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1 Introduction

Usually a local parametrisation of a surface is a map R
2 ⊇ U → R

3, but in
this paper we will consider maps r : S2 ⊇ U → R

3. We will furthermore
demand that the normal at r(n) is n, in other words the surface is locally
parametrised by the inverse Gauss map. The Gauss map is not always a
local diffeomorphism, but if it is, then its differential, which up to a sign is
the Weingarten map, is invertible too. So the determinant, i.e., the Gaussian
curvature, has to be non vanishing.

In the solution to the classical Minkowski problem the surface is given
by the inverse Gauss map, see [2, 3, 4, 10]. Also in the study of minimal
surfaces the inverse Gauss map has been used and already Gauