implies that the surface contains its boundaries.

An entirely parallel argument would show that the equation also reduces to an

identity for the other two boundaries (uO) and (ul).

Provided a pair -f functions F and F1 are chosen once anu for all that

satisfy the stipulations, the surface equation may be constructed immediately

and uniquely for any set of boundary curves (u0) (ul) (Ow) and (1w). It is to be

observed that no restrictions have been placed on the form of the boundary

curves; there is perhaps the restriction that they form a closed boundary, at

least at the corners (ij) = (00), (01), (10), and (11) otherwise there will be mul-

tiple values within the surface segment; similarly they should be continuous

functions, but apart from these rather obvious restrictions, they can be of any

shape whatever, including curves that can only be represented by tables of

4M• values.

We can gain intuitive insight into the nature of such a surface if we !wok

at onc of the terms, say (uj)F.(w).
3

We have the expansion

(uj)Fl(w) = (uO)F 0(w) + (ui)F1 (w).

"This represen•ts a weighted average of the quantities (uW) and (ul). When

w =0, F0 (%0 = 1 and F1 (0) = 0, and the expression becomes simply (0). As w

increases, the weight of F0 (w) decreases, while that of F1 (w) increases, so that

the surface partakes of the nature of both boundary curves. As w approaches

the value 1, the influence of (0) on the shape of the surface gradually disappears,

whi 2 the influence of (ul) gradually becomes dominant. Finally, at w = 1, the

curve (ul) represents the shape of the surface. We can say that the surface is

generated by a gradual transition from (0) to (ul), and that these two curve

shapes are "blended" together by virtue of the blending functions F0 and F1 .

This discussion is somewhat oversimplified, since we have omitted the term

(iw)F.(u) and it too plays a part in determining the shape of the internal surface,

as does of course the term involving the corner coordinates, (ij)Fi(u)F.(w).

1 ii



TiHE SUP FACE EQUATION 1

The entire surface equation is seen to bt- symmetric in u anti w. and In

virtue of this and a secondary symmetry in the functions F0 and F t can

abbreviate proofs about the bchavior of the surface along all boundaries in

exhibiting a typical proof for any one boundary.

3.1 BOUNDARY SLOPE CONTINUITY

It is our aim to design and delineate complicated surfaces by adjoining

surface patches, in a pieuewise fashion. Consider two such patches A and 13.

ul

u0 01

with a common boundary. For patch A the boundary is (1w): for patch B it is

(Ow), and the vectors of coordinates are equal,

A (1w) = B (Ow).

Then the two patches will be continuous across their common boundary. They

will however in general be discontinuous in slope across the boundary, and we

wish to investigate this and make some amendments that will correct this dis-

continuity of slope.

We take the partial derivative with respect to u: Our symbolism for this

ptl( ,w and when we substitute, say, u 0 0, we can

write (Ow)u to n.ean the value of the pa.rtial derivative so obtained. Then

(UW)u (iw) F! (u) + (uj) F (w) - (ii) F! (u)F.(w).

I u j I

Now substitute u =a = 0 or 1, as before.

(aw)u = (iw) F! (a) + (aj) F (w) - (ij) F! (a)F.(w).
I u j I 3
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If we now place additionpl constraints on the blending functns, that their first

derivatives

FI(a)= 0 (a =either 0 or 1)

we obtain the result

(aw)u = (aj)uF.(w),

4 all other terms vanishing.

This impli.s, for example, that when a 0,

(Ow)u = (00)uF (w) + (01)ullW),

or, the derivative anywhere along the boundary ir the u direction (across the

boundary) depends only upon the derivatives at thc end-points of the boun$.try;

Ri it is entirely independent of the shapes of the four boundary curves, inc' ading

the boundary (0-;) itself.

Thus for thf two patches A and B, if

A(10)u B(OO)
u u

ard

A(l1)u = B(01)

u u

i. e., if the boundary curves are continuous in slope in the u direction at the ends

of the contiguous boundary between patches, we are guaranteed to have

A(lw)u = B(Ow) everywhere along the boundary regardless of &.e

shapes of the boundary curves of A and B. This Is a remarkably powerfcl and

useful property, achieved at the slight expense of extending the stipulations on

the F,-

Similarly, the second derivative with respect to u Is

(Uuw (u) + (UJ)uu F(w) - (ij) F!'I (u)F.(w)(wuu (iw) F,'uu

and if we ftarther stipulate that F!' (a) =0 we obtain
i (

(aw)u =(ajluuF.(w).
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This establishes second derivative (or curvature) continuity as an auto-

matic and inherent property of adjacent patches, provided their boundary curves

have this kind of continuity at the end-points of the boundary. It is easy to see

that we may escalate in this way to any level of derivative continuity we wish

along contiguous boindaries.

3.2 SLOPE CORRECTION SURFACE

The surface equation already described is very general, in the sense that

it can contain virtually any boundary curve we wish, and it has certain benign

properties of derivative matching along boundaries; nevertheless it is not a

universal formula for all surfaces, and there are many that CIO rxnt belong to its

family. We have already seen that surfaces generated by the surface equation

have a definite intrinsic slope along boundaries, vwose variation is rigidly

prescribed by a simple formula. Obviously surfaces exist whose boundary

slopes do not match this intrinsic slope, except at the end-points of boundaries.

Nevertheless, we wish to be able to patch together such other surfaces with our

special surfaces, so as to have slope continuity (or continuity of any level of
S~derivatve).

To do so, we introduce a new surface equation, describing a slope-correc-

tion surface, which when added to the first surface equation has the property of

leaving the boundaries unchanged, but causing the derivatives across boundaries

to vary in any arbitrary way we wish, as we move along the boundary.

The equation resembles the first form very strongly. It is

(uw) = (IV.)u Gi(u) + (uj) wG.(w) - (iJ) uwG.(u)G.(w).

Here, typically, (iw) u is a function of w only, and describes the arbitrary

variation of the derivative with respect to u as w varies, along the curve (iw),

and similarly for the other boundaries. The vector (ij) represents the cross
uw

derivatives of the four corners. Typically,

_ 
2

(00) - (uw) u 0
aW uaw

w=0

Ii
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The functions G and G. are again blending functions or weighting func-

tions, but they have properties different from the functions F0 and F1 . We

stipulate

GO(0) = G1(0) = G0 (1) = G1(1) = 0

Go() = 1 Gj(1) =1

t
G I(I) = 0 GI(O) = 0

or in the indicial notation used earlier,

Gi(a) =0, aandi =Oor 1.

GI(a) = O, ai.

G!(a) = 1, a =L

We need to ensure that the vectors describing the boundaries vanish

identically, and that the vectors describing the slope variation along boundaries

are indeed given by the equation. The proof proceeds along precisely the same

lines we used before. First, substitute u = a. The equation becomes

(aw) = (iw) uGi(a) + (aj) wG.(w) - (ij) uwGi(a)G.(w).

= (aj) w GIw).

Consider (aj) w. We wish to have the correction surface leave the original

bou.ndary vectors unchanged, and hence the boundary vectors of the correction

surface must vanish; ie,

(iw) 0

(uj) = 0

Then the derivatives of these boundaries must also vanish; in particular,

(iW)w = 0 and then (ij) W- 0, when w = j. Hence (aj)w = 0.

Thus (aw) = 0 indicates the desired behavior of the correction surface along a

boundary. Similarly (us) = 0.

"Ii
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To eaimiune 0he iroupe vrSi•tizuu bou-g -•, aa-ey, oullerri•aix the

equation with respect to u:

(uw)u = (iw)uG I (u) + (uj)uwG.(w)
uu 3

- (ij)uG! (u)G.(w).

Now substitute u = a

(aW)u = (iw) G (a) + (aj)uwG.(w) - (iJ) u • (a)G.(w)

As before, Gi1 (a) = 1 if and only if a =i,

so we get

(aw), = (aw) GI (a) + (aj) G.(w) - (aj) G (a)G.(w)
i ua uw j aw a

= (aw) + (aj) G.(w) - (aj) G.(w)
u uwj uw j

= (aw) .
"U

This demonstrates that the surface has the slope variation along the

boundary as required. To make use of this slope correction surface, we must

first determine what the intrinsic slope of the surface to be corrected is, and

then we must subtract this slope from the desireri boundary slope, to yield the

correction slopes that enter into the equation. Thus if (Ow)u is the desired

slope, and

I (Ow) is the intrinsic slope, then
u

C (Ow) will be the correction slope,
u

C (Ow)u = (Ow)u - I (0W)u

The correction slopes C (iw)u and C (uj)w are the four functions that enter

into the slope correction surface. The desired surface is obtained by adding

the correction surface to the first surface:

(uw) = I (uw) + C ('1w)

where we use the symbol I (uw) to represent the surface whose boundary slope

is being modified.
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3.3 HIGHER-ORDER CORRECTION SURFACES

Analogous forms may be obtained for correction of higher derivatives along

boundaries. For second derivative correction, the surface equation is

(uw) = (iw)uuHi(u) + (uJ)wwHj(w) - (lJ)uuwwHi(u)Hj(w).

In this equation, the blending functions Hi have the stipulations that, for a = 0

or 1 as before,

Hi(a) = 0

H, (a)= 0

SHi (a) =0, i /a

SH, 1 () 1, 1i=a.

With these constraints on the H, it is easy to arrange matters so that this

s iond-order correction surface is zero evcrywhere on the boundary, has zero

slopes across Loundaries, and Las second derivatives across boundaries speci-

fied by (iw*)uu and (uj)ww whatever these functiouz -nay be. The addition of this

surface vector to a given surface vector will then provide a means for boundary

second-derivative correction without disturbing either the boundary shapes or

boundary slopes.

Although we have already carried out A similar proof for slope correction,

it might be well to exhibit once again the course of the argument.

First, to show that the boundary vectors are zero, substitute u = a:

(a = 0 or 1.)

(awl = (iw) uuHi (a) + (aj) wwH (w) - (ij)uww Hi(a)H j(w)

= (aj)wwHi(w).

The term (aj)ww refers to the second derivative in the w sense at each of the

four corners, such as, typically, (00). As in the case of slope correction, we

must have

(iw) =0 along boundaries.
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Then (1w) 0, (ij) = 0, and in particular (aj),w 0, so that the
wwwww

equation satisfies the boundary condition.

For boundary slope vectors, differentiate with respect to u:
9 t

(UW)u = (iw)uuHi (u) + (Uj)wwuH.(w) - (iJ)uuwwHi (u)H.(w)

Set u =a:

(aw)u = (aj) wwuH(w) •

We wish to have the slope vectors vanish along boundaries, so typically

(W) = 0 for all w.

But then (iW)uw = 0 and (iw)uV = 0 by taking derivatives. The order of

differentiation is immaterial, so

(iW)uw = (i')ww , and finally we can conclude that

(aj)wwu =0; again the right and left hand sides of the equation are

in agreement.

Finally, we differentiate again with respect to u:

( uu = (iw)uH. (u) + (uj) uH(w) - (ij)w H (u)H.(w).
uu uu IWU wwuul

Set u =a; only terms in which a = i remain:
I,

(aw)uu = (aw) H "(a) + (aj) Hw(w) - (aj)wwuuH (a)H.(w)uu i ua wwuu j wua

- (aw)

Again we have demonstrated an identity. The escalation to any level of

boundary derivative correction vector is obv-ious.

