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Surfaces of Minimal Area

Enclosing a Given Body in R3

GIOVANNI MANCINI - ROBERTA MUSINA

Given a body in 1ft 3, we consider a class of surfaces, parametrized
by 5~, which enclose, in a weak sense, IT. To "enclose" means, under some
regularity assumption on the surface under consideration, that such a surface is
not contractible in 1ft 3B11.

The first problem we deal with, is concerned with the existence of surfaces
which minimize the area integral in such a class. In case an is of class C2, this
will lead to finding a C1,a surface parametrized by a map UOO : 1ft 2 -+ 
which satisfies

and which is not contractible in (i.e. "encloses" ?i in a strong sense).
Here b is the second fundamental form of ac (see Section 1), v is the inner
normal at a C, and x A is the characteristic function of the set A C 1ft 2 .

This problem, which at our knowledge was not previously considered in
the framework of parametric surfaces, is somehow related to the problem of
minimal boundaries with obstacles (see for example [12]).

We attack our problem by means of a Dirichlet’s Principle, i.e. we look
for extremals of the Dirichlet integral over a suitable class of maps from
S2 into In a more regular setting, this problem amounts to finding
not homotopically trivial minimal spheres in a Riemannian manifold N with
boundary. In case lV has empty boundary, striking results have been obtained in
a celebrated paper by Sacks and Uhlenbeck ([17], see also [10], [19]). Here we
perform a blow-up technique introduced in this context by Sacks and Uhlenbeck.
But, in order to avoid estimates on the solutions of Euler-Lagrange equations
related to approximated problems, we follow a more direct approach based on
a lemma by Brezis, Coron and Lieb [4].

Partially supported by Ministero della Pubblica Istruzione.
Pervenuto alla Redazione il 24 Aprile 1988.
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We also consider the case of disk-type minimal surfaces spanned by a
given wire r over the obstacle n. The existence and regularity of an area
minimizing surface up , spanned over 0, was proved by Tomi [20] (see also
[9]). We answer here the rather natural question whether it exists a second
minimal surface ur which, jointly with ur, "encloses" fi. While this is not the
case in general, we prove that this occurs provided

Here Xr is a suitable class of surfaces which, jointly with ur, "enclose"
n.

In the first section of this paper we present preliminary remarks on the
functional setting and we define precisely the class of surfaces enclosing fl.

In Section 2 we describe a Dirichlet’s principle for minimal surfaces

enclosing a given body 1Z and we prove the existence of a closed regular
S2-type minimal surface spanned over the obstacle IT.

In Section 3 we give an existence result for pairs of minimal surfaces
spanned by the same wire r over an obstacle a and enclosing it.

In an Appendix we present a result concerning continuous dependence,
upon boundary data, of minimizers for the Dirichlet integral in presence of
obstacles. This result, which we did not find in the literature, turns out to be
a key tool in proving the basic inequality (see Proposition 3.4) on which our
existence results rely.

Notations. denotes the open disk of radius r and center z in I1~ 2 , ~ ’ ~ , ’
denote the norm and the scalar product in 1ft 3, ---" denotes weak convergence
in various spaces, ) . . 100 and I - 2 denote L°° and L2 norms respectively.

1. - Preliminary remarks and statement of the Problem

Let C be the closure of the unbounded connected component of 1ft 3B0,
were 11 is a given bounded open connected set in R~. We will assume

throughout the paper that

there is an open neighbourhood 0 of C
(1.1)

and a Lipschitz retraction 0 --+ C.

We shall denote
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Using a smoothing - by averaging - method (see [18], and [ 1 ], Appendix),
one easily obtains a density result which will be useful in the sequel.

LEMMA 1.l . For every U E X(C) there exists a sequence Un E C°° n X
such that 

’

Furthermore, for each n, Un can be taken constant far away.
In order to give our notion of "mappings enclosing f2", we define the

Volume Functional (see for example [21]):

which is well defined since, by Holder inequality,

Notice that if Sup and in L2 for some

i ", ,

Now, assuming for simplicity, 0 E C, we define the map

Since p is Lipschitz continuous far away from 0, we have p U E X if U E X ( C) .
Moreover, if a sequence C X(C) is bounded in L °° VU

in L’, U,, --+ U a.e., then - V(pU) in L2 and V(pU). We
recall that, if U E X(C) n C’ (R 1, R 1) and U is regular at infinity, that is

then

and gives the degree of p U o II E ,S 2 ) , where II denotes the stereographic
projection of S2 onto R 2 (see [15], and [ 1 ], Lemma 1). We notice that, because
of the density Lemma, and continuity properties of the volume functional, we
have
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This integer still denotes the degree of pU, so that Xe(C) is the set of maps
which have a non-zero degree with respect to the sphere | £| = 1. In particular,
if U E X(C) n is regular at infinity, and 0, then U, as a
map from S2 into C, is not contractible.

