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Abstract We introduce the notion of biconservative hypersurfaces, that is hypersurfaces
with conservative stress-energy tensor with respect to the bienergy. We give the (local)
classification of biconservative surfaces in three-dimensional space forms.
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1 Introduction

A hypersurface Mm in an (m + 1)-dimensional Riemannian manifold N m+1 is called bicon-
servative if

2A(grad f ) + f grad f = 2 f RicciN (η)�, (1)

where A is the shape operator, f = trace A is the mean curvature function, and RicciN (η)�
is the tangent component of the Ricci curvature of N in the direction of the unit normal η of
M in N .
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530 R. Caddeo et al.

The name biconservative, as we shall describe in Sect. 2, comes from the fact that condition
(1) is equivalent to the conservativeness of a certain stress-energy tensor S2, that is div S2 = 0
if and only if the hypersurface is biconservative. The tensor S2 is associated with the bienergy
functional. In general, a submanifold is called biconservative if div S2 = 0.

Moreover, the class of biconservative submanifolds includes that of biharmonic subman-
ifolds, which have been of large interest in the last decade (see, for example, [1–4,9,19,20]).
Biharmonic submanifolds are characterized by the vanishing of the bitension field and they
represent a generalization of harmonic (minimal) submanifolds. In fact, as detailed in Sect. 2,
a submanifold is biconservative if the tangent part of the bitension field vanishes. It is worth
to point out that, thinking at the energy functional instead of the bienergy functional, the
notion of conservative submanifolds is not useful as all submanifolds are conservative (see
Remark 2.1). We also would like to point out that submanifolds with vanishing tangent part
of the bitension field have been considered by Sasahara in [22] where he studied certain
three-dimensional submanifolds in R

6.
In this paper, we consider biconservative surfaces in a three-dimensional space form N 3(c)

of constant sectional curvature c. In this case, (1) becomes

2A(grad f ) + f grad f = 0. (2)

From (2), we see that CMC surfaces, that is, surfaces with constant mean curvature, in space
forms are biconservative. Thus, our interest will be on NON CMC biconservative surfaces.

As a general fact, we first prove that the mean curvature function f of a biconservative
surface in a three-dimensional space form satisfies the following PDE

f � f + |grad f |2 − 16

9
K (K − c) = 0,

where K denotes the Gauss curvature of the surface, while � is the Laplace–Beltrami operator
on M .

Then, the paper is completely devoted to the local classification of biconservative sur-
faces in three-dimensional space forms. This is done in three sections where we examine,
separately, the cases of: surfaces in the three-dimensional Euclidean space; surfaces in the
three-dimensional sphere; surfaces in the three-dimensional hyperbolic space.

For biconservative surfaces in R
3, we shall reprove a result of Hasanis and Vlachos

contained in [13], where they call H -surfaces the biconservative surfaces.

Theorem 4.5 Let M2 be a biconservative surface in R
3 with f (p) > 0 and grad f (p) �= 0

for any p ∈ M. Then, locally, M2 is a surface of revolution.

In fact, we give the explicit parametrization of the profile curve of a biconservative surface
of revolution (see Proposition 4.1), which is not in [13]. In their paper, the authors also studied
the case of biconservative hypersurfaces in R

4 obtaining a similar result to Theorem 4.5.
Our approach is slightly different and allows us to go further and classify the biconservative

surfaces in S
3 and in H

3. Moreover, the notion of biconservative submanifolds is more general
than the notion of H -hypersurfaces in R

n .
Considering S

3 as a submanifold of R
4, the biconservative surfaces in S

3 are characterized
by the following

Theorem 5.2 Let M2 be a biconservative surface in S
3 with f (p) > 0 and grad f (p) �= 0

at any point p ∈ M. Then, locally, M2 ⊂ R
4 can be parametrized by
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Surfaces in three-dimensional space forms 531

XC (u, v) = σ(u) + 4

3
√

Ck(u)3/4

(
C1(cos v − 1) + C2 sin v

)
,

where C is a positive constant of integration, C1, C2 ∈ R
4 are two constant orthonormal

vectors such that

〈σ(u), C1〉 = 4

3
√

Ck(u)3/4
, 〈σ(u), C2〉 = 0,

whileσ = σ(u) is a curve lying in the totally geodesic S
2 = S

3∩� (� the linear hyperspace of
R

4 orthogonal to C2), whose geodesic curvature k = k(u) is a positive non-constant solution
of the following ODE

k′′k = 7

4
(k′)2 + 4

3
k2 − 4k4.

Geometrically, Theorem 5.2 means that, locally, the surface M2 is given by a family of
circles of R

4, passing through the curve σ and belonging to a pencil of planes which are
parallel to the linear space spanned by C1 and C2. Now, these circles must be the intersection
of the pencil with the sphere S

3. Let G be the one-parameter group of isometries of R
4

generated by the Killing vector field

T = 〈r, C2〉C1 + 〈r, C1〉C2,

where r represents the position vector of a point in R
4. Then, G acts also on S

3 by isometries
and it can be identified with the group SO(2). Since the orbits of G are circles of S

3, we
deduce that XC (u, v), in Theorem 5.2, describes an SO(2) invariant surface of S

3 obtained
by the action of G on the curve σ . Moreover, as we shall explain in Remark 5.3, there exist
solutions of the ODE in Theorem 5.2 for the corresponding profile curve σ . Although we are
not able to give explicit solutions for σ , as we have done for the biconservative surfaces in
R

3, using Mathematica, we give a plot of a numerical solution of the ODE in Theorem 5.2,
which describes the behavior of the curvature of σ .

Let us consider the following model for the hyperbolic space

H
3 = {(x1, x2, x3, x4) ∈ L

4 : x2
1 + x2

2 + x2
3 − x2

4 = −1, x4 > 0},
where L

4 is the four-dimensional Lorentz–Minkowski space. Then, we have the following
description of biconservative surfaces in H

3.