3.4 MATRIX FORM

The surface equation

(uw) = (iw)Fi(u) + (uj) F (w) - (ij)Fi(u) F (w)
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may be expanded directly into matrices, to yield:

(uw) [ u ~]f~Fow I w[Fu Fu] I ow]

- [F0 u Flu] 00 01' P0w
110 11 fFlW

In this we have treated the indicial form term by term in a straight-
forward way. We shall in what follows omit parentheses, since M. misunder-

standing can arise. Thus typically F 0 u is written in place of F 0 (u) as a matter
of convenience and economy. Similarly, typically 00 is written instead of (00);
the reader should be reminded that this is merely a compact way of exhibiting

the x, y, z coord.zz ,, point (00).

It means:

00 = [x(00), y(00), z(00)] when written out completely.

The three vector (matrix) products are equivalent to the following three products:

I F0u Fu] 0 0 I1
0 0 0 1

10w 0 F w

rC U u] r: - 0 l '1 0 o

*+1 Fou FlUJ 0 5 0 1

0 -10 -11 FlW

and in this form we c-r. perform the addition, obtaining

(Uw) = ~i F,,u Flu] '0 uO ul [1

0w -00 -01 F0 w

lw -10 -11 F Wj
1b
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It is slightly more convenient to rewrite this in the equivalent form

(uw) = -1 F0 u Flu 0 u0 ul -1

ow 00 01 F0w

lw 10 11 F w

so as to avoid the awkward minus signs in the 3 x 3 matriL-.

Two facts should be noted. The leading row vector in front of the matrix

and the trailing column vector following the matrix are transposes of one

another, but with different arguments; the matrix represents the boundary con-

ditions of a patch. The partition r 0 01 is redundant, since its elements

[10 11

must agree with uj and iw for u and w equal to 0 or 1.

We have already suggested that we can maintain slope continuity across

boundaries by suitable stipulatio'.s on F., and we have also already suggested1

that when desired we can adjust slopes across boundaries by a second additive

vector with suitable stipulations on its G.. We shall now investigate the corm-
1

bined form of the surtace equation. To do so we shall prefix a symbol to the
vector uw to indicate wdhether we are talking about the first surface equation,

or the correction surface equation, and we shall omit the prefix symbol when

we are talking about the combined form. Thus

uw = suw + cuw, with

suw = the primary surface

cuw = the correction surface

uw = the combination.

Accordingly, using this n-tational convention, we will take derivatives, with

respect to u, of the surface equation suw in order to determine its slope vector

in the u direction.

EJ
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suw [0 F0 u Flu 0 su0 sul'Su Ul

sOw s00 sol F w

slw slO sll F w

0 0 Fow

Jl 0 LFloW]

We substitute u = 0, and obtain

Ssow u= [SOOu SOlo] 0 jFOW

Now consider, for example, sOO and the desired 00 . The symbol sOO
U U U

refers to the slope vectur at a corner; we have already seen that at corners the

correction surface cOO = 0, and so 00 = s00 . This is bourne out intuitivelyU U U

by the reflection that at (ij) corners, the two crossing boundary curves com-

pletely define the slopes there; since this i. so, no correction of slope need or

can be applied.

Hence we should write

sow= L0u olu, Fe

By analogy and symmetry we can write the remaining three statements:

slw= [0o u ] [Fo:]!

suo = [FOu F1 u] [00]

[10w

SUlw [Fou Flu] [01w]
[zw1
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In order to obtain a desired slope vector along any of the boundaries, we add

the correction surface, whose equation is

cuw -[1 Gou Glu) cuo, u
cowU ooUw col W G 0 w

cU cOO Uwe

As we have already remarked, the desired surface uw is the sum of the vectors

suw and cuw. Hence the correction slope vector, such as, typically, cuOw, is

cuO = uO - [F~u Fu 0
w w LO Fu] [or u0 Woo

This is an entry in the correction surface matrix.

Now we introduce a new fact: the corner cross derivatives of the primary

surface equation are all zero. To show this, differentiate the indicial expres-

sion firstwith respect to u, then with respect to w, and finally set u =a, w =b,

where a and b are as usual either 0 or 1. We have

-uw = (w)F1 (u) + (UJ)uF (W) - (ij)F! (u)F.(w), and

U uw =(iw),F' (u)'+ (uj) F (w)- (ij)F. (u)F! (w).

Evidently this expression vanishes for (uw) = (a b). This shows that the corner

"twists", or cross derivatives, of the original surface all vanish; it is a

peculiarity of the first fundamental surface equation.

Hence we can assert that

CiJuw = ijuw; This says that the desired twists at corners are

Identical with the correction surface twists, since the fundaments surface has

no twist. We shall use this result Lo replace the partition rCOOw cOl u1

_c_ uw Cluwj
CIcO C11

with

10• 11o

Uw :w

41'',• •-
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We can rewrite the expression for cuo as follows:
w

uo= [1 -FOU -Flu] uo0l

[104andN
- r

COW= I-FU -Flu] r1
~01w [1 1  1wluw~wI

and of course, perhaps trivially,

0= [1-Fu -FlU] 0
o0

0

Each of these matric products represents an element of the top row of the

correction surface matrix.

Sinee the row matrix [1 -F u -Flu] is common to these three products,

it can be factored out and introduced into the matrix [-1 GU G to yield

I[ -F 0u -FU] G0u Gluj

which is the same as the vector

[-1 F0 u Flu G0u Glu]

We replace the elements of the top row of the correction surface matrix

by the three matrices 0 [:::] ul

I w
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This causes it to become a 5 x 3 matrix, and we now have the intermediate

result,

cuw=- P_1 Fou Flu Gou Giul 0 u0w ulw -

0 00 01 G0 w

0 10 11 G 1w

cOw 00 01

u uW uw

clw 10 11
U UW UW

By similar procedures, we can write for the elements of the first column

of the correction surface matrix,

cow = ow 00~ 01 [
-FWL-F1 w

L 1wJ

c1w U 11W 10 u i 111 -11 1 w-F
and again trivially, perhaps,

o [o 0 o] [1

L-F wi
01

When we factor out the common column matrix as before, and replace each

entry of the coluran ruatrix 0 by the above expressions,

0

0

cow
u

clw
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we obtain the complete matric expression for the correction surface:

cuw [-1 FoU Flu GoU GlU 0 0 0 uO ul -1

40 0 0 00 01 Fow
w w

0 0 0 10 11 Fw
w w1

Ow 00 01 00 01 ! Gow
U U U UW uw 0

1w 10 11 10 11UW GlwjU U U tl uw

If now we border the original surface equation matrix, it can be written,

Suw -[-1 FCtu Flu Gou GlU] 0 uo ul 0 0 -1
ow 00 01 0 0 Fow

1w 10 11 0 0 FIw

0 0 0 0 0 GoW
0 0 0 0 0 Glw

In tMis bordering process, the value of the matric prodict is unchanged.

Since the pre- and post-multiplicative matrices in this equation are the

same as those of the correction surface equation, we can add the two 5 x 5

matrices and pre- and post-multiply by the two vectors. We shall perform, in

fact,

uw = suw + cuw, and obtain

uw = [-1 Foai Fiu Gou Giu] 0 U0) ul U0uO U1w w

Ow I00 01 00w 01w Fe

1w 10 11 10 11 Flw
wI 1

OwlU 00 u 01 u 00 uw 01 w Gow1w 1 0 11 10 11 Gow

L u U U UW UWJlu1w • 11u luw luw. 0l

This is a general expression for a slope-matching, slope continuous surface patch

vwth entirely arbitrary boundaries and entirely arbitrary slopes across these

Ii
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boundaries. There are no stipulations whatever on the nature of the boundary

slope function. The stipulation on the F and G tunctions have already been dis-

cussed.

Now that we have constructively arrived at a general expression for sur-

faces that have a prescribed boundary vector and a prescribed boundary slope

vector, it night be interesting to apply a proof to a conjectured higher order

surface equation in which not only boundaries, boundary slopes, but also

boundary second derivatives are vector quantities under control.

We postulate, therefore, that by analogy the surface equation is

uw - 1[- F0 u Fu Gu Glu Hou HlU""0 1"u•u

0 UO ul uO ul uO ul 1 -1
W W WW Vww

Ow 00 01 00 01 00 101 Fow
w w uww uww 0

1w 10 11 10 11 10 11 FGw
_ _w w ww 1

X Ow 00 0L 00 01 00 01 Gow
u u u uw uw uww uww 0

1w 10 11 10 11 10 11 G w

Ow 00 01 00 01 100 01 Hwlu ww w~
uu uuI uu uuw uuw uuww uw 0

1W 10 11 10 11 110 11uuw H1 w
uu uu u uUw uUw uuww UU

It represents a surface patch whose vectors of coordinates, slope, and curva-

ture as well, are everywhere arbitrary along its boundaries. The first column

and first row of the 7 x 7 matrix represent these boundary conditions; the re-

mainder of the matrix is redundant, since the quantities this partition contains

must all come from the column and row by differentiation.

We can test this equation by seeing whether it contains a boundary curve.

To this end, set u = 0, so that we check whether it contains the boundary (Ow).

We obtain, invoking the stipulations on the F, G, and H functions,

IiIi
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o - [-1. 1 o o o o 0]

0 00 01 00 01 00 01 "-1
w w Ww ww

SOw 00 01 00 O 1 0 Ow 1 Fw Pw

F w

X Gow

G w

Hlw

In the boundary matrix we have omitted irrelevant terms, because of the

zero's in the pre-multiplying vector. We obtain, by performing the 'multipli-

cation,

ow - [ow 0 0 00 0 0] Li 1

F~w

Flw
1

Gow

Glw

How

HW

O 0w, which is the hoped-for identity.

We can next try to see whether the equation also conforms to the boundary

second derivative conditions. It will be more convenient in what follows to

introduce some abbreviated notation.

Set

[fu] =[1 Fu FluGou Gu Hou Hlu]

and a similar expression for fw .
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Set the 7 x 7 boundary conditioa matrix equal Lo [B]

With these abbreviations, the surface equatiei is

w [fu] [B] [fw] '

We differentiate with respect to u:

uw ([fu] [B] + [fu] [Bj) [fw]T

and again:

u ([ofu] [B] + 2 [flu] [•B [f] [B])[fw]

We wish to investigate the right hand side of this equation for u = 0, that is,

for uw Ow . The blending function vector and its derivatives become

p 1 :f: 0:00 o
[= 1 0 0 0 0

As for the first and second partial derivatives of the [B] matrix, all

elements of [B•• and [B] vanish except for those in the top row.

Then

[IfIo] [B] = [ow 00 01 00 01• 0• o l 0

2 [VO] [B I the null vector]

[fo] [B•u] [ 0 00 u -0 1uu 0 0uuw _1ot.uw -00uw o 0_1lUUww]

The sum of these vectors is evidently

[Ow 0 0 0 0 0 0]

Finally,

ow =,_-[Ow. 0 0 0 0 0 ] [,] T

= Owv , •as expected.
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derivative boundary conditions. In a similar way it can be shown to satisfy the

first derivative boundary condizlons, but this was skipped in favor of the proof

for the higher derivative, sine.e the procedure exhibits a few interesting point.;.