Accordingly, we set

REMARK 1.2. If p : C 2013~ S2 induces an isomorphism between the second
homotopy groups of C and S’ 2 , then

{U E Xe (C) I U is continuous and regular at infinity,

can be identified with the closure of the set of smooth, non-contractible maps
from 82 into C, by Hopf’s Theorem.

In the following section, we will study

PROBLEM 1. Find U 00 E continuous and regular at infinity, in the
sense of (1.3), which has minimal area among all the surfaces in XI(C).

In view of the previous remarks, U 00 will be a closed non-contractible
surface in C.

Before ending this section, we wish to state a problem concerning disk-type
minimal surfaces spanned by a wire r over the obstacle S~.

We first recall a well known result (see [20], [9]). Let r C C be a closed
Jordan curve, and suppose that the class Xr ( C) of maps u E H 1 ( D, C), whose
trace on a D is a continuous, weakly monotone parametrization of the curve F,
is not empty. Then, if is of class C2 , there is

which has minimal area among all surfaces in Xr (C), and which satisfies the
conformality conditions

i.e. its area is given exactly by
We wish to find a second surface

satisfying the conformality conditions, which is harmonic where it does not
touch and which "encloses, jointly with u", the obstacle H. To make more
precise the last statement, let us write
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and set

where

In order to describe the geometric property of surfaces in Xr (C), let us
first recall (see [1]) that

for every with Actually, holds for every

Furthermore, the integer in (1.5) gives the degree of ;
where

Thus, if u, v E Xr (C) n CO (D’ R 3), u = v on a D, the condition 
VD (pv) is equivalent to the non-contractibility of p o U o n, U given by (1.6).

In addition, if u E C~(D) (which occurs, e.g., if T n 8C = 0, see [8]),
one can build, for every u E Xr (C) (see Lemma B.3), a change of variables
gu e such that

and

In this case, if u E then pencil is not contractible, where
U corresponds here to the pair u, 

After this preliminaries we are ready to state

PROBLEM 2. Find u E Xr (C) of class C1,a(D)nCO(D) which has minimal
area in the class Xr (C).

2. - Closed minimal surfaces spanned over obstacles

As a standard procedure, we are going to replace the minimization Problem 1,

with the simpler problem:
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Find U 00 E Xe(C) such that

First we prove the following

THEOREM 2.1. Let C be as in the above Section, and assume in addition
that aC E C2.

Let Th E XI (C) be a solution of (2.1). Then

PROOF. (i) In view of a result by Duzaar [7], it is enough to prove

such that

According to Duzaar’s result, this will imply for every

p ~ 11, ool, and hence Uoo E c1.a by Sobolev imbedding Theorem.
Given let r &#x3E; 0 be such that

and let , with Let us consider

Since truncation decreases the Dirichlet integral, we can assume
so that in particular, if T is admissible (i.e. ~ E 
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and hence

let us consider

Since from
I-- -I- -.

(2.4) we deduce

and hence W E Thus

and (2.2) follows from (2.3). Finally, being

again a minimizer, it is continuous at z = 0 and we find

i.e. is regular at infinity.

(ii) - (iii) Here we rely on the "Euler Equation" for the "energy minimizing
maps" (i.e. for minima of (2.1)) established by Duzaar [7]:

Here b is the second fundamental form of is the inner normal at ac,
and x A is the characteristic function of the set A C JR 2. As a consequence, U 00
is harmonic in the open set ~ z E 1ft 2 I Also
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This easily implies that, setting (in complex notation),

then i.e. p and 0 are harmonic. Since

(iv) From Morrey’s e - conformality result ([13], see also [16], §226), we
have that for every U E C°° n Xe (C) constant far away, and for every e &#x3E; 0,
there exists a Vs E such that 2 1 f )Uz A Uyl + e. Thus, for
every C °° n X (C) constant far away, we have

and the conclusion follows from the density Lemma.
The main result in this Section is

THEOREM 2.2.

is achieved.

The proof is based on a blow up technique, introduced in this class of
problems by Sacks und Uhlenbeck [17]. A crucial step in the proof of Theorem
2.2 is the description of the behaviour of sequences ( Un ) n C which, in
the limit, jump out of the class. To this extent, we first recall a result in [4]
(see also [23]).