Theorem 6.2 Let M2 be a biconservative surface in H
3 with f (p) > 0 and grad f (p) �= 0

at any point p ∈ M. Put W = 9|grad f |2/(16 f 2) + 9 f 2/4 − 1. Then, locally, M2 ⊂ L
4

can be parametrized by:

(a) if W > 0

XC (u, v) = σ(u) + 4

3
√

Ck(u)3/4

(
C1(cos v − 1) + C2 sin v

)
,

where C is a positive constant of integration, C1, C2 ∈ L
4 are two constant vectors such

that

〈Ci , C j 〉 = δi j , 〈σ(u), C1〉 = 4

3
√

Ck(u)3/4
, 〈σ(u), C2〉 = 0,

while σ = σ(u) is a curve lying in the totally geodesic H
2 = H

3 ∩ � (� the linear
hyperspace of L

4 defined by 〈r, C2〉 = 0), whose geodesic curvature k = k(u) is a
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positive non-constant solution of the following ODE

k′′k = 7

4
(k′)2 − 4

3
k2 − 4k4.

(b) if W < 0

XC (u, v) = σ(u) + 4

3
√−Ck(u)3/4

(
C1(e

v − 1) + C2(e
−v − 1)

)
,

where C is a negative constant of integration, C1, C2 ∈ L
4 are two constant vectors such

that

〈Ci , Ci 〉 = 0, 〈C1, C2〉 = −1, 〈σ(u), C1〉 = 〈σ(u), C2〉 = − 2
√

2

3
√−Ck(u)3/4

,

while σ = σ(u) is a curve lying in the totally geodesic H
2 = H

3 ∩ � (� the linear
hyperspace of L

4 orthogonal to C1 − C2), whose geodesic curvature k = k(u) is a
positive non-constant solution of the same ODE in (a).

We note that a surface in a three-dimensional space form for which both tangent and
normal part of its bitension field vanish, that is, a biharmonic surface, must be CMC (see
[6,8]). Therefore, the assumption that only the tangent part of the bitension field vanishes
does not imply that the surface is CMC.
Conventions. Throughout this paper, all manifolds, metrics, and maps are assumed to be
smooth, that is, of class C∞. All manifolds are assumed to be connected. The following sign
conventions are used

�ϕV = −trace ∇2V, RN (X, Y ) = [∇X ,∇Y ] − ∇[X,Y ],

where V ∈ C(ϕ−1(TN)) and X, Y ∈ C(TN).
By a submanifold M in a Riemannian manifold (N , h) we mean an isometric immersion

ϕ : M → (N , h).

2 Biharmonic maps and the stress-energy tensor

As described by Hilbert in [14], the stress-energy tensor associated with a variational
problem is a symmetric 2-covariant tensor S conservative at critical points, that is, with
div S = 0.

In the context of harmonic maps ϕ : (M, g) → (N , h) between two Riemannian mani-
folds, that by definition are critical points of the energy

E(ϕ) = 1

2

∫

M

|dϕ|2 vg,

the stress-energy tensor was studied in detail by Baird and Eells in [5] and Sanini in [21].
Indeed, the Euler–Lagrange equation associated with the energy is equivalent to the vanishing
of the tension field τ(ϕ) = trace ∇dϕ (see [11]), and the tensor

S = 1

2
|dϕ|2g − ϕ∗h

satisfies div S = −〈τ(ϕ), dϕ〉. Therefore, div S = 0 when the map is harmonic.
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Remark 2.1 We point out that, in the case of isometric immersions, the condition div S = 0
is always satisfied, since τ(ϕ) is normal.

A natural generalization of harmonic maps, first proposed in [12], can be obtained con-
sidering the bienergy of ϕ : (M, g) → (N , h) which is defined by

E2(ϕ) = 1

2

∫

M

|τ(ϕ)|2 vg.

The map ϕ is biharmonic if it is a critical point of E2 or, equivalently, if it satisfies the
associated Euler–Lagrange equation

τ2(ϕ) = −�τ(ϕ) − trace RN (dϕ, τ(ϕ))dϕ = 0.

The study of the stress-energy tensor for the bienergy was initiated in [15] and afterward
developed in [17]. Its expression is

S2(X, Y ) = 1

2
|τ(ϕ)|2〈X, Y 〉 + 〈dϕ,∇τ(ϕ)〉〈X, Y 〉

−〈dϕ(X),∇Y τ(ϕ)〉 − 〈dϕ(Y ),∇X τ(ϕ)〉,
and it satisfies the condition

div S2 = −〈τ2(ϕ), dϕ〉, (3)

thus conforming to the principle of a stress-energy tensor for the bienergy.
If ϕ : (M, g) → (N , h) is an isometric immersion, then (3) becomes

div S2 = −τ2(ϕ)�.

This means that isometric immersions with div S2 = 0 correspond to immersions with van-
ishing tangent part of the corresponding bitension field. The decomposition of the bitension
field with respect to its normal and tangent components was obtained with contributions of
[1,7,16,18,19] and for hypersurfaces, it can be summarized in the following theorem.

Theorem 2.2 Let ϕ : Mm → N m+1 be an isometric immersion with mean curvature vector
field H = f η. Then, ϕ is biharmonic if and only if the normal and the tangent components
of τ2(ϕ) vanish, that is, respectively,

� f − f |A|2 + f RicciN (η, η) = 0 (4a)

and

2A(grad f ) + f grad f − 2 f RicciN (η)� = 0, (4b)

where A is the shape operator, f = trace A is the mean curvature function, and RicciN (η)�
is the tangent component of the Ricci curvature of N in the direction of the unit normal η of
M in N.

Finally, from (4b), an isometric immersion ϕ : Mm → N m+1 satisfies div S2 = 0, that is,
it is biconservative, if and only if

2A(grad f ) + f grad f − 2 f RicciN (η)� = 0,

which is Eq. (1) given in the introduction.

123



534 R. Caddeo et al.

3 Biconservative surfaces in the three-dimensional space forms

In this section, we consider the case of biconservative surfaces M2 in a three-dimensional
space form N 3(c) of sectional curvature c. In this setting, (1) becomes

A(grad f ) = − f

2
grad f. (5)

If M2 is a CMC surface, that is f = constant, then grad f = 0 and (5) is automatically
satisfied. Thus, biconservative surfaces include the class of CMC surfaces whether compact
or not.