A• By analogy we could c00snruct matrix products to represent surfaces

which satisfy even higher derivative conditions across boundaries.

3.5 BOUNDARY CURVES

U It is often convenient to use particular boundary curve functions defined

by the curve end-points and end-point tangent vectors. We can use the blending

functions themselves to define such curves. For example, the uO boundary

curve can be described by the equation

_Gui1F~ 1 0 :_ I'
10

00
u

10
u_

where the column vector contains the end-point information. We observe that

the row vector becomes [I 0 0 Oj whenu =0; it becomes [0 1 0 0]

when u = 1. Again, if we take derivatives of this row .,ector with respect to u
weobtain [F0  1  cu G1'u] and this becomes f0 0 1 0] foru=0,

and it becomes 10 0 0 1 ] for u =1.

With this behavior of the row vector, it is easy to see that the equation

does indeed represent a curve satisfying the end-point conditions.

The matrix form of the surface equation has been shown to be

uw=- I Fou FlU Gu Cu] 10 uO ul UOw ulw -1

ow 00 01 00 w 01 Fe

w w

Owu 00u 01u 00uw 01 uwI Gow
lWu 10u 11u 10uw 11uwI G0w
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Now when, in computing uw, we perform the matrix multiplication from

the left, we have for the second column

[-1 Fou Flu Gou GU [u0

00

10

00
U

10
U

=-uO + [Fou Flu G0 u Glu] "oo =-uO+uO=0.

10

00U

10

Now if similarly ul, uO and ul are functions of the same kind, their
w w

corresponding column products vanish just as in Ihe case of uO. Accordingly,

the resulting product of the three mat rices has the form

uw = [P 0 0O] - P,

Fow

FlW

LG w

where P is the product of the row vector and the first column of etc matrix, or

P = 1 Fou Flu Gou Glu] w

Ow

11W
ow

= [Fou Flu Gou Gcu Ow

1w

Ow

uJ
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If again the elements of the column vector, Ow, lw, Ow and lw areSu u

likewise functions described as outlined, we can write typically

o0w 00 01 00 01 w F w
ZA w w, 0

F w

LGwj

For the complete column vector we have

Ow 00 01 00 01 FGw1 Fw w [0
lw 10 11 10 11 FG

4w

Owl0 01 00 01 w
u u u uw uw

When we substitute this result for the column vector, wc obtain the sur ace

equation

uw F0 u Flu Gou Glu] b00 01 00w 01w Few

10 11 10 11 F1w

00u 01u 00uw 01uw G~w

10 11 10 11 Glw
U u uw uwj 1

This is a particularly convenient form for computation. The 4 x 4

matrix contains nothing but information about the corner coordinates, corner

slopes, and corner twists; all entries are constants, and the partitions of the

matrix systematically group these quantitics. The leading row vector and

the trailing column vector are transposes of one another, (but with different

arguments, of course.)

We shall refer to the 4 x 4 matrix. as the "boundary condition" matrix,

and shall assign to it the symbol B, so that the matric equation for the surface

could be written
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uw F 0 F0 u FIu G 0 u G1u| B F0 we

F 1w

G Iw.
G~w

GIT

It must be remembered that each of the entries in B is a three-vector,

whose components are x, y, and z coordinates and slopes and twists. This

means that B is really a tensor.

3.6 BLENDING FUNCTIONS

We can relate the blending function vector to a so-called basis vector

in the following way. Let [u 1 uI 2 u3 u4 1 be a vector whose elements are a set

of linearly independent functions of the variable u. Then we can postulate

the existence of a matrix M such that

[F u Flu G u GU = |uI u u3 u4] M.

To evaluate the M matrix, we substitute u = 0, u I on both left and right

hand sides of the equation. Then we take derivatives of both sides, and

again substitute u = 0 and u = 1. There results

F00 FI0 G00 GI0 01 02 04

F01 F1l G01 G1ll 11 2 13 14

F1 0 I I0GF;0 F'0 G'0 G10 O 02 03 4

[F11 F111 G101 GI~1 I' it3 1

The matrix on the left is the identity matrix 1 0 00 by virtue

0 1 0 0

0 0 1 0

0 0 0110

job olbI
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I -of the stipulations on the blending functions and their iderivatives. From this,

we conclude that'•"1 02 03 0

,•'-•- 1 12 3 14

°•,.01 of 013 04'.414

[11 i 13 14j

and we need only find the inverse of this matrix (if possible) to obtain M.

(In the matrix, the notation 1 means

du u=1

In the next section we shall for the first time be specific about the

I basis vector [ u. u2 u3 u4 1, but it is interesting and important to realize

that so far in the discussion nothing has been said to diminish the generality

of the mathematical structowre. It is hoped that the reader will not lose

sight of the fact that the surface equations in their several forms can be

implemented in many ways. We propose to develop one such implementation

in detail, but it is only oue of many.

3.7 CUBIC BASIS VECTOR

Let the basis vector be
3 2

[u 1 u2 u u4 ] = u u u 1].

The vector on the right contains four specifically chosen linearly independent

functions of u, the powers of u, and when multiplied by a coefficient vector

yields cubic polynomials:

[u u Bu 1] -A- Au3 Cu+D.
B

C

V.
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By the reasoning of the last section, we have for this vector basis,

0 0 0 1

0 0 1 0

P3 2 1 0j

from which we can obtain the desired inverse

2 -2 1 11

M = -3 3 -2 -1

0 0 1 0/

1 0 0

4Now we can write

fi Fou Flu Gou Glu] = u [3 u 2u I1I M.

S~We shall abbreviate the notation for the basis vector in what follows. We

S~shall write

[u3 u 2u 1] =U3 

32and [w w w 1]. W.

wThe ma wice surface equation

Kuw Fu Flu G.o Glu B F

F w

32

Gwi

S~now becomes, simply and compactly,

Suw = U M B Mt Wt. jSuperscript t means transpose. )

if U and W are cubic basis vectors, the bai vuface patch is the so-called

hi-cubic surface. Such surfaces are very easy to compute, particularly

since the basis vector is so easy to evaluate. In passing it is important to
S~remark that the above compact surface equation is not limited to cubies;
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U and W are not restricted to cubic basis vectors, and M is simply the matrix

that generates the appropriate set of blending functions. Among other pos-

sibilities, U and W might be higher order polynomial basis vectors; or they

might be any set of linearly independent functions. Provided the associated

M" 1 matrix has an inverse, these basis vectors are acceptable.

We can write, for w held fixed, an expression for a u - varying curve

on the surface:

uw = U(MBM tw) W UA

where A is a column vector of constant coefficients. We cpa write a simi-
lar expression for u held fixed and w varying. The matrix product MBAt I

is the same in either case. This suggests that for any surface patch this

product should be evaluated first; thereafter, we can either obtain u-varying,

w-conatant curves or w-varying, u-constant curves in an obvious way.

We shall investigate another basis vector that is composed of another

set of linearly independent functions (not powers of u) in a later article.

3. 8 DIFFERENCE EQUATIONS

If the basis vectors are polynomial bases, we can invoke the techniques

of finite differences to calculate points on the surface patch.

Consider the matrix

L= 1 0 0 0"

I 1 0 0

1 1 1 0

L b a+b b

c a+b+c

d a[+bb+c +d]

If a, b, c, d are respectively third, second, first and zero-order differences

3
of the cubic n ,then the column matrix on the right of the equation represents
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3
the corresponding differences for the cubic (n + 1) The differences for

(n + k) are given by
I Lk a, Lkmen

where means k successive
t b

d

multiplications by the L matrix.

When n = 0, we can easily find that

a 6

b -6

for cubics.

Using this,

k= [D0001 Lk

" ~0

In this expression, the vector 0 0 0 1 serves to select the bottom element

of the resulting column vector after k multiplications by L.

By extension, we can write the more complete statement

32 k
[k k k 11 = 10 0 0 1] Lk 6 0 0 01

S-6 2 0 0

1 -1 1 0

1-0 0 0 I_

Weshallcallthe [0 0 0 11 vector 1; andwe shallcallthe4x4 matrix N,

so that

[k3 k2 k I] = Lk N.
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Now let thc- usual parametric variable u be represented by u k8, where

k = 0, 1, 2 .... and where 8 is an increment size. Then

S3 2 k3 k2
[u u u 11 [k k k 1] 83

S~82

Call this last square matrix A. Then

SLk
U= L NA.

This expression states that we may step aloijg the u parameter, in 8 incre-

ments, by successive multiplications by the L matrix, and thus evaluate

the U vector at these steps. In order for u to go from 0 to 1, k must start

at 0 and go to-, sincek8 = 1.

We -mn nlso write, for the W parameter

W = 1L kNA

The surface equation in difference form can now be written out in

full:

w= 1.NA, M B Mt,,t 1L .

Call the partial product NA M B Mt At Nt = SO, a square 4 x 4 matrix.

Then L S = S10 a new square matrix,

and L3 Soo S Sj0, after j multiplications.

We remember that for any column of Soo the multiplication by L is a process

of cumulative addition, as shown by

a a

L b a~ b

c a+b b+jc

.d. a+b+c+d
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We cani write In general that

3kLLt = Sj+1, k+I

where the new square matrix is obtained from the old by cumulative addition

of column elements, followed by cumulative addition of row elements. These

oeations are furthermore commutative, which means that we obtain the same

result If we first add row elements and then afterward add column elements:

We have, finuly, that at u =0, w= 0

the surface equation is

00=1 Soo1 amlnd general

uw 1 Sjk It whereu = j8, w=k8, and Sjk has been formed

from SO0 by j colmn additions and k row additions.

This obviously furnishes an extremely simple way to generate di•screi.. pot ]8

on a surface patch. The pre-multiplier I has the effect of solec$Wg t1•,e ?. +

row of 8 antI similarly the post-multiplier I~ has the effect of fi&Iwing the

last column of S . The bottom rig&ht a orn clemen M S is the value
3k ~jk

ofthecoordinateforapointonthemsurf.e, atuJ•, j .-

Consider 1$ . This represents the row vft*Aw obtained after 3 cumula-
j0

tive addition operations bimve been pwreorn-mw 'cni the columns of Soo. The

right hand element of Ode vector & Wr. ;AM'i of the coordinate at u = J8, - •

w = 0. We can hold u flwt ".d step oft soce sive values of the coordiriate

for w - varyinq s~mplv by cmunviuative add~tiou on this row vector alone. -Id

thOd cae, the r uukJbn right h&d element is the marching coordinate value.

An mna•gous remar can be made for the product 8 IT. This Isa

coat=n vector, and successive cumulative additions of its elements marches

out Yv~aes of the surface coordinate for w = k8 fixed, and u varying.

Although the arithmetic of the foregoing difference method Is very

attractive, it possesses cdrtain drawbacks that must be made explicit. The

coordinate values are precise If and only If no trunation error whatever is

allowed in the arithmetic. Error is cumulative, and the least departure from

a- o+--4
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We can write in general that

Lt
LSjk L- SJ+1, k.l

where the new square matrix is obtained from the old by cumulative addition

of column elements, followed by cumulative addition of row elements. These

operations are furthermore commutative, which means that we obtain the same

result if we first add row elements arid then afterward add column elements:

We have, finally, that at u = 0, w = 0

the surface equation is

t
00 1 S00 1 and in general

uw = S A It whereu = iS, w=kS, and S has been formed

from S00 by j column additions and k row additions.