Let C X(C) satisfy

Then, eventually passing to a subsequence,

weakly in the sense of measures, for some di e Z , ai E Here 6a, denotes
the Dirac measure concentrated at a~ .

We first show that, if det "concentrates" at some a, then

Un loses, in the limit, at least as much energy as 100.

PROPOSITION 2.3. Let (Un)n C satisfy (2.6). Assume U ~ 
0 for some index i in (2.7). Then for every p &#x3E; 0 small enough,
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PROOF. Fix p &#x3E; 0 such that D2p (ai) We can assume,

eventually passing to a subsequence, that there exists

For almost every r  p, there exists a subsequence (depending on r) such
that

II

and hence weakly in Now, we denote by hk a

solution of

Because of the good behaviour of hk one can prove (see Proposition
A. I) that up to subsequences

where h minimizes the Dirichlet integral with constraint C and boundary data
U. In particular

Now, let us define

We claim that, if r is chosen small enough, then Uk E xe(c), k ( r ) big
enough. In fact, using (1.2), (2.8), (2.9), we find
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for k &#x3E; k (r). Hence, by using again (2.8), (2.9), we get

Thus, for such good r’s, we have

and, letting r go to zero, we conclude the proof of Proposition 2.3. ·

In particular, we get

PROPOSITION 2.4. Let (Un)n 9 X~ (C) satisfy (2.6). Assume U g 
Then 

p ,

PROOF. Let us first remark that, in case di = 0 for every i, then

Un - U* ( Un , U* defined as in (2.5)) satisfy the same assumptions as Un, U
and (compare with (2.7))

where d (since U ~ Xe(C) by assumption) does not
depend on n, form large. eventually replacing
Un by we can assume Un satisfies the assumptions in Proposition 2.3 and
hence, for some az ,
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In case Un is, in addition, minimizing, i.e.
more.

we can say

PROPOSITION 2.5. Let (Un)n C satisfy (2.6) and, in addition,

If U 0 xe (C), then U is a constant, and either

(i) There is (exactly one) a E 1ft 2 such that

PROOF. First, U = const. by Proposition 2.4. Furthermore, if 0 for
some i in (2.7), there is just one di i- 0, by Proposition 2.3, which, at the same
time, implies II

and hence

In case we have (see (2.10))

Again by Proposition 2.3, we have, as in the previous case,

for every

PROOF OF THEOREM 2.2. Let C be minimizing:

Since truncation does not increase the Dirichlet integral and 0 is bounded, we
can assume the Un have a common LOO bound and, passing to a subsequence,

VU in ~2, Un --~ U a.e. for some U E X(C). If U E X~ (C), U is a
minimizer by the lower semicontinuity of the Dirichlet integral. If xe ( C) ,
we want to show that, after rescaling and translating Un, we can construct a
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new minimizing sequence weakly converging in Xe(C). Let us introduce the
concentration function (see for example [11], [3]):

This is a continuous, non-decreasing function, with Qn (0) = 0 and

Thus, given 6 E]O, 100 [, there are, for n large, tn &#x3E; 0, zn E R2 such that

. Notice that

and Sup = Sup  +oo. Again we can find a subsequence ( Un ) n
and Uoo E X(C) such that

We claim that xe(c). Otherwise, by Proposition 2.5, either

for some a E IR. 2 and V r &#x3E; 0, or

But the first alternative cannot occour, since

for r  1. Finally, the second alternative cannot occour either, because

REMARK 2.6. It may happen that the "coincidence set" 8fl) is
the all plane I~ 2 . Since projections on convex sets reduce the Dirichlet integral,
this is for example the case when 11 is a convex set. Moreover, in this case, it
results that the image through the map is exactly 8fl (otherwise the map
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would be contractible in C) and, identifying U 00 with its composition with
the stereographic projection, our solution U 00 is in fact a non-constant harmonic

map from the sphere onto 
In order to avoid this phenomena, we could use an observation by Duzaar

[7]: since the minimizer U 00 satisfies

for almost every z E the obstacle an has to satisfy a "concavity
condition" (when viewed from C) in order to be "essentially touched" by the
enveloping surface U 00. In other words, if b is positive defined somewhere on

cannot lie entirely on and as we have previously noticed, it is
harmonic outside the coincidence set.

3. - Pairs of solutions of the Plateau Problem for disk-type minimal
surfaces with obstructions

Given the obstacle 0, we assume as in the previous Sections that C, the
unbounded connected component of is of class C2 and satisfies (1.1).