We now assume that grad f �= 0 at a point p ∈ M and, therefore, there exists a neigh-
borhood U of p such that grad f �= 0 at any point of U . On the set U , we can define an
orthonormal frame {X1, X2} of vector fields by

X1 = grad f

|grad f | , X2 ⊥ X1, |X2| = 1. (6)

From (5), we have

A(X1) = − f

2
X1,

thus X1 is a principal direction corresponding to the principal curvature λ1 = − f/2. Since
X2 ⊥ X1, X2 is a principal direction with eigenvalue λ2 such that

f = trace A = λ1 + λ2 = − f

2
+ λ2

and therefore λ2 = 3 f/2. From this, using the Weingarten equation, we immediately see that
the Gauss curvature of the surface is

K = det A + c = −3 f 2/4 + c (7)

and the norm of the shape operator is |A|2 = 5 f 2/2. Moreover, by the definition of X1, we
obtain

(X1 f )X1 = 〈grad f, X1〉X1 = grad f.

Thus,

grad f = (X1 f )X1 + (X2 f )X2 = grad f + (X2 f )X2,

which implies that

X2 f = 0. (8)

We are now in the right position to state the main result of this section.

Theorem 3.1 Let M2 be a biconservative surface in N 3(c) which is not CMC. Then, there
exists an open subset U of M such that the restriction of f in U satisfies the following
equations

K = det A + c = −3 f 2/4 + c (9)
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and

f � f + |grad f |2 − 16

9
K (K − c) = 0, (10)

where � is the Laplace–Beltrami operator on M.

Proof Since M2 is not CMC, there exists a point p with grad f (p) �= 0. Thus, grad f �= 0
in a neighborhood V of p. Now, since f cannot be zero for all q ∈ V , there exists an open
set U ⊂ V with f (q) �= 0 for all q ∈ U . Let us define on U the local orthonormal frame
{X1, X2} as in (6) and let {ω1, ω2} be the dual 1-forms of {X1, X2} with ω

j
i the connection

1-forms given by ∇ Xi = ω
j
i X j . Since f �= 0 on U , we can assume that f > 0 on U .

Equation (9) is just (7). We shall prove (10).
Since A(X1) = −( f/2)X1 and A(X2) = (3 f/2)X2, from the Codazzi equation

∇X1 A(X2) − ∇X2 A(X1) = A([X1, X2]),
we obtain

(
4 f ω1

2(X1) + X2 f
)

X1 + (
3X1 f + 4 f ω2

1(X2)
)

X2 = 0.

Since X2 f = 0 and f (p) �= 0 for all p ∈ U , we deduce that
{

ω1
2(X1) = 0

ω1
2(X2) = 3

4
X1 f

f .
(11)

Next, using (11), the Gauss curvature of M2 is

K = 〈R(X1, X2)X2, X1〉 = X1(ω
1
2(X2)) − (ω1

2(X2))
2,

that, together with (7), gives

−3 f 2

4
+ c = X1(ω

1
2(X2)) − (ω1

2(X2))
2

which is equivalent, taking into account (11), to

(X1 X1 f ) f = 7

4
(X1 f )2 + 4c

3
f 2 − f 4. (12)

Now, a straightforward computation gives

−� f = X1 X1 f − 3

4 f
(X1 f )2,

that, substituted in (12), taking into account (7), yields the desired equation

f � f + |grad f |2 − 16

9
K (K − c) = 0.

��
4 Biconservative surfaces in R

3

We shall now consider the case of biconservative surfaces in R
3. We start our study investi-

gating in detail the case of surfaces of revolution. Without loss of generality, we can assume
that the surface is (locally) parametrized by
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536 R. Caddeo et al.

X (u, v) = (ρ(u) cos v, ρ(u) sin v, u) (13)

where the real-valued function ρ is assumed to be positive. The induced metric is ds2 =
(1 + ρ′2)du2 + ρ2dv2, and a routine calculation gives

A =
(

− ρ′′
(1+ρ′2)3/2 0

0 1
ρ(1+ρ′2)1/2

)

.

Thus,

f = 1

(1 + ρ′2)1/2

(
1

ρ
− ρ′′

(1 + ρ′2)

)
,

and

grad f = 1

(1 + ρ′2)
f ′ ∂

∂u
.

Then, (5) becomes

f ′

2(1 + ρ′2)3/2

(
3ρ′′

1 + ρ′2 − 1

ρ

)
= 0. (14)

Proposition 4.1 Let M2 be a biconservative surface of revolution in R
3 with non-constant

mean curvature. Then, locally, the surface can be parametrized by

XC (ρ, v) = (ρ cos v, ρ sin v, u(ρ)),

where

u(ρ) = 3

2C

(
ρ1/3

√
Cρ2/3 − 1 + 1√

C
ln

[
2(Cρ1/3 +

√
C2ρ2/3 − C)

])
,

with C a positive constant and ρ ∈ (C−3/2,∞). The parametrization XC consists of a family
of biconservative surfaces of revolution any two of which are not locally isometric.

Proof If f is not constant, then from (14), we must have that ρ is a solution of the following
ODE

3ρ ρ′′ = 1 + (ρ′)2. (15)

We shall now integrate (15). Using the change of variables y = ρ′2, we get

3
dy

1 + y
= 2

dρ

ρ
.

Integration yields

ρ′2 = Cρ2/3 − 1,

where C is a positive constant. Thus,

dρ
√

Cρ2/3 − 1
= ±du.
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Fig. 1 Plots of the function u(ρ)

for C = 1, C = 1.5 and C = 2

Now, using the change of variable y = ρ1/3, we obtain

3y2
√

Cy2 − 1
dy = ±du.

The latter equation can be integrated and, up to a symmetry with respect to the xy-plane,
followed by a translation along the vertical z-axis, gives the following solution

u = u(ρ) = 3

2C

(
ρ1/3

√
Cρ2/3 − 1 + 1√

C
ln

[
2(Cρ1/3 +

√
C2ρ2/3 − C)

])
,

where ρ ∈ (C−3/2,∞). Since the derivative of u(ρ) is

u′(ρ) = 1
√

Cρ2/3 − 1
,

we deduce that u(ρ) is invertible for ρ ∈ (C−3/2,∞) and its inverse function produces the
desired solution of (15). For a plot of the function u(ρ) see Fig. 1. ��

Remark 4.2 If we denote by σ(u) = (ρ(u), 0, u) the profile curve of the surface described in
Proposition 4.1 and we reparametrize it by arc-length, then its curvature function k satisfies
the ODE

kk′′ = 7

4
(k′)2 − 4k4.