This obviously furnishes an extremely simple way to generate 4iscrel ,,I ,vtrts

on a surface patch. The pre-multiplier I has the effect of selec!tng th.. , •

row of Sjk and similarly the post-multiplier lt has the effect if --iec.!ing the

last column of S.ik The bottom right hand corner cesecn. of "f jk is the value

of the coordinate for a point on the surface, at u v . k 8.

Consider 1 S0. This rcpresents the row- v,-o.or obtained after j cumula-

tive addition operations have been iwrkrmr~e•m ,•i the columns of S0 0 . The

right hand element of thip vector is tn, iJu,- of the coordinate at u j 8S,

w = 0. We can hold u fixt., a~d stt-p out successive values of the coordirnaie

for w - varying, shnplv by cum:ulative "woioio on this row vector alome. L-1

this case, the re.uking right • a•d el ment is the marching coordinate value.

T
An anaiogous remarg can be made for the product SOk I . This is a

cohImn vector, and successive -umulative additions of its elements marches

o;t v, daes of the surface coordinate for w = k& fixed, and u varying.

Although the arithmetic of the foregoing difference method is very

attractive, it possesses certain drawbacks that must be made explicit. The

coordinate values are precise if and only if no truncation error whatever is

allowed in the arithmetic. Error is cumulative, and the least departure from
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TWPERSURFACES - HIGHER DIMENSIONS

We zawi readily extend the surface equation to describe hyper-surfaces

iryoitred in hyper-space. For this purpose we shall introduce a slight variant

-• our notation. We shall write typically

u
F.u. i=0orl.

i I

This will be a standard replacement for the blending function notation. The

stipulations on the F. are as before, so that if u a, a = 0 or 1, we can write

a=0 when a ý i
iI

a O 1when a =i
a= lwhena=i.

i

For slope continuity across boundaries, typically

n i = 0 where this symbol means the first derivative of the bientling

S~function with the argument = a.

For higher order continuity across boundaries, the additional stipulations

on the blending fucntions are the same as for ordinary surfaces with two degrees

of freedom and have already been discussed.

The general surface equation for hyper-space is, in indicial form,

'(uvw. ) =(ujk. )v w

SVAj k .jk .'"

+ (ivk . u w
Si • ""i k " . . "

+(ijw uv

-(N-l) (ijk. )u v w
Sj k''".
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KA i&tsu 0U oV N im 118 she ni-Ae i JA llasiuval - inl (u V W'...), IL iD

-the nmber of degrees of freedom of a point on the hyper-surface. The Indices

I, J, k etc. can take on only the values 0 or 1.

Let us proceed to prove that this surface contains a boundary, say for

example the boundary (u 0 0... ). We hope that the following equality holds:

00
(uO0...)=(ujk...) k. "

S+( k . .

t'•+ +(10jk . .).uO

°'• uO 0

W• ~~~-(N-1)(ijk...ijk

The last term in this expression is non-vanishing if and only if all indices other

than i are zero, i. e., j -0O, k = 0, etc. We czn accordingly rewrite this term

as

U0

(N-i) (iO0. )u

SNeJ. consider the second term on the right:

(ik jk. .0

It is non-vanishing if and only if k a0, etc.

We can accordingly rewrite, it as

( 100.. .)u
I

A similar consideration applies to

u0(0...... ".".".which also becomes

•• I k

(100 . .. ).
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There are evidently N-1 such terms, all identical, and they are removed by the

last term. All that is left is the term

u 00S~~~(ujk. .. """

but sin.\ý j = 0 and k = 0, we finally have (u 0 0... ) on the right. This establishes

the identify, and the surface equation has thus been shown to contain this boundary

curve. It is trivial to show that the surface contains all boundaries, and is defined

by them.

We can also show that the hyper-surface contains boundary surfaces
of lover order. We shall content ourselves with the case for N = 3, and show

that it contains surfaces for N= 2 which are identical with our ordinary surfaces.

VWe have

v w
(uvw) =(ujk)

UW

+ (I v k) u w

i k

+(ijw) ."

Ii

-2 (1ij k) uvw
ijk

Set v =0. Then substituting, and retaining only non-vanishing terms,

(which means that j must be replaced by 0 whenever it occurs, and v 0
j 0

(u 0 w) = (u 0 1) w
k

+(i0k) uw
i k

+ (10 w)u

-2 (i 0 k) u w
i k
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or

uw
(uOw) =(Uok)k

tk

uu

( w .+ (1 o kw)
JI

(10 k) u w
ik°

This Is the two-degree-of-freedom surface

(UW = i- w +O u UlkUW

k + =(N- I (ikik I k

SWe shall next consider the slope vector of such a hyper-surface. We take

Ipnrtil derivatives with respect to one of the variables, say u, and get

(uvw...) (ujk...) vw
u ujk

wt w
+(ijvwk i k

0' V

+(Ijw.. . U v

! u'vw
S- ~~(N-1) (Ij. ) j k k

In this, eel u 0 .

(O vw..)u =(Ojk. .. ) vw
u ~ujk"

"-(ivk .. .")1 w""

O' k

÷Ojw..1i k''

-(N-1) (i jk. ")i vw"
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or

(w j ( k vw
(0.u(ujk "'

0o
since all other terms vanish by virtue of . = 0.

This result is analogous to the one. obtained for boundaries of ordinary

surfaces; it says that the slope anywhere on a boundary is a function only of the

slopes at the "ends" of the boundary, and are otherwise independent of the

boundary shapes. Slope continuity across boundaries is a consequence.

The hyper-surface equation just developed is defined by ordinary curves,

or single-degree-of freedom boundaries; we can also write a hyper-surface

equation for N degrees of freedom, defined by boundaries with N-1 degrees of

freedom. We shall exhibit the result for N 3:

(uvw) =(ivw) u

+ (U i W) jV

+ (u v k) w

k

UV

(i i W) U j

-(i v k) U w
i k

- (u j k)Vw
j k

+ (u j k) u v w

( ijw).

I (i j k) i .

The proof that this space contains, for example, the boundary subspace

(0 v w) follows the preceding proofs in principle and will not be carried out.
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SECTION V

SURFACE NORMAL VECTORS

5.1 GENERAL SLOPE CONTINUITY CRITERIA

The surface normal vector furnishes a convenient mechanism for the in-

vestigation of general criteria for continuity of surface slope across boundaries

between surface patches. It will be seen that the cont~nulty conditions already

established are much stronger than are necessary, but that they are expedient.

Put

U = IX YWZ]

for the tangent vectors of a surface patch at some point. Let us assume that

another adjacent surface has a common boundary curve along u = constant, w

varying, so that W is common to both patches. Let the parameter for this second

patch be v, tnd for its tangent vector put

V [xvYvZ v .

W

uu

COMMON

BOUNDARY

CURVE



46 SECTION V

The two sur:aces w:fl be continuous in siope across the boundary at the point in

question in case the three vectors U, W, and V are coplanar there.

The surface normal vector for one surface is

SN=UxW.

If V is perpendicular to N,

V- N=0.

But then in this case, the three vectors U, W and V are coplanar since they are

all perpendicular to N.

In detail, thiF gives

N=UxWy z

a vector whose compontints are the familiar Jacobians, and

V-N =VNT

v v 
yVv v --v

Jzi xw YW ZwJ

(This is the so-called "scalar triple product" of the vectors.) Thus the vanishing

of the determinant of the matrix of the three tangent vectors is the general condi-

tion for slope continuity between two patches, at any point on their common

boundary.

This equation also shows that we may have slope continuity of surfaces

even though the curvilinear coordinates of the two surfaces are not slope -

continuous across the boundary.

If the tangent vectors U and V are equal everywhere along the boundary

curve, the determinant is sure to vaiish;, similarly if the tangent vectors U and

V are scalar multiples of one another, even when the scalar multiplier is a

variable quantity.

4

.1
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GEk-NkdtAL CONSTRLUCTION - TANGENT~ SURFACESb

y

ul

lw

x

Suppose that a surface A already exists, defined by the parametric vector

equation

Let a be a curve on the surface; it is always possible to write the vector equation

for a in either of two forms.-

a(qS• [X( S6 ) yA S ) Z( (P)

or

a( e [x( 8) A 89) z( e]
Suppose we wish to attach a surface B to surface A, in such a way as to make

curve a common to both surfaces, and suppose furthermore that we vwIsh te

maintain slope continuity across this mutual boundary.

We shall consider curve a to be the boundary (Ow) of the B surface. We

are at liberty to desigp, arbitrarily, a projection of the other three boundaries,

(uO), (ul), and (1w). Say for example that we design these curves in the xy pro-

jection. Then the curves represent the x and y components of their coordinate

vectors.
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We identify the new independent variable w with either 4 or 6 along ctirve

a. The Identification Is arbitrary, and we might for example use the linear form

With this identification, jb and w and, (by virture of curve a,) 0 are all related,

Sso that knowing any one of these quantities enables us to find the other two.

We now have a correspondence between curve a and curve (Ow).

We plan to construct an F-type surface,

(UW) [1 Fou F lu] 0 u0 ul 1

"Ow -00 -01 Fow
0

1w -10 -11 Flw

and then modify its slope along (Ow) in order to match the A-surface slope, by the

use of the G-type slope correction surface

(uw) [ GoU Glu 0 uw ul - 1

ow -00 -01 GW

u VIn uw 0

lwu "luw-uw L1 7j

We shall confine our attention to the boundary (Ow) where slope-matching Is to

take place. We shall elect to accept the x and y components of the tangent-vector

across (Ow), as given by the F-type surface, and shall achieve slole matching by

proper choice of the z component of this vector. We obtain x and y components

of the tangent vector across (Ow) by the use of

(OW)u = (00)u F0w + (01)u F1w.

This is possible because (00)u and (01)u are known from (uW) and (ul).

u u

S
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We are now ready to obtain the missing % component of the tangent vector

across (Ow). We first compute the surface normal to A along curve a. For this

purpose we can use any one of the expressions

(( 8)0) x ((A )08

or (o))e x a(8)9

or a(4)4 x e

Each expression yields a surface normal N; the three results are identical.

We can evaluate this surface normal vector at any point on (Ow) since we have a

correspondence between w and the variables 0 and 19

We also have the equation

T
(Ow) N = 0. This is the familiar condition for surface slope

continuity.

Let N= [a b e after evaluation atw.

Then the equation becomes

bc J

We already have the x and y components of this equation, and can solve for the

z component:

a x(Ow) + b y(AW)z-(0W )u = "
-C

This z component ha a magnitude that ensures that the complete vector

(OW)u is coplanar with surface A at w. Hence (Ow)u is the desired tangent vector

of surface - across (Ow).
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lie We next find the z tangent vector components z(0O) and z(01)u from (0w)

! ~and use them in tihe equation

• ~z(0w) ul=z(00)uF w + z(01)uFlW.

Here the 1 superscript Indicates that this is an intermediate result; It is the

Intrinsic boundary tangent vector for the F-type surface, and does not yet match

the z(Ow) vector function obtained from the A surface.
u

Accordingly, we must add to the F-type surface a G-type tangent vector

correction surface, so as to make the combination have the desired slope along

(ow).