Let r C C be a given Jordan curve, parametrizable with a diffeomorphism
,0 : 9D -~ 1ft 3. Let us denote by ,~r the class of n CO (a D, JR 3) - weakly
monotone parametrizations of r which are normalized by a three-point condition.
We suppose that the class of "admissible functions":

is not empty.
The "small solution" u, obtained by Tomi [20], is just a solution of the

minimum problem: 
r -

and its existence is easily proved using weakly lower semicontinuity of the
Dirichlet integral and the Courant-Lebesgue Lemma [5]. In order to find a
second solution as an extremal for the Dirichlet integral, we will first prove that
the set

(see Section 1), is not empty whenever Xr (C) =,4 0. Then we will consider the
following minimization problem:

Find u E Xr (C) such that
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As in Section 2, one can prove the following Dirichlet’s Principle:

THEOREM 3.1. Let C be as above, and
solution of (3.1 ). Then

The regularity result in (i) follows from a Theorem by Hildebrandt ([9],
see also Tomi [20], Satz [6] and Duzaar [7]), via arguments similar to those
used in the proof of Theorem 2.1. Propositions (ii), (iii), (iv) can be obtained in
a standard way (see [5], pg. 105 for (ii) and the Morrey’s e-conformality result
- [13], Theorem 1.2 - for (iv)), using the invariance of the volume functional
under reparametrizations of the domain.

0 
_

REMARK 3.2. We notice that in case r C C, the conformal map u is
harmonic in a neighbourhood of a D, and thus u E CI (D, 1ft 3) (see [8]). At our
knowledge, it is not known a C 1-regularity result up to the boundary in the
general case.

In order to solve (3 .1 ), we first prove

LEMMA 3.3. The set Xr (C) is not empty and

Actually, we want to prove a more general result:

- 

PROOF OF STATEMENT (3.2). Denoted by U a solution of Problem 1, notice
that, under our regularity assumptions on aC, U is continuous and regular at
infinity, that is

We set
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Let A : ~0,1~ -~ C be a Lipschitz map with
map v, is given by

Our

where ~r is the Lipschitz retraction in ( 1.1 ) and if

e  1, ~2  r  e. For e small, u(z) - u(0) is small, if I z  e, since u is con-
tinuous, and hence belongs to a small neighbourhood
of C. Similarly, if is close to U(oo) and
hence belongs to a
neighbourhood of C as well. Thus Vs is well defined and
on A direct computation shows that

while

and thus

To end the proof, it is enough to observe that
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by (3.3), and hence, if e is small enough, since

REMARK 3.4. Equality in Lemma 3.3 cannot be excluded, in general.
Moreover, the sequence (vc)c in the proof of (3.2) shows that, whenever

equality occurs, there exist minimizing sequences for Problem (3.1) which
weakly converge to the small solution u and hence do not have strongly
convergent subsequences.

Equality occours, for example, in the "degenerate case", i.e. when r
reduces to a point zO. In this case the set of "admissible functions" is

Xr (C) - (u E = z° on aD, 0) and 7~. Actually,
Ir = 100’ since in this case Xf (C) is embedded in a natural way in X (C) .

It is quite likely that Ir is not achieved whenever equality holds. This is
the case if n is the unit ball and r reduces to a point, e.g. inan = S2. In fact
a minimizer for the Dirichlet integral would be a non-constant harmonic map
from the disk into ,S2 with constant boundary data; but this cannot occour in
view of a uniqueness result due to Lemaire [10].

Notice also that such a minimizer would also be an extremal for the
Bononcini-Wente isoperimetric inequality:

for every v E constant on a D,

which is known not to exist ([22]).
The main result in this Section is

THEOREM 3.5. Let C, r be as above. Then Ir is achieved, provided

PROOF. We split the proof into two steps.