Moreover, the Gauss curvature and mean curvature functions of the surface are

K (ρ, v) = − 1

3Cρ8/3 , f (ρ, v) = 2

3
√

Cρ4/3
.

It is worth remarking that f is non-constant (as assumed in the Proposition 4.1) and that the
values of K and f are in accord with (7).

4.1 The general case

We shall now prove that, essentially, the family described in Proposition 4.1 gives, locally,
all non-CMC biconservative surfaces. To achieve this, we assume that f is positive and that
grad f �= 0 at any point. We define the local orthonormal frame {X1, X2} as in (6) and from
the calculations in the proof of Theorem 3.1, we have

123
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{
∇X1 X1 = 0, ∇X1 X2 = 0,

∇X2 X1 = − 3(X1 f )
4 f X2, ∇X2 X2 = 3(X1 f )

4 f X1.
(16)

Let η be a unit vector field normal to the surface M . Then, if we denote by ∇ the connection
of R

3, a straightforward computation gives
⎧
⎪⎨

⎪⎩

∇X1 X1 = − f
2 η, ∇X1 X2 = 0,

∇X2 X1 = − 3(X1 f )
4 f X2, ∇X2 X2 = 3(X1 f )

4 f X1 + 3 f
2 η,

∇X1η = f
2 X1, ∇X2η = − 3 f

2 X2.

(17)

Put

κ2 ξ = 3(X1 f )

4 f
X1 + 3 f

2
η = ∇X2 X2, (18)

where

κ2 =
√

9(X1 f )2

16 f 2 + 9 f 2

4
. (19)

We have the following lemma.

Lemma 4.3 The function κ2 and the vector field ξ satisfy

(a) X2κ2 = 0;
(b) ∇X2ξ = −κ2 X2;
(c) 4(X1κ2)/κ2 = 3(X1 f )/ f ;
(d) ∇X1ξ = 0.

Proof From X2 f = 0 and [X1, X2] = 3(X1 f )X2/(4 f ), if follows that

X2 X1 f = X1 X2 f − [X1, X2] f = 0.

Since κ2 depends only on f and X1 f , (a) follows. To prove (b), using (a) and (17), we have

∇X2ξ = 1

κ2
∇X2

(
3(X1 f )

4 f
X1 + 3 f

2
η

)

= 1

κ2

(
−9(X1 f )2

16 f 2 X2 − 9 f 2

4
X2

)

= − 1

κ2
κ2

2 X2 = −κ2 X2.

To prove (c), first observe that a direct computation gives

4
X1κ2

κ2
= 1

4 f 4

9 f 2(X1 f )(X1 X1 f ) − 9 f (X1 f )3 + 36 f 5(X1 f )

9(X1 f )2

16 f 2 + 9 f 2

4

.

Then, (c) is equivalent to

3
X1 f

f
= 1

4 f 4

9 f 2(X1 f )(X1 X1 f ) − 9 f (X1 f )3 + 36 f 5(X1 f )

9(X1 f )2

16 f 2 + 9 f 2

4
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Surfaces in three-dimensional space forms 539

which is itself equivalent to

f (X1 X1 f ) − 7

4
(X1 f )2 + f 4 = 0.

Now, the latter equation is (10) with c = 0 (see also (12)).
We now prove (d). First, from a direct computation, taking into account (17), we have

∇X1ξ = 3

4

(
X1

(
X1 f

f κ2

)
+ f 2

κ2

)
X1 + 3

2

(
X1

(
f

κ2

)
− 1

4

X1 f

κ2

)
η.

We have to show that both components are zero. First,

X1

(
f

κ2

)
− 1

4

X1 f

κ2
= 0

if and only if

4
X1κ2

κ2
= 3

X1 f

f
,

which is identity (c). Similarly, using (c),

X1

(
X1 f

f κ2

)
+ f 2

κ2
= 0

if and only if

f (X1 X1 f ) − 7

4
(X1 f )2 + f 4 = 0,

which is identity (12). ��

Remark 4.4 It is useful to observe that, from Lemma 4.3, (a)–(b), the integral curves of the
vector field X2 are circles in R

3 with curvature κ2.

We are now in the right position to state the main result of this section.

Theorem 4.5 (see also Proposition 3.1 in [13]) Let M2 be a biconservative surface in R
3

with f (p) > 0 and grad f (p) �= 0 for any p ∈ M. Then, locally, M2 is a surface of
revolution.

Proof Let γ be an integrable curve of X2 parametrized by arc-length. From Lemma 4.3,
(a)–(b), γ is a circle in R

3 with curvature κ2, that can be parametrized by

γ (s) = c0 + c1 cos(κ2s) + c2 sin(κ2s), c0, c1, c2 ∈ R
3 (20)

with

|c1| = |c2| = 1

κ2
, 〈c1, c2〉 = 0.

Let p0 ∈ M be an arbitrary point and let σ(u) be an integral curve of X1 with σ(0) = p0.
Consider the flow φ of the vector field X2 near the point p0. Then, for all u ∈ (−δ, δ) and
for all s ∈ (−ε, ε),
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540 R. Caddeo et al.

φσ(u)(s) = c0(u) + c1(u) cos(κ2(u)s) + c2(u) sin(κ2(u)s),

where the vectorial functions c0(u), c1(u), c2(u), which are uniquely determined by their
initial conditions, satisfy

σ(u) = c0(u) + c1(u), |c1(u)| = |c2(u)| = 1

κ2(u)
, 〈c1(u), c2(u)〉 = 0,

while κ2(u) = κ2(σ (u)). Thus, locally, the surface can be parametrized by

X (u, s) = φσ(u)(s).