This G-type correction surface is, as we have already shown,

c 1 G u0 u0 c l
( 1  w w 1

owc -00c -01c

U uV uw. 0

c c c1w -10 -11 G
u uw uw Lw

The superscript c indicates that this is a correction surface.

Slope correction is necessary only along the boundary (Ow); we can enter

the value for Owc in the matrix, but the other entries must be looked at in detail.
u

We have, for the slope correction across (Ow),

c = I-
u u U

These latter two quantities have already been found for the z component, and so

Owc is known.
u

c
Consider 1w . This is at a free boundary, (1w), remote from (Ow), andu

we can set it equal to 0. Then 10c and 13c are both zero also. On the other
u u

hand uOc and ulc are connected to (0w) at (00) and (01) and so we must specifyIW w
them in such a way as to sEtisfy the conditions at these points. Elsewhere, they

too are arbitrary.
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We write the G function expression:

(uw) = [I Gou GI U uO ulw w

ow -00 -01 Gow
u uw uw0

0 0 0 J GIW

(we omit the c srper-script temporarily.)

Performing the firat multiplication, we have

(uw) Ow u[0 Gu uow -00 uwG 0u ulw -01 uwG0U G[1

Go w

Consider the element uO - 00 G u in the row vector. Since uO is
W emW v W

F- -bitrary, lt would be convenient to choose it so as to make the entire vector

element vanish. We therefore write

sO 00 Gou.nw uw

Then 00 = 0 as it should, andW

since ~u = 00u G~u

00 =00 as It should.
wiu uw

Similarly, we may set

ul = 01 Gu.

The result of these choices of uO and ul is to reduce the G equation to
w w

uwc = wc Gu.
uw u

This represents the correction surface z component which must be added to the

z component of the F surface in order to obtain slope continuity along (0%-) between

the given A surface and the designed B surface.
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5.2 ADJACENT-PATCH SLOPE CONTLIUITY

It Is sometimes desirable to define the boundary curves for tmo adjacent

patches so Chat at the junction between the curves the tangent vectors have the

same direction but are of different magnituckes. This is particularly useful when

the boundaxy c~urves are parametric cubics, because then the magnitudes of the

tangent-vectors at the erd points control the behavior of the curve segment.

4n 01

As a specific case, consider the boundary (0wf common to two patches; let

the tangent vectors at (00) and (01) for the first pateh be 00 b and 01 •, , and let

the tangent vectors for the next patch be 00 and 01
U U.

If the tangent ,ectors have the same direction, they" are scalar multiples of one

another,

or 00 = m 00

and 01 = n 01

Suppose that the patch ('t w) already exists. We need to obtain an appropriate

expression for (uw) so as to match surface slopes acrss (Ow). By the results

of the preceeding article, we can accomplish this in very general ways, but in

our present case let us make a special requirement on the t-ngenrt vectors: let

us assurr e tiwt everywhere across (Ow) the tangent vectors have the same

Cirection, and difl,r only in magnitude. Then for any w,

Ow ,Ow•
L U
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where ) is a scalar. We know that X takes the value m at v = 0, and takes the

value n at u =1, and we conclude that X therefore must be a scaiar function

of w.

With this relationship between (Owu) and (Owo) the vector cross product is

always the null vector:

(Ow)u x (Ow) -[0 00]

Hence the scalar triple product of (Ow)u, (Ow)I, a•i (Ow), vanishes for any

(Ow) w. This ensures that the two surfaces will be continuous in slope across

(Ow) for j shape of (Ow) and for any ( = w) tf *, .!he proper behavior

at w=O0 and w=l1.

We could for example take

kW) = mn(1-w) + nw.

""This is a linear variation of X with respect to w. It has one disadvantage,

however, in that it intrvduce un-wanted cross derivatives or t'ists at (00)

and (01). In order to avoid this, we might use

X )m FOW + nFIW.

Then the required slope function across (Ow) for the (au) patch is

SO'.•u = (m FOW + n FlWI 0O .

We can cheek w find the cross derivatives introfUced by this relationship.

The cross-.derivattvc is obtained by differentiating with respect to w, and

yields

"Ow (rn FPw + n Fw) ft-

+ inrFw + nFIW) Oi w.

At (00), 00 in 00

and at (Ol), 01 now

i-

Ii
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Th.s shows that i•e A function do)es not introduce additional twists at the
corners of the patch, Ibe'ond, 4f course, those already inherent in the (Ow)

surface.

If the (uw) surface already exists, defined perhaps by an F-type equation,

its inýrinsic tangent vector across (Ow) is a known function of (Ow), say Owlu
where the I superscript indicates that it is an intermediate result. Then,

as beWore, thi correction of slope is

Owe W - Owl. The correction surface
U U U

C Cis (OiW) cOwGU.
a O

When this correction surface is added to t*e original sarface, the combination
Prill be continuous in slope with the (**) surface across (Ow). The u and (t
curvilinear coordinates of the two patches will be continuous in slope across
fUw), but their tangent vectors will be different in magnitude.

S, 3 APPLICATIONS

Let dU represent a differential vector, se that

dI k df dydz, in which

cbc Cj +'L dw.

du a
du + dw

z z

If dU is tangent to a u-varying, w-fixed curve, these become

= Xu = x du
U U

dy y u du.

dz z du, since dw 0.u

"U U
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Similarl), if d%% is a differential vector tangent to a %-varying, v-fixed

curve,

dW - y -

t;e vThe normal differential vector at a point of th.' surface will be given by
! thVe vector cross product: :

dn dUxdW

zxI du dw.

The determ. nants that comprise the etements of the vector are the

jabobias Jx , J V and J so thai we iay wr'.itey z

dn = [xJ J J Idudw.

The magnitude of c n is equal to the differential area of the elemental parallelo-

gram described by dU and dW. This magnitude is

= dudw %,/J 2 + J,2 + Jz 2 .

From this, we can vonstruct an algorithm for finding surface areas of patches;

we simply perform iamerical integration of the expression

A=/J 2l +/J2 + Jy 2 duda.
0 0 x y z

Again, if N is the unit normal vector to the surface at a point, theu

dn = NIdni, fromwhich

N dn

J J J3•

x V• z
X Z

S S S

where S V J x 9 J 2 + J 2-

X- y z

[
I
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J J JThe quantities x y, z are the coordinate components a, b and c
S S S

of the surface normal.

If the surface is to be manufactured by milling with a ball-end cutter of

radius R, then the cutter-center vector [xc Yc zc] is related to the surface

vector [x y z] by the simple expression

i , zo [x y z 4 R [a bc

This describes a "parallel" surface spazzd a distance R away from the

designed surface.

The normal vector can also be used to calculate volumes enclosed by

surface patches and planes, as ftlow.s.

Suppose we wish to calculate the volume contained between a surface

patch and the xz plane.

S~dA
yY

Sy

y

_ • XZ plane

We can imagine the volume broken up intn a number of slender prisms

whose axes arc all parallel to the y ax.s (and perpendicular to the xz plane.)

The area of the base of one of these prisms is the projection of the small

element of surface area, or

dA =J dud&.
y Y

A.., ~ -- -
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The volume of this prism is

dV = ydA = yJ dudiu

V = i yJ du d%.

IY

U I

iI

.1i
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SLC~izuI Vi

CORNER TW-IST VECTORS

6.1 THE QUASI-SPHERE

It is possible to choose a parametric cubic that very nearly approximates

a circle for one quadrant. We shall go into detail about this shortly; intuition

suggests that similarly we ought to be able to construct an approximation of an

octant of a sphere by means of a bicubic surface, bounded by these approxi-

mations to circles.

For the circle approximation, let us assume that we will be content to

make the quasi-circle pass through a point on the true circle at u 1/2. (This

is not the best possible approximation, but it yields quite good results and the

arithmetic is simple.)

We shall assume a circle of unit

radius, centered at the origin, with

end-point values of the parameter u

as shown. The tangent vectors are

u 0 u 1/2 symmetric, but have yet undefined

magnitudes

u= X

Ii
+-a

We have

x [ u u u 1] M 0 Where the column vector on the

1 right represents the end conditimns

a for the curve.

0
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When u 1/2, thla becomes

[1 12481 12 -2 1 ,i r1

03 1-2 -1J [i
[ 0 0 0

2 4 8i -

3-2a

aI

01

- (-2+a+6-4a+4a) = (+a
8

a= 8x-4. But atu=1/2, x=--- since it is a point on the circle2

(by symmetry, at44
Hence a z 4 (,r2 - 1). This is the required magnitude of the two tangent

vectors at u = 0 and u = 1. (Calculation reveals that the quasi-circle has a

radius of about 1.00016 at u = 1/3 (at 1 or 300) so it is a good approximation.)6

We now establish a coordinate system for the sphere, and show its I

boundary curves.

011

low I 11W
ai

01
x

z
uO degenerate curve

bounda ry
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The boundary curves Ow, 1w, and ul are all unit circles; the boundary uO

however is a degenerate circle, and anpea." a. a poi-t.

We shall first investigate the z comp.onent of the uw surface vector

Z i Z UW) = [Fu u GF u G0 u [00 01 00w 01w 7W

I I1 10 I I1 F1 w

0601 0 01 GOw
OGU 01:u 0 uw 01uw G0w

10 11 i0 11 GIw

= [Fp1 F u GeG0 ' 1 0 0 -a F 10

1 0u0 -a F Iaw

0 0 0 Oj GoW

S0 0 0 Glw

When we perform the first multiplication, we obtain

"z(uw)= [Fou + Fl 0 0 -a(F+o. "F,"1  FoW

F w

G w
[G1 w

But FeU + FlU 1, by virtue of the definition of the F functions.

Hence

Z (U) 1[ 0 0 -a] F0w

FIw

G w

F a G W.
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'Me curd.,Iaear ,uidinaies ior w constant thus yield constant z; this implies

that z is independent of the other variable u, and the w curves are plane curves.

They must of course be quasi-circles.

We have obtained the value of the number a by investigating a unit cirole.

For a circle of radius r, the tangent vector magnitudes must be proportional to

r, or equal to ra. We can find these radii for various values of w from either
Sthe quasi-circle y(Ow-) or x(lw).

We have

[,,w) 110 11 10w 11 1l FoW-

4 Fw/

* 1
0G I w

Gow

Ll J

F 1w

1aGn

(Ow) [0 01 0 01 [Fw

FI w

I:

LG:0

IW
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For w fixed, the x and y coordinates of a quasi-circle are given by

x = [FoU Flu Go U Glu] 0'0

rI
and

y = Foi Flu Gou G~uI

where r is a function of w, shown above.

But

0 o 0 0 0 0 F0w

r 0 1 a 0 F w
2

ar I 0 a a 0 G w
L0 J 0 0 0 01 GIW

and

rI 0 1 a 01 Fw.

0 o o 0 0 F I w

-ar 0 -a -a
S-ar 

a .