STEP 1. There is vo E Xr (C) such that

STEP 2. 1vo := Inf is achieved in

PROOF OF STEP 1. Here we do not make use of assumption (3.4). Let
(u,,),, 9 Xr (C) be such that f IVunl2 -&#x3E; Ir. We can assume Sup  oo,

and since is equicontinuous on a D, by Courant-Lebesgue Lemma, we
can also assume un - vo weakly in ~I1 and v° uniformly on a D for
some v° E Xr (C). Thus, if 4ihn = 0, hn = Un - v° on 0 uniformly
and weakly in As a consequence wn := hn ) is well defined for
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large n (here ~r is the retraction of some neighbourhood of C onto C) and,
with easy computations

Since E Hol, it is enough to prove, in view of (3.5), that 
VD (pg). But this readily follows, because const. --; 0

) that, by Lemma
Since

(see Corollary B.4), the proof is complete. ·

PROOF OF STEP 2. The argument we present here applies to the solvability
of Dirichlet problems, and hence we give it in this more general form. Let
v E Xr (C) and let

If w g Xrl (C) then, applying Proposition 2.4 to the sequence

we immediately get

From (3.6), it follows that the infimum

is achieved provided (compare with (3.2)):

This ends the proof of Step 2 since (3.7) holds, with v = vo given by Step 1,
in view of assumption (3.4). ·
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REMARK 3.6. It is interesting to reformulate Theorem 3.5 from the point of
view of relaxation. If we define the energy associated to the minimum problem

as

then the relaxed functional, in the weak H1-topology, is defined by

Slight modifications in our arguments show that

Now, let u be a minimum point for the functional sc- E, that is

If (3.4) holds, then necessarily u E Xr (C), and hence u is also a solution of
our minimization Problem 2.

REMARK 3.7. A simple variant of Problem 1 arises if we drop the

connectivity assumption on the obstacle ~; related results are presented in

[14], where are also considered extensions to higher dimensions.
It would be of interest to describe the limit problem as the connected

components of 11 become infinite while their size go to zero. This could also
be a way to deal with a much deeper variant of Problem 1, namely the case of
thin obstacles. Problems of this kind have been considered in the framework of
minimal boundaries (see [6]).

Appendix A

We present here a result concerning continuous dependence of minimizers
for the Dirichlet integral, subjected to obstacle conditions, with respect to H1
weak convergence of boundary values.
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Let C C R 3 be a closed set satisfying

There is 6 &#x3E; 0 and a Lipschitz retraction

Let us denote

Let hn E satisfy

and

and

PROPOSITION A.1. Let hn satisfy (A.2), (A.3). Then if hn - h, we have

PROOF. Since f |Ah| 12  lim it is enough to prove

To prove (A.4), let us consider, for r 

(in polar coordinates). Since

27Vn is well defined on where 7r is the retraction given by (A.1). Moreover
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if L denotes the Lipschitz constant for 7r. Now, let h E H I (D, C) be such that

and we define

Since wn E C) and wn = hn on aD, we have

An easy computation gives, using (A.3),

and hence lim sup
(A.4).

COROLLARY A.2. Let hn satisfy (A.2). If hn -1 h, then

PROOF. For a.e. r  1, we have Sup . Since clearly

Proposition A.1 applies to obtain hn - h in H 1 ( Dr) and

for every v E H 1 ( D,. , C ) , with v - h E Thus, 
"

w - h E setting
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we see that, for a.e. r  1:

because wr - h e HÓ(Dr). But

and hence, sending r to 1 in (A.6), we get (i). -

REMARK A.3. To complete these continuous dependence results, it would
be of interest to prove that, if in addition to the assumptions in Corollary A.2,
one also assumes uniformly on aD, then hn -; h uniformly on D.
Since we do not need this result, we do not go into details.

Appendix B

For convenience of the reader, we list here a few simple properties of the
volume functional (see [21] and [2], Appendix).

PROOF. From (1.2), one sees that

because k n -~ 0 in L°° and weakly in H1. Now, the second integral in the
right hand side goes to zero by Lemma A.7 in [2], while the third one goes to
zero by Lemma A.6 in [2]. ·



352

LEMMA B.2. Let g E C°(D, D) be an orientation preserving bilipschitz
homeomorphism. Then

This follows from the chain rule:

be a nondecreasing function, with
. Then

PROOF. Since , After properly extending
we can regularize it to get uniformly, 

Then we set

By the previous Lemma we get VD (u o gn) = VD (u) . But

because an - a uniformly and u E CI (D) imply

uniformly, while
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COROLLARY B.4. Assume r is parametrizable with a diffeomorphism
7° : 8D -~ 1ft3. Then

PROOF. Given with (assuming
for simplicity 0 V C). It is enough to prove

Since, for a given u E Xr (C), UI,9D is a weakly monotone reparametrization
of r, there is a map a~ : ~0, 2~r~ -~ [0, 21rl, continuous and nondecreasing, with

= 0, = 2Jr, such that

By Lemma B.3, setting
and hence

because u ( z ) = for every z E a D, so that Lemma 1 in [ 1 ] applies..
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