Now, since κ2(0) > 0, there exists δ′ > 0 such that for u ∈ (−δ′, δ′) we have κ2(u) >

κ2(0)/2. Then, we can reparametrize X (u, s) using the change of parameter

(u, s) → (u, v = κ2(u)s),

where v is defined in a interval which includes (−κ2(0)ε/2, κ2(0)ε/2). With respect to the
above change of parameters, the parametrization of the surface becomes

X (u, v) = c0(u) + 1

κ2(u)
(C1(u) cos(v) + C2(u) sin(v)) ,

where

C1(u) = κ2(u)c1(u), C2(u) = κ2(u)c2(u).

Since the integral curves of X2 start (at v = 0) from σ , we have

σ(u) = X (u, 0) = c0(u) + 1

κ2(u)
C1(u).

From this

X (u, v) = σ(u) + 1

κ2(u)

(
C1(u)(cos v − 1) + C2(u) sin v

)
. (21)

Using (20), we find

C2 = κ2c2 = γ ′(0) = X2(γ (0)),

which implies that C2(u) = X2(σ (u)). Using (20) again, we get

−κ2
2 c1 = γ ′′(0) = κ2(γ (0)) ξ(γ (0)) = κ2(u) ξ(σ (u)),

which implies that C1(u) = −ξ(σ (u)). Now, we shall prove that C1(u) and C2(u) are, in
fact, constant vectors. Indeed, taking into account Lemma 4.3,(d),

dC1

du
= −∇σ ′ξ = −∇X1ξ = 0.

Moreover, using (17),

dC2

du
= ∇σ ′ X2 = ∇X1 X2 = 0.

Thus, the image of the parametrization (21) is given by a one-parameter family of circles
passing through the points of σ(u) lying in affine planes parallel to the space spanned by C1

and C2.
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To finish the proof, we need to show that the curve of the centers of the circles is a line
orthogonal to C1 and C2. The parametrization (21) can be written as

X (u, v) = β(u) + 1

κ2(u)

(
C1 cos v + C2 sin v

)
,

where

β(u) = σ(u) − C1

κ2(u)

is the curve of the centers. Let show that β is a line. For this, we prove that β ′ ∧ β ′′ = 0.
Since

σ ′′(u) = − f (u)

2
η(σ (u)),

where f (u) = f (σ (u)) and X1 ∧ X2 = η, we have

β ′ ∧ β ′′ =
(

σ ′ −
(

1

κ2

)′
C1

)
∧

(
σ ′′ −

(
1

κ2

)′′
C1

)

= − f

2
X1 ∧ η +

(
1

κ2

)′′
X1 ∧ ξ − f

2

(
1

κ2

)′
ξ ∧ η

(using (18)) =
(

f

2
− 3

f

2

(
1

κ2

)′′ ( 1

κ2

)
+ 3

4

X1 f

2

(
1

κ2

)(
1

κ2

)′)
X2.

Now, replacing (19) in
(

f

2
− 3

f

2

(
1

κ2

)′′ ( 1

κ2

)
+ 3

4

X1 f

2

(
1

κ2

) (
1

κ2

)′)

and using the identities (12) and Lemma 4.3, (c), we find zero.
Finally, β ′ is clearly orthogonal to C2 and

〈β ′, C1〉 = 〈X1, C1〉 −
(

1

κ2

)′

= −〈X1, ξ 〉 −
(

1

κ2

)′

(using (18)) = − 1

κ2

(
3

4

X1 f

f
− κ ′

2

κ2

)

(using Lemma 4.3(c)) = 0.

��

5 Biconservative surfaces in S
3

In this section, we consider biconservative surfaces in 3-dimensional sphere S
3. We assume

that the surface is not CMC and thus we can choose f to be positive and grad f �= 0 at any
point of the surface. We define the local orthonormal frame {X1, X2} as in (6) and we look at
S

3 as a submanifold of R
4. With this in mind and denoting by ∇,∇S

3
and ∇ the connections

of M, S
3 and R

4, respectively, we have, at a point r ∈ M ⊂ S
3 ⊂ R

4,
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{
∇S

3

X1
X1 = − f

2 η, ∇S
3

X1
X2 = 0,

∇S
3

X2
X1 = − 3(X1 f )

4 f X2, ∇S
3

X2
X2 = 3(X1 f )

4 f X1 + 3 f
2 η,

(22)

and
⎧
⎪⎨

⎪⎩

∇X1 X1 = − f
2 η − r, ∇X1 X2 = 0,

∇X2 X1 = − 3(X1 f )
4 f X2, ∇X2 X2 = 3(X1 f )

4 f X1 + 3 f
2 η − r,

∇X1η = f
2 X1, ∇X2η = − 3 f

2 X2,

(23)

where η is a unit vector field normal to the surface M in S
3. Put

κ2 ξ = 3(X1 f )

4 f
X1 + 3 f

2
η − r = ∇X2 X2, (24)

where

κ2 =
√

9(X1 f )2

16 f 2 + 9 f 2

4
+ 1. (25)

We have the following analogue of Lemma 4.3.

Lemma 5.1 The function κ2 and the vector field ξ satisfy

(a) X2κ2 = 0;
(b) ∇X2ξ = −κ2 X2;
(c) 4(X1κ2)/κ2 = 3(X1 f )/ f ;
(d) ∇X1ξ = 0.

Now, let M2 be a biconservative surface in S
3 with f > 0 and grad f �= 0 at any point.

Then, using the same argument as in the proof of Theorem 4.5, we find that, locally, M2 ⊂ R
4

can be parametrized by

X (u, v) = σ(u) + 1

κ2(u)

(
C1(u)(cos v − 1) + C2(u) sin v

)
, (26)

where σ(u) is an integral curve of X1, κ2(u) = κ2(σ (u)) is the curvature of the integral curves
of X2, which are circles in R

4, and C1, C2 are two vector functions such that |C1| = |C2| = 1
and 〈C1, C2〉 = 0. Moreover,

C1(u) = −ξ(σ (u)), C2(u) = X2(σ (u)). (27)

Further, it is easy to see that C1 and C2 are constant vectors. Then, it is clear from
(26) that locally the surface M2 is given by a family of circles of R

4, passing through
the curve σ , and belonging to a pencil of planes which are parallel to the linear space
spanned by C1 and C2. Now, these circles must be the intersection of the pencil with the
sphere S

3. Let G be the one-parameter group of isometries of R
4 generated by the Killing

vector field

T = 〈r, C2〉C1 + 〈r, C1〉C2.