SWe obtain these last results by simply writing rows in the 4 x 4 matrix that

correspond to elements in the vector of the left side. When we combine

*i i results, we have

!"
I?•
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0 1 a 0 FlW 1

?•0 a a 0 Gow

-0 0 0 0. GLW1

x(uw) [F~dFu Ge0  G~u] [0 01 0

y~~~uw~~ = FuFuGuGu [0 0~ 0 GOW]I _ _a2

* 0 -a[.a 92 0 GlW

The equation for z(Uw) has already been shown. 1
The striking thing abosi! the B matrix as it appears in these equations is

that is has non-zero entries in the bottom right partition,

00 01

110Uw lu ] By comparison, we see

2

and y(10uw) = -a

These are the cross-derivatives at the corners 00 and 10. All other cross

derivatives t-.'lsh. We shall refer to these cross-derivatives as 'twists" of

the surface; uw is the twist vector at a generalized point on the surface.

6.2 THE EXACT SPHERE

A bi-cubic surface cannot fit a sphere exactly, and it would be interesting

to see whether by an appropriate choice of F and_ r. functions other than cubics,
an exact equatior can be constructed.
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The functions

:! 7'r
Fou co(I -u

and 02

II
. 2 7T

sn -u

rese-!ble the cubic functions in shape. they satisfy the conditions

F00 0 0 1= 0

as well asF 

1 0

F 0 0 1 F1 0

FO -- 0 FI1 1.

We shall choose these functions, and determine appropriate G functions

so that the equation

(u) F [F u Go C 1(0)
1 o F 1

(0)

represents an exact circle, and not the approximation of the last section.

We already have the well-knovvn parametric equations for a circle;

x 7 sin au
17

y =cosau where a

2
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y

u--a

-~x

-a

I

SWe can comparethe x equatGn]wit

aJ

LoJ
-2

S= sinan + a Gou
0

2Then sin au = sin au + a G 0u, whenceThen sin a

G~u = 1 (sinau - sin2au).
0u a

Again,

y = cosau = [cos 2 au I sin2 au Gou G lu] I

0

0

2
cOS an =cos an - aGIu

whence

Glu = (cos au - cosau).

Ia
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We can easily verify that these G functions satisfy the same stipulations

as the cubic G functions:

IG00 = G0I = 0

G!O = GlI = 0
1 1

G00 =1 G0f1 =3
0 0

t I

G10 0 G I 1

If we now use the same boundary value matrices as were. used in the1?

previous case of the quasi-sphere, but with a -- throughout, we obtain for

the z component of the surface vector

z(uw) z F 0 w - aGlw.

This is, with the new F and G functions
2 2

z(uw) = cos aw - (cos aw - cos aw)

= cos aw.

SAs before, this shows that the z coordinate of the surface is inependent

of u; the w curves are plane curves, and they are indeed circles. i'eir radii

are given by

x (Iw) [10 11 10 11] [F0w

G w~

(0 1 a 0!i F

F w

F w aGw
1 0

2 2

Fsin aw (sin aw sin aw)

or r = sin aw,
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• ••a. x(uw) [F u F U G u Gu] [0

* r

ar
:?0 0

= r(F u + aG sin aw ii au,

and

y(uw) = Fou F u G u GlU r
00

0

iu -arj

I 
- r(F0u - aGlU)

4, sin aw (cos au c 2 au cos au)

sin aw cos au.

The resulting parametric equations, when collected, are

x = sinaw sin an

y = sinaw cos au

z = cos aw

and these are well-known.

This demonstrates that the sphere is a special case of the general surface

equation, provided the blending functions are suitably chosen.

The F and G functions are by inspection, seen to be linear combinations of

the linearly independent functions of u,

[ au sin2 au cos au sin au]

and this may be taken as an appropriate basis vector. Then

[F 0u FU G0u GU] = [cos2 au sin2 au cosau sinauf M]

£

It
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where the M matrix is, in this case,

a

F:1 01 0a
0 0 0

a

0 0 -a 0j Incidentally, its inverse is

I~ f) I I
I

i 0
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SECTION VII

RULED SURFACES

The locus of straight lines connecting corresponding points on two curves

(u0) and (ul) is a surface. The lines are caflled "rulipgs" of the surface.

ul

The equation for a generalized line of the surface is also the equation for

the surface:

(uw) (ul)w - (u0)w (uO).

This is equivalent to

(uw) = (ul)w + (uNO) (-).

From this equation we obtain the derivatives

(uw)u -- (U lW i. (u0)u (I-w)

(uw)w = (ul) - (00)

(uw) = (Ul) - NU0u
uw u u

7.1 DEVELOPABLE SURFACES

A special case of such ruled surfaces is of importance and interest. If

the ruled surface has the property of being tangent, along the rulings, to a

moving plane which roils around the surface, then it may be deformed by simple

bending and flattened out into a plane. Such a process is called "development"

of the surface. We call such surfaces "developables" or "Wrapped surfaces".

(A sheet of paper can be wrapped around the two curves (uO) and (ul) to form

the surface. These surfaces are also known as "convolutes".)
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The tangent-plane condition can be established by showing that the tangent

vector at a point on (u0), the tangent vector at a corresponding point on (ul),

R and the tangent vectors along the line joining these points, are all coplanar. We

need to form the scalar triple product of these vectors, and show that it

vanishes.

The tangent vectors in question are (uO) Ul, (u1) , (UO)w and •(U,w

First observe that, for a ruled surface,

(uW)w = (ul) - (u0). This tangent vector is independent of w, so

that (uO)w = (Ul)w. Moreover, the vector is simply the line segment joining

the two points, as might be expected. We can write, for the scalar triple

product,

(UO)u

(uI)u =0

(ul) - (uO)

where the notation represents the determinant of the matrix of the three (row)

vectors. If the determinant vanishes for all values of u, the surface is

developable.

The preceding describes an analytical test to ensure that a ruled surface

is developable. We shall now describe a construction that will enable us to

define a ruled surface by meams of two space curves. Suppose that the two

space curves are defined by vector functions of two different parameters,

u and•

U1
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The scalar triple product is

(UN 0

(uO)

If we consider u the independent variable, the equation enables us to find

Sfor any value of u; this value of 'j determines the point on (4)1) which corre-

sponds to a point on (uW), so that the line joining these points is coplanar with

the tangent to (01) and the tangent to (uW). We allow u to vary, and obtain

related 4 values; these values of 46 enable us to evaluate the components of the I
vector (41). These components are the same as the components of the desired

(ul) vector.

Provided we remember that the (unspecified) functions of u and j6 are

different, the symbolism

(ul) = (4p1),4 q6 S6(u)

represents the statement that the [x y z J vector is the same for both.

With the correspondence established between points on the two curves,

we can write the equation for the developable surface,

(uw) = (u1)w + (do) (1 - w).

This is the ruled surface equation, but with a special relationship between

curves (uW) and (ul).

7.2 PLANE/SURFACE INTERSECTIONS

The general surface equation can be cast in the form

uw = UBWT where U and W are vector functions of u and w

respectively, and where B is a square matrix describing the boundary curves.

For example, we might be dealing with the f!rst F-type surface equation,

uw f [- F u 0 u0 •"1 -10]

Ow 00 01 F 0 w

lw 10 11 FlWj

in which these vectors and the matrix are explicit:
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Since uw is in reality a vector consisting of an x, a y and a z component,

there are three B matrices which we can call B B Ti

We wish to find the Intersection of this surface with the plane

ax + by z + d = 0.
T W T

We can substitute x UB W , y = UB WT and z = UB W into -- s equation,x y z

and write the result in the form

U faB + bB + eBz + d = 0.
LX y z

It is permissible to interchange the order of multiplication from aU, bU,

cU to Ua, Ub, Uc because a b and c are scalars. In this form, the surn

falx + bB y cB ] = S, a square matrix function of u and w, and

USWT = -d is an equation in the two variables u and w, If w is

assigned a fixed value, there results an equation in u which when solved will

yield a point on the intersection curve of the surface with the plane, (provided

of course such a point exists for the chosen value of w.)

If the surface in question is a bi-cubic, the matrix S is no longer a

function of the variables u and w, but consists of constant elements. In this

case the above procedure reduces to the solution of a series of cubic equations

in u, where the coefficients of the cubics are determined by successive fixed

values of w.

In any case, if the spacing of the w values is close, the old value of u

just previously determiied for a particular choice of w can appropriately be

used as a first trial solution for the new value of w. Algorithms for the

improvement of this initial trial value of u are not difficult to construct, and

will not be discussed in detail.

If the plane is given by, say, the equation

x + d = 0

the solutlon procedure is unaltered. Not much simplification results.
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RATfONAL "OLYNOMIAL FUNCTIONS

8.1 BOUNDARY CURVES AND BLENDING FUNCTIONS

"Two kinds of curves have for many years been traditioaally used in air-

plane lines design - cubic polynomials, and conics. Unfortunately, each of

these curve forms for itself has certain drawbacks. In the parametric form,

for ordinary cubics, the entire shape of a curve segment is governed by end

tangent vectors. Sometimes these end tingent vectors read to unwanted hooks

and bulges in the curve segments. On the other hand, conics, although more

benignly behaved, cannot by their very nature yield curves with points of

inflection. Yet such curves very often exist in aircraft shapes - as for in-

stance in the case of wing fillets.

Because of these short-comings, a new curve type has been developte.

It is based upon rational polynomial functions. It contains both conics and

ordinary cubics as special cases, and provides a great degree of generality

and flexibility.

We start by establishing the form of this function.

Let v be a vector, sothzt for examplov = [xyzl orv = (xy1) or

v = Ix 1]. The first of thece can be thought of as the vector (or matrix) of

coordinates on a space curve; the second is the vector of coordinates for a

plane curve, and the last is the vector of a single coordinate. Since this last

vector yields the most general case, we shall begin with it, and show how one

might evaluate a set of numbers in a matrix to define each of the parametrir

coordinates of a curve.

The product of v and a variable slalar w is wv = IN%-< w). Here both

wx and w are cubic functions of a parameter, v, and obviously

w

L '
[I
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This i& the ratio of two .eni .- . ---..,m•. AIL- .. "r...ona. c

A tion"). We cain represent the two cubic polyomm,1ls by the mastric equation

wv = [u 3 u2 ul] A.

Since wv = [wx WI, the matrix A must consist of four rows and two columns
of constant coefficients. We now proceed to show how these numbers may be
found so as to define a coordinate of a curve.

We shall be Interested in the end-point coordinates of the curve at v = 0
and v =1. These coordinates are vo = [xo 11 and v, = Ix j 1j respect-
Ively. A tangent vector anywhere on the curve is clearly

v' = [x' 01

where the prime mark meajs differentiation with respect to the parameter v.
The tangent vectors at v = 0 and v = I are therefore v 0 ' = [xSo 01 and

v4 "- [xI' O] respectively.

Now differentiate both sides of

wv = [u3 u2 u 11 A and obtain

(WV) = [3u 2u 1 01 A.

Substitution of u = 0 and u = 1 into these two expressions yields

- w0 v0 0 0 0 1'
WV

00
SIA.• O 0 o) 0 1(wI lU:::1

I

I
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The 4 x 4 matrix on the right has an inverse, and we may write

"0 0 0 1 w v
0 0

A~ =

0 0 1 0 (w0 v0 )'

3 2 1 0j {w vI V)tj

2 -2 1 1 w0 v0

-3 3 -2 -1 w1 v1

0 0 1 0 w0'v0+Iwov0

1 0 00 J w 'v1+wvl'

The square matrix Inverse is constant and always the same, and reappears in

the algebra so often that we shall henceforth cadl it the matrix K.

The matrix equation can be factored and. r :Titten in the form

A M W0 0 0
00 Wi

0 w1 0 0 v1

woo 01 w0 0 v0

10 w11 0 w1j v11•

The right hand natrix of v's represents the desired end conditions on the

curve. In our present case, it Is of course a 4 x 2 matrix.

The middle matrix is 4 x 4 and contains the four numbers [w 0 w, wI ' w0' 11.

Any arbitrary set of four numbers inserted into this matrix will serve to define

a unique pair of cubic functions of the parameter u, from which x can be found,

by using, as we have said, the ratio x = w

Instead of picking these four numbers arbitrarily, however, we shall

impose further conditions on the curve until enough conditions are imposed

to define [w 0 w w0
1 w1l' uniquely.

§!
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We begin by introducing desired second derivative vectors at the end-

points; these vectors are clearly

Vo" = [X0" 0) and

V I i Xl" 0).

(Incidentaly, in the case of vectors v' = [x' y' 0], v" = fx" y" 01 if
the determinant of the matrix [x, y; vanishes, the curve will have a

point of inflection at v. If the determinant is positive, the center of
curvature will lie on the left as one proceeds along the curve; if the
determinant is negative, the center of curvature lies on the right. If
two curve segments have equal v' and v" at a junction, they are contin-
uous both in slope and curvature at such a junction.)

When we take second derivatives of both sides of

wv= U3 U u 1) A, we obtain

(wv)" = [6u2 001 A.

Atu = 0, this is

(wov 0 ' = 02 00 M w0 v0

w v

Sw0 'v0 + w 0 v 0

W' 1V 1 +W IVJ.w1 ' v1 + w1 vlJ

But (w0 v 0)" = w0" v0 + 2 w'0 v1 0 + w0 v0" and solving for w. v0",

wO v0" = (w0 v0)" - w0 " v0 - 2 w0' v0'.

Now (w0 v 0)'1 = [-6 6 -4 -21 w0 v0

wI vI

w0' v0 + w 0 v0,

L rlv- + w Ivl
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Furthermore, since in general

(wv)" = f(wx)" W"""V

the quantity w" is the second component of the vector of (Wv)" and therefore is
associated with the last column of the matrix [Wo v0

w 1 v1I
lwo, v0 w0 V 0

But the last components of V0 and vI are both 1, and the last components of V0O

and v,' are both zpro,. Hence

w0"= [-6 6 -4 -2j Wo

iw

We now can write, by combining results:

w)vO1 = 1-6 6 -4 -21 rw(v-v) -2wO vO
1 600 00

I1 (V1 - V'0)

0 O'(vO-v
0 ) + wOvO'

wI'(v 1 vO) + w 1 V'1-i
= -6 I I (-I -v 0 2wIw 2 w"'v06w1(vi vO)4w~O' ,1 (v 1 -Vo)..2Wl l

Collecting,

w0 vo0 = wo("4v,') + w1 (6(v 1 - V0 ) -2 v')

++

+0
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We now restore this last expression to matrix form:

'0~ ~~~~9 v w0wIw," vo,W0 V0 "=~ IWw 1 Wvw 1  
- r'o' 1

-2 V

L-2 (vi7 0)

in our present case, the matrix on the right consists of a column of numbers

and a column of zeros. Hence the column of zeros can be discarded, and the

result is a 4 x I matrlx. On the left, w0 v 0 " is a scalar.

Similarly, we can find by analogous algebraic procedures that

1ww , [w 0  1 0' ' 6 (v0 - v) + 2 v0o

4 V1 "

12 (Vo - v1)

2- v1 '

Then, writing a matrix equation, we have, so far,

tw0 v0 " wIv1 "I = Iwo ww 0 ' w0'w [PIQJ

where f P I Q] represents a 4 x 2 matrix consisting of the separate 4 x I matrices

for w0 v 0" nd w, vl", written side by side as columns.

We now introduce another condition. Let It be required that the curve

pass through the point v [ Ix 11 whenu = . (This value of u is of
course arbitrary.)

This condition leads to

v 1 = 112481 M WOv 0

WV,

w'Vo %, o'.

w1' v0 + w1 v1'

+I
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By algebraic manipulations similar to the preceeing. we can rearrange the

equation to read i

8 v =[w0 wI Ww 4v+ v0 "c 0 o 1 i 0o1

4 v I - vI,

v0

L-V

This is an equation in which vc has two components, x and 1. The right hand

matrix is a 4 x 2. Call it the R matrix. Then we can adjoin these matrices,

to obtain

[woV o " Wl Vi" 8v] = tw 0 Wlw 0
1 W1

1J] PQ ] R.

Now [P Q R ] represents a 4 x 4 matrix; P and Q are each 4 x I matrices, but

R is a 4 x 2 matrix. We next transfer w0 v "and w, v to the right hand

side, obtain[ing

fOo 08V 1 [ wo wx wo Wll PQRJ- Vo"l 0 0 0'
C 0 0

0 [o 0 0

0 0 0 0

The right hand matrix is now a 4 x 4. Provided its determinant does not vanish,

it has an inverse, and

[w W wo' w' 0= 10 18v !s

where S is the 4 x 4 inverse of the matrix.

Now that [w w, w0 ' and wl ] have been evaluated, the curve is com-

pletely defined, since the rational f•uction - is completely defined.
w

1*.I.
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0. %7 A• URVES

With some loss of generality and flexibility, we can have v [x y 1J,

a p curve. We shall next show that for an appropriate choice of

S0 w0 1 and w1'1. the curve reduces to a conic.

We have the equation

wv - (wx Wy w]

= [u 3 u2 u I] A.

In this case, A is a 4 x S matrix. Now if the top row of this matrix is

[0 0 01, the equation reduces to

wv = 2 u 11 A

when the top row of A has been omitted. A is now a 3 x 3 iatrix, and it is

possible to show that this eq-iation is a parametric form for the general conic,

expressed as a quadratic rational function.

For the top row of A, we have the vector equation

12 -2 1 11 [w =o v to 0 01WlvI

w' V + w V0I

w1 VI + w1 v1'

Expanding:

2w 0v 0-2w v1 +w 0 v0 +w 0 v0'+wl'v +w 1 [0 0 01

Collecting:

w0 (2v 0 +v 0
1)+w 1 (-2vl +v 1I)+w 0 ' (v0 )+w, (vl) = 10 0 01

In matrix form,

10 0 01 1 w0 wI1 wO0 w1' "2 v.+ v0'

-2 v +IV+ t

v0

vI J
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The matrix is a 4 x 3.

Now we can adjoin a column to the matrix and an element to the vector,

and write

too 0 0w 0  (w= w0 w ' 1 w 1  [2 v0 + 1

V 0 0

-2 v I + v1 I

vo

Iv

v 0 0

Vl 1 0

If the indicated inverse exists, then a solution can be obtained in ternms of w0 .

Furthermore, w0 can be set equal to 1 arbitrarily.

The matrix has an inverse in case the determinant

-2 vI + v ,0.

v0

V I

As a test, construct a conic with end conditions

v 0 0 01 Vl -'--- vl

VV1010

00
Iv0 • v
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"2vnV + = [roo021+1001 =" 1  -"

-2 v1 +1' [ -2-2-21 +[10 01 -1 -2 -2"

vO 001 0 0 1

vI111 1

We first test to see whether the determinant vanishes:

-1 -2 -2

-1 -2A

0 0 = - -1. Hence the augmented ma•lx
~1 1

111

will have an inverse.

The matrix is 1 0 2 1 and Its inverse is 0 1 0 2-

-1-2-2 00-1-1-1

001 00 1 0

S10 1 1 01 1-1-2-2

.• •-,'•' 1Wl WI'WI'] = 0 0 0 1 0 1 0 2]

1 0
lw 0 0 1 0

? :" 1 -1 -2-2

whence [1 w1 w0 ' wOl' = [1 -1 -2 -21.

The conic equation le

wv= u3u 2 ull 2-2 1 [1 0001 10 0 11

-3321 01 0 0 1• 1

0 -2 0 0

0L 0[ -1-11
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f 1u3 u2ui 1 0 1
1 [ -1 -2 1 1 1 1

-2- 0 10 1 0u 0

-•1 0 0 0 1 0 0j

S-2 -1 0 10-2

1 0-2 0

0 0 1

WX W -11! 2 4u 121 -2u+"]

x ~U
2 2

-u -x 2
y 1-2u - 12x Thecurve ishyperbolic, withan

1
asymptoteat 1-2x = 0, x = 1

2

It is always possible in all of the foregoing to set wo = 1. This is

because all equations are homogeneous. It is never possible for w0 = 0,

since this leads to certain degunerate cases.

We remark in passing that when

[w 0 w, wOe W1
1) = [1 1 0 01

the equation reduces to the ordinary parametric cubic, given by

V = [u 3 u2 uIj M "vO0

vi

V0

Vl

and w is constant and equal to 1. Hence the rational polynomial functions

contain as special cases all conics, ordinary cubics, and of course therefore

strawght lines and circles.

4$
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Their use as bouaidary curve[ for surface patches is obvious. They

maintain tangent vector continuity between adjacent patches; indeed, if the

F0 and F functions are constructed as rational functions, we can establish

the F1 function
u3

F1 (u) 32
3u -3u+l

This function has the end conditions

i,+ "•'0 0 0 11

Vol 1 0 01
1vo = 100

v 1 0 0

Vo"0 0 0

VIl"i 0 0 0

Sincev 0 " = Xv 0 ' = 0[1 0 J andvl"= Xv' 0 1 0 01, the

curve has a point of inflection at u = C and u = 1. Hence its use insures

curvature continuity across boundaries between patches, provided of course

the boundary curves have similar curvature continuity at patch corners.

The cure is symmetric. Ftrthermore, we can put

F 0 (u) = I - F1 (u)

and obtain directly the F 0 function, another cubic rational function, with

similar properties to F 1

8.3 AN EXAMPLE

We shall work out the equation for the F!(t) blend'ng function with the

customary stipulations that

F1(1) = 1, F1 (0) = F1 '(0) = FI'(I) = 0,

and with the two additional stipulations that F,"(0) = F,"(1) =0 as well.

Ii
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This blending function will give both slope and curvature continuity across the

common boundary between two contiguous patches. The end-conditions are,

forv IFo(U) I],

vi

v11 010

00

V 0 "1

vI' 0 0

iVo" 0 0

The matrix [P Q R - v0 0 0 0

0 vI 0 0

0 0 0 0

-0 0 0 0 i

r6044
6 0 4 4

-2 0 l1_-2 0 -1 -1

obtained by direct subEtitution in the given form.

Its inverse is 0 -1 0 -4 =S
1 0 -4 0

-2 2 6 6

-2 o -6 o J

.. ai
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I kv-Now set v, [4 1~ for symmeatrvz Then 9naceu 1i• : ., - - ... ... 2 '

"[o W0 w W1
1 = [0 0 8 v S

I =[0 0 4 81 0 -1 0 --4

•- 1 0 -4 0

-2 2 6 6

ý2 0 -6 0 .

[8 8 -24 24].