Then, G acts also on S
3 by isometries and it can be identified with the group SO(2). Since the

orbits of G are circles of S
3, we deduce that X (u, v), in (26), describes an SO(2) invariant

surface of S
3 obtained by the action of G on the curve σ . Moreover, we can give the following

explicit construction.
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Theorem 5.2 Let M2 be a biconservative surface in S
3 with f > 0 and grad f �= 0 at any

point. Then, locally, M2 ⊂ R
4 can be parametrized by

XC (u, v) = σ(u) + 4

3
√

Ck(u)3/4

(
C1(cos v − 1) + C2 sin v

)
, (28)

where C is a positive constant of integration, C1, C2 ∈ R
4 are two constant orthonormal

vectors such that

〈σ(u), C1〉 = 4

3
√

Ck(u)3/4
, 〈σ(u), C2〉 = 0, (29)

whileσ = σ(u) is a curve lying in the totally geodesic S
2 = S

3∩� (� the linear hyperspace of
R

4 orthogonal to C2), whose geodesic curvature k = k(u) is a positive non-constant solution
of the following ODE

k′′k = 7

4
(k′)2 + 4

3
k2 − 4k4. (30)

Proof From (26), we know that

X (u, v)=σ(u)+ 1

κ2(u)

(
C1(cos v − 1)+C2 sin v

)
,

Since

〈σ(u), C2〉 = 〈σ(u), X2(σ (u))〉 = 0,

we deduce that σ ⊂ �, where � is the hyperplane of R
4 defined by the equation 〈r, C2〉 = 0.

Thus σ is a curve in S
3 ∩ � = S

2, where S
2 is a totally geodesic 2-sphere of S

3. Now, let k
denotes the geodesic curvature of σ in S

2. Then, taking into account (22), we have

∇S
2

σ ′ σ ′ = ∇S
3

σ ′ σ ′ = − f (u)

2
η(σ (u)),

where f (u) = f ◦ σ(u). We deduce that k(u) = |∇S
2

σ ′ σ ′| = f (u)/2. From (12), with c = 1,
we know that f = f (u) is a solution of

f ′′ f = 7

4
( f ′)2 + 4

3
f 2 − f 4,

which implies that k = k(u) is a solution of (30). To finish, we have to compute κ2(u) as a
function of k(u). First, by a standard argument, we find that (30) has the prime integral

(k′)2 = −16

9
k2 − 16k4 + Ck7/2, C ∈ R, C > 0. (31)

Substituting (31) in (25), we find

κ2(u) = 3

4

√
Ck(u)3/4.

Finally, using the value of C1 in (27) and that of ξ in (24), we get

〈σ(u), C1〉 = 〈σ(u),−ξ(σ (u))〉 = 1

κ2(u)
= 4

3
√

Ck(u)3/4
.

��
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Remark 5.3 Theorem 5.2 asserts that if M2 is a biconservative surface of S
3, then, locally,

it is an SO(2)-invariant surface whose profile curve σ satisfies (29) and (30). It is worth to
show that such a curve exists.

First, the condition in Theorem 5.2 that k is a positive non-constant solution of (30) is not
restrictive. In fact, choosing the initial condition k(u0) > 0 and k′(u0) > 0, from Picard’s
theorem, there is a unique solution of (30) which is positive and non-constant in an open
interval containing u0.

Next, let assume that C1 = e3 and C2 = e4, where {e1, . . . , e4} is the canonical basis of
R

4. Then, using (29), σ can be explicitly described as

σ(u) =
(

x(u), y(u),
4

3
√

C
k(u)−3/4, 0

)
, (32)

for some functions x(u) and y(u). Since σ is parametrized by arc-length and its curvature
must be the given function k (i.e., σ ′′ = −k η − r), the functions x = x(u) and y = y(u)

must satisfy the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2 + y2 + 16
9C k−3/2 = 1

(x ′)2 + (y′)2 + 16
9C

((
k−3/4

)′)2 = 1

(x ′′)2 + (y′′)2 + 16
9C

((
k−3/4

)′′)2 = 1 + k2.

(33)

Taking the derivative and using (30)–(31), system (33) becomes
⎧
⎪⎨

⎪⎩

x2 + y2 + 16
9C k−3/2 = 1

(x ′)2 + (y′)2 = 16
9C (1 + 9k2) k−3/2

(x ′′)2 + (y′′)2 + 16
9C (1 − 3k2)2 k−3/2 = 1 + k2.

(34)

Now, since k′ �= 0, we can locally invert the function k = k(u) and write u = u(k). Then,
system (34) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2 + y2 + 16
9C k−3/2 = 1

(k′)2
( dx

dk

)2 + (k′)2
(

dy
dk

)2 = 16
9C (1 + 9k2) k−3/2

(
d2x
dk2 (k′)2 + dx

dk k′′
)2 +

(
d2 y
dk2 (k′)2 + dy

dk k′′
)2 + 16

9C
(1−3k2)2

k3/2 = 1 + k2,

(35)

where, according to (31),

(k′)2 = −16

9
k2 − 16k4 + Ck7/2, k′′ = −16

9
k − 32k3 + 7

4
Ck5/2.

From the first equation of (35), we get

y(k) = ±
√

1 − x(k)2 − 16

9C
k−3/2,

that substituted in the second gives

dx

dk
= 12x(k)

k(9Ck3/2 − 16)

± 36
√−9Ck3/2x(k)2 + 9Ck3/2 − 16

(9Ck3/2 − 16)
√

9Ck3/2 − 144k2 − 16
. (36)
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Fig. 2 Plot of a numerical
solution of (30) with k(0) = 1
and k′(0) = 1. The constant of
integration is, in this case,
C = 169/9

We note that dx/dk �= 0. In fact, if it were zero, from (36), we should have x(k) =
±3k/

√
1 + 9k2 which is not constant. Taking the derivative of (36) with respect to k and

replacing in it the value dx/dk given in (36), we find that d2x/dk2 depends only on x(k) and
k. In the same way, we find that dy/dk and d2 y/dk2 depend only on x(k) and k. Finally, substi-
tuting in the third equation of system (35), the values of dx/dk, dy/dk, d2x/dk2, d2 y/dk2, k′
and k′′, we find an identity. This means that the solution x(k) of (36) and the cor-
responding y(k) give a curve σ , as described in (32), which satisfies all the desired
conditions.