Now if w0  1, instead of 8, the equation becomes

[w0 w 1 wO' Wl'] Ill -331

"we have

-'A =M "w0 v0

W v1

IWe' V0 + wo Vol

* ands t the values )f [ w0 w w0' w1w 1 :

A [2 -2 1 1 0 1] = 1 0

S-3 3 -2 -11 -1 1 0 3

S0 0 1 01 0 -3 0 -

S .1 0 0 0 .3 3. 0 1

Fina~lk, WV = I*'x W] = u 3u 2 ul] "1 0-

0 3

0 -3

-0 1j

[wx w! = [(01 3u 2 -3u+1J

4

~ ~ .*
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3!Hence X = F(u) as required. The other

Hene x= w 3u2 -3u+ 1

F0 function is

3 2
-u +3u2 3u +

3ue- 3u + I

This is seen to be a rational cubic function also.

8.4 PLANE CURVE THROUGW A POINT

The plane curve vector is v fx y i!, wv = wx wy wJ. Here

the polynomial denominators !i x = and y = are both the same.
w w

As before, the end conditions on the curve are contained in the

matrix v" .

vi

•VOw

We wish to cause the curve to pass through some arbitrary point vc

(commonly called a "shoulder point'" and it will turn out that we shall also

be free to choose some arbitrary slope at this point. It is important to

distinguish between the term "slope" and "tangent vector". The slope of a

curve implies that the direction of the tangent vector is known, but the magnitude

of the vector is not under our control.

We begin by assuming some value of the parameter u to correspond to

v . For purposes of illustration, let u =- at tids point.



90 SECTIONV1

Then, fromwv u 3 u 2 u I A, we write
1"

"v (1 2 4 8) M "wov
c 80

wv11

w0' v0 + w 0 v0•

W 1v+ W IvI: I

Observe that we have arbitrarily set w = 1. This is harmless, since

the equation is, as we have observed, homogeneous.

By multiplying the matrices, combining, and collecting terms as we

have done before, we achieve the result

8 v c = w0 wI w', z'j 4 v0 + v0'

4 v1 - vl

"v0

-vi

The matrix on the right is a 4 x 3 matrix; to make it square, so that it

can have an inverse, we need an additional column. This column can be pro-

vided by a scaler equation, and the slope relationship will furnish this equa-

tion.

We first find an expression for the tangent vector at vc. Differentiating,

we obtain as usual,

(WV)' = [3u.2ul0] A

S[3u22ulO] M "wO0

w1

wo

WII
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This last equation comes fcom the equation for (wv)t by an argument that

we have used before; that since wv [wx wy w 1, (wv)' - f (wx)' (wy)' w.' ..

Hence w' corresponds to the last column of rw0 v "
w wI v

(w0 vo)'1

which is fw

W,

w0

wI
~~1

Now at v, we have already set u = We make this substitution, and

obtain, from

wv' = (wv)'- wtv

1 I-- 6 -1 1 "wo( -v) v

t wO~~''vO-vc wvOIw 410 0 c OO

wl' (V v vc) + w IVl

When we perform the indicated multiplications, and then collect results

and restore to matrix form, we have

4vc' = [w0 w ' I WI] j (vO -vc)- 0

6 (v 1 - Vcd vi'

v -V

L ve - v1
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We are now ready to introduce the slope condition. We could write

dl but this would yield awkward results when the slope became very

great and approached an infinite slope. Instead, we choose two numbers a

and b so that ax& = by'. It is obvious that these numbers can very appropri-

ately be a = sin G , b cos 8 where is the slope angle. Then, for v,

0 =byc - ax

c c

This is a scalar equation.

o Now X' is the first component of Vc. and y' is the second component

Sof v'. Hence these quantities correspond tc tke first and second columns of

the matrix in the equaion for v'C, respectively. We can writt this out In

detalb

0= [wo w6(1 o - Yw J

CYy - YO

L Yc - Y

-a ["o(x°- x0'' =["o wp Wo l, P

S I

L C

where the brackets on the right enclose the resulting 411 matr~x (or column

vector).

T'he factor 4 (of 4 v ')obviously drops out of the equation.
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We now adjoin this to the equation for vc. Again we can drop the 8 (from

[v 0

[W0 WI Wo' w1 41 vO + vO' p
S0 1

4v, -v q

v0 r

-VV

The vector on the left consists of four components: [ xYc 1 0J;the

matrix on the right is a 4 x 4 matrix. If it has an inverse, S, then we can

solve for [ w w w0 w 1  by the equation

rwo w1 w0 ' w *I = tv 01 s.

These values of the w vector cause the curve to satisfy the desired

conditions.

8.5 SECOND DERIVATIVE VECTORS

We have already discussed rational functions for

v = [x I3 (andofcourse [y 1 and [z 11.)

In particvi,+ we showed that curves based upon these functions can

usually have arbitrary first and second derivative vectors at the end-points,

and in addition can be cause.d to pass through some shoulder point v c, also

arbitrarily chosen.

When the vector v = [x y 11, the complete generality of the resulting

curves is somewhat curtailed. We shall investigatc the conditions under which

such a plane curve can satisfy end conditions including second derivatives.

We have already obtained an expression for the vector

1w0 v0"" wv'"I = [w 0 w1 w0 ' w1 ' [!PIQJ.

Before, the vectors w0 v0 " and w, v," were actually scalars, since they came

from v" = [ x" 0 1. But since v" = [x" y" 0 1, they are each 2-component
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vectors, and their combination makes a 4-component vector. Similarly P and

Q are now each a 4 x 2 matrix, and their combination is a 4 x 4 matrix.

We carry w0 vo" and wI Vl" across the equal sign, and obtain on the left

the null vector:

[0 00 01 [V= o1 W 0 ' wo J [l'I P Q v0 "i 0 0

0 00 0

0 0 0 0

10 0 0 0-

The matrix on the right is 4 x 4. Now the condition that must hold, in

order for there to be a solution for [ w w, wO' w1 
1 ., is that this matrix

must be singular; the determinant of this matrix must vanish.

This last remark tells us that vo" and v1 "' cannot be chosen entirely

arbitrarily. However, it is always possible to make the determinant of the

matrix vanish by the adjustment of any one of the four components of vo0 and

v1 ''. Thus if one of the four components is the number a, we can expand the

determinant in such a way as to obtain the equation.

k a + k2 = 0, from which a can be found.
1 2

Suppose the matrix is, or has been caused to be, singular. Then, if

[0 00 0 = [w 0 w1 w0 ' w 1
1 S,

we make it non-singular by an appropriate modification. In some cases, this

might consist in adding 1 to an element in the top row of S. As an illustration,

we might have

0 0 0 W

[0 00 wf [1wo w Iw 0 w 111 s -. 100 0 0
0 0 0 0

0o 0 0 0i
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It can be seen that this modification is still a valid equation; 'f the

modified S matrix now has an inverse, we can immediately obtain it and solve

for the w vector.

As an illustration, consider the end conditions

v0 0 01

v10 1 0 0

Vo 

1 
0 

0

Li . 1'jt L a 0 0

We plan to adjust a in v"1
1 until the matrix is singular,

We require first the matrix [ P I Q ], which is givens by

-4 Vol 6 (v0 - Vl) + 2 vo0

6 (v., - Vo) - 2 V1' 4 vl

-2 vc' 
2 (v0 -v)

-2 (vI - Vo) -2 vJ1

Substitution of the end conditions gives the 4 x 4 matrix:

"-4 0 -6 -61 + (2 01 -4 0 -4 -6

(6 61- 12 0] 4 0 4 6 4 0

-2 0 -2 -2 -2 0 -2 -2

-2 -2 -2 0 -2 -2 -2 0

In passing, we note that if our end conditions had been v0 " = 0 0 0 10

and if also " 0 0 C1, the resulting matrix would be singular, because

the first and third columns of ( Pt Q I are identical. However, this is not

our present case.

I1



We now subtract the matrix j
V 0

1  1 0 1 0 0 0

0 0V 1 11 00 a0

S0 0 0 0 0 0 0 0|

from [PI QI and obtain

"-5 0 -.4 -61]

S4 6 (4-a) 0

-2 0 -2 -2

-2 -2 -2 0

By a series of reductions accomplished by multiplying rows of the matrix

and additioas (or subtractions) of rows to remove elements, we can obtain the

determinant

WaI) - 1 =0

This Implies

a = 2.

This is the value of a that makes the matrix siquldar.

The singular matrix Is [-5 0 -4 -6

4 6 2 0

-2 0 -2 -2

--2 -2 -2 0-

We make it non-singular by adding 1 to tW• top left element. The matrix

Is now
F-4 0-4-6

4 6 2 0

-2 0 -2 -2

-2 -2 -2 j0!
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and corresponds to the vector [ w0 0 0 0 on the left of the equation.

SThe inverse of this matrix is

S 2 1 -6 32

-1 0 3 -1 =R.

-1 -1 3 -3

-1 0 2 01

Finally, [w wI wO W0 # = 1 w. 0 0 01 R.

If we arbitrarily set w0 = 2, then the required solution is just the top

row of R, or

[w 0 w1 wI w0' = (2 1 -6 31.

With these numbers known, the curve equation is completely defined. We

obtain it by substition in the canonical form:

3 2
wv =[u u ul] M w v0  1

w I I

LWo, v0 + wo v,.'J

[u u ul] M 0 0 2

0 111

[0 0 -61 + [2 0 01

(3 3 31 + [1 0 01oJ
u3 2 -[

= u 3 al1 2 -2 1 1 0 0 2

-3 3 -2 -1 1 1 1

0 0 1 0 2 0 -6

1 0 0 4 3 3J
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Fulu ul2 4 1 -F

1-5 0 6

2 0 -6

The separate equations for the x and y coordinates of the curve can be

exhibited:

4u - Su2 + 2u

-u +6u 2-6u+2

3
u

=-u + 6u2-6u+2

In the foregoing, certain matrices have occurred. These matrices are

significant ones, and can be wTitten as transformations of the common

matrix v 0

V,

v v0

vi'

as follows:

For the conic condition matrix,

[2 v0 vO' 2 0 1 0 v1

i -2 v + v1 = 0 -2 0 1 v1

v0 1 0 0 0 Vol

v1 0 1 0 0 Vl
V, L 1
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.Por the u v shoulder point condition,c

"4 v0 +vo , 4 0 1 01 [o
00 V12v:, 0 4 0 -11o V ,

1 0 0 0.- v1 0 -1 0 0 vf

For the P and Q matrices aasociated with w0 Vo, and Vi l

4 V 0 0 -4 0 v1

6v1-6v0-2 1, -6 6 0 -2 v4

-2 v2 0 0 -2 0 V10

_- "-2,-+2 Vo j 2 -2 0 o j vi

6vo-6V1 +2 o1 -6 2 0 : o
4 V,• 0 0 0 4 Vl,

-2 0 0 0 -2

[001
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APPENDIX

COMPUTER -GENERATED IMAGES

I
II

Three orthographic views and a perspective view (upper right) of a single
surface. The perspective was generated by the computer from the three orthog-
raphic views given it. When registered on a cathode-ray tube a change in any
one of the views will automatically cause a change to be made in the other views.

*T•ese computer-generated images were provided by Prof. B. Herzog of the
University of Michigan, and are shown through the courtesy of Ford Motor
Company.

- FLANK ~' ~ID1i
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Perspctive viewn of other surfaces.
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