Now, although we could not find an explicit solution of (30), which would give the
curvature of the profile curve σ , using Mathematica, we were able to plot a numerical solution
as shown in Fig. 2.

6 Biconservative surfaces in the hyperbolic space

Let L
4 be the four-dimensional Lorentz–Minkowski space, that is, the real vector space R

4

endowed with the Lorentzian metric tensor 〈, 〉 given by

〈, 〉 = dx2
1 + dx2

2 + dx2
3 − dx2

4 ,

where (x1, x2, x3, x4) are the canonical coordinates of R
4. The three-dimensional unitary

hyperbolic space is given as the following hyperquadric of L
4,

H
3 = {(x1, x2, x3, x4) ∈ L

4 : x2
1 + x2

2 + x2
3 − x2

4 = −1, x4 > 0}.
As it is well known, the induced metric on H

3 from L
4 is Riemannian with constant sectional

curvature −1. In this section, we shall use this model of the hyperbolic space. For convenience,
we shall recall that, if X, Y are tangent vector fields to H

3, then

∇X Y = ∇H
3

X Y + 〈X, Y 〉r,
where ∇ is the connection on L

4,∇H
3

is that of H
3, while r is the position vector of a point

r ∈ M ⊂ H
3 ⊂ L

4.
Let M2 be a biconservative surface in the 3-dimensional hyperbolic space H

3. We assume
that the surface is not CMC and thus we can choose f to be positive and grad f �= 0 at any
point of the surface. We define again the local orthonormal frame {X1, X2} as in (6). We have

⎧
⎨

⎩

∇H
3

X1
X1 = − f

2 η, ∇H
3

X1
X2 = 0,

∇H
3

X2
X1 = − 3(X1 f )

4 f X2, ∇H
3

X2
X2 = 3(X1 f )

4 f X1 + 3 f
2 η,

(37)
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and
⎧
⎪⎨

⎪⎩

∇X1 X1 = − f
2 η + r, ∇X1 X2 = 0,

∇X2 X1 = − 3(X1 f )
4 f X2, ∇X2 X2 = 3(X1 f )

4 f X1 + 3 f
2 η + r,

∇X1η = f
2 X1, ∇X2η = − 3 f

2 X2,

(38)

where η is a unit vector field normal to the surface M tangent to H
3.

Put

κ2 ξ = ∇X2 X2 = 3(X1 f )

4 f
X1 + 3 f

2
η + r, (39)

where

κ2 =
√∣

∣
∣
∣
9(X1 f )2

16 f 2 + 9 f 2

4
− 1

∣
∣
∣
∣. (40)

Differently from the case of surfaces in R
3 or in S

3, in this case, the quantity

W = 9(X1 f )2

16 f 2 + 9 f 2

4
− 1 = 9|grad f |2

16 f 2 + 9 f 2

4
− 1

can take both positive and negative values. Taking this in consideration, we have the following
analogue of Lemma 4.3.

Lemma 6.1 The function κ2 and the vector field ξ satisfy

(a) X2κ2 = 0;
(b) ∇X2ξ = −εκ2 X2;
(c) 4(X1κ2)/κ2 = 3(X1 f )/ f ;
(d) ∇X1ξ = 0,

where ε is 1 when W > 0 and is −1 when W < 0.

As in the case of biconservative surfaces in S
3, we can give the following explicit con-

struction.

Theorem 6.2 Let M2 be a biconservative surface in H
3 with f > 0 and grad f �= 0 at any

point. Then, locally, M2 ⊂ L
4 can be parametrized by:

(a) if W > 0,

XC (u, v) = σ(u) + 4

3
√

Ck(u)3/4

(
C1(cos v − 1) + C2 sin v

)
, (41)

where C is a positive constant of integration, C1, C2 ∈ L
4 are two constant vectors such

that

〈Ci , C j 〉 = δi j , 〈σ(u), C1〉 = 4

3
√

Ck(u)3/4
, 〈σ(u), C2〉 = 0, (42)

while σ = σ(u) is a curve lying in the totally geodesic H
2 = H

3 ∩ � (� the linear
hyperspace of L

4 defined by 〈r, C2〉 = 0), whose geodesic curvature k = k(u) is a
positive non-constant solution of the following ODE

k′′k = 7

4
(k′)2 − 4

3
k2 − 4k4 ; (43)
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(b) if W < 0,

XC (u, v) = σ(u) + 4

3
√−Ck(u)3/4

(
C1(e

v − 1) + C2(e
−v − 1)

)
, (44)

where C is a negative constant of integration, C1, C2 ∈ L
4 are two constant vectors such

that

〈Ci , Ci 〉=0, 〈C1, C2〉=−1, 〈σ(u), C1〉=〈σ(u), C2〉=− 2
√

2

3
√−Ck(u)3/4

, (45)

while σ = σ(u) is a curve lying in the totally geodesic H
2 = H

3 ∩ � (� the linear
hyperspace of L

4 defined by 〈r, C1 − C2〉 = 0), whose geodesic curvature k = k(u) is a
positive non-constant solution of (43).

Proof (a) In this case, W > 0. Define the local orthonormal frame {X1, X2} as in (6). Let
γ (s) be an integral curve of X2 parametrized by arc-length. Then, from

γ ′′(s) = ∇γ ′γ ′ = κ2(s)ξ(s)

and

γ ′′′(s) = ∇γ ′γ ′′ = −κ2
2 (s)γ ′(s),

it follows that the parametrization γ (s) satisfies the following ODE

γ ′′′ + κ2
2 γ ′ = 0.

Then, as we have proceeded in the proof of Theorem 4.5, we find that, locally, M2 ⊂ L
4

can be parametrized by

X (u, v) = σ(u) + 1

κ2(u)

(
C1(cos v − 1) + C2 sin v

)
, (46)

where σ(u) is and integral curve of X1, κ2(u) = κ2(σ (u)) is the curvature of the integral
curves of X2 and C1, C2 ∈ L

4 are two constant vectors such that

〈Ci , C j 〉 = δi j , C1 = −ξ(σ (u)), C2 = X2(σ (u)). (47)

Since

〈σ(u), C2〉 = 〈σ(u), X2(σ (u))〉 = 0,

we deduce that σ ⊂ �, where � is the hyperspace of L
4 defined by the equation

〈r, C2〉 = 0. Thus, σ is a curve in H
3 ∩ � = H

2, where H
2 is totally geodesic in H

3.
Now, let k = k(u) denote the geodesic curvature of σ in H

2. Then, as in the proof of
Theorem 5.2, we find that k is a solution of (43). In order to conclude, we have to compute
κ2(u) as a function of k(u). First, by a standard argument, we find that (43) has the prime
integral

(k′)2 = 16

9
k2 − 16k4 + Ck7/2, C ∈ R, C > 0. (48)

Substituting (48) in (40) and recalling that k(u) = |∇H
3

σ ′ σ ′| = f (u)/2, we find

κ2(u) = 3

4

√
Ck(u)3/4.
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Finally, by using the value of C1 in (47) and that of ξ in (39), we get

〈σ(u), C1〉 = 〈σ(u),−ξ(σ (u))〉 = 1

κ2(u)
= 4

3
√

Ck(u)3/4
.

(b) In this case, W < 0 and the curve γ (s) satisfies the following ODE

γ ′′′ − κ2
2 γ ′ = 0.

Thus, γ (s) = co + c1 eκ2s + c2 e−κ2s , where, since 〈γ ′, γ ′〉 = 1, c1 and c2 are vectorial
functions such that 〈c1, c1〉 = 〈c2, c2〉 = 0 and 〈c1, c2〉 = −1/(2κ2

2 ). It follows that,
locally, M2 ⊂ L

4 can be parametrized by

X (u, s) = c0(u) + c1(u) eκ2(u)s + c2(u) e−κ2(u)s,

where κ2(u) = κ2(σ (u)), σ = σ(u) being an integral curve of X1. Now, if we perform
the change of variables v = κ2(u)s and use the condition X (u, 0) = σ(u), we obtain
that the parametrization of M2 in L

4 is

X (u, v) = σ(u) + 1√
2κ2(u)

(
C1(e

v − 1) + C2(e
−v − 1)

)
, (49)

where C1, C2 ∈ R
4 are two constant vectors such that

〈Ci , Ci 〉 = 0, 〈C1, C2〉 = −1, C1 + C2 = √
2 ξ(σ (u)), C1 − C2 = √

2 X2(σ (u)).

Since

〈σ(u), C1 − C2〉 = √
2〈σ(u), X2(σ (u))〉 = 0,

we deduce that σ ⊂ �, where � is the hyperspace of L
4 defined by the equation

〈r, C1 − C2〉 = 0. Thus, σ is a curve in H
3 ∩ � = H

2, where H
2 is totally geodesic

in H
3. Now, let k(u) denotes the geodesic curvature of σ(u) in H

2. Then, k = k(u) is
a solution of (43) and, in this case, we find the same prime integral (48) but with the
constant C < 0. Next, as we have done in case (a), we get the value of κ2(u) as a function
of k(u) as well as 〈σ(u), C1〉 and 〈σ(u), C2〉 as indicated in (45).

��

Remark 6.3 If we assume that C1 = e2 and C2 = e1, where {e1, . . . , e4} is the canonical
basis of L

4, using an argument as in Remark 5.3, we can check that the curve σ(u) in
Theorem 6.2 (a) must be of the form

σ(u) =
(

0,
4

3
√

C
k(u)−3/4, x(u), y(u)

)
,

for some functions x(u) and y(u) which are solution of the system
⎧
⎪⎨

⎪⎩

x2 − y2 + 16
9C k−3/2 = −1

(x ′)2 − (y′)2 = 16
9C (9k2 − 1) k−3/2

(x ′′)2 − (y′′)2 + 16
9C (1 + 3k2)2 k−3/2 = k2 − 1.

By a direct computation, one can show that this system has a solution.
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Fig. 3 Plot of a numerical
solution of (43) with k(0) = 1
and k′(0) = 1 and integration
constant C = 137/9. Choosing
k(0) = 1/4 and k′(0) = 1/5, we
obtain a negative integration
constant C = −248/225 (thus, a
solution to the case (b) of
Theorem 6.2) but the qualitative
behavior of k is similar to the
case C > 0

For the curve σ(u) in Theorem 6.2 (b), we have that, choosing C1 = e1 + e4 and C2

= e2 + e4,

σ(u) =
(

y(u) −
√

2

2κ2(u)
, y(u) −

√
2

2κ2(u)
, x(u), y(u)

)

,

where, in this case, x(u) and y(u) are solution of the system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2
(

y −
√

2
2κ2

)2 + x2 − y2 = −1

2

((
y −

√
2

2κ2

)′)2

+ (x ′)2 − (y′)2 = 1

2

((
y −

√
2

2κ2

)′′)2

+ (x ′′)2 − (y′′)2 = k2 − 1.

Again, using the same machineries as in Remark 5.3, we can check that this system has a
solution.

Moreover, also in this case, as we have noticed in Remark 5.3, we can plot a numerical
solution of (43) as shown in Fig. 3.

Remark 6.4 We have the following geometric interpretation of the surfaces described in
Theorem 6.2 (a). As we have already observed, choosing C1 = e2 and C2 = e1, where
{e1, . . . , e4} is the canonical basis of L

4, the curve σ(u) is of the form

σ(u) =
(

0,
1

κ2(u)
, x(u), y(u)

)
,

and the corresponding biconservative surface is parametrized by

X (u, v) =
(

1

κ2(u)
sin v,

1

κ2(u)
cos v, x(u), y(u)

)
.

Therefore, the surface is clearly given by the action, on the curve σ , of the group of isometries
of L

4 which leaves the plane P2 generated by e3 and e4 fixed. These surfaces, following the
terminology given by do Carmo and Dajczer (see [10]), are called rotational surfaces of
spherical type. In fact, the metric of L

4 restricted on P2 is Lorentzian and when this happens,
as described in [10, pag. 688], the orbits are circles.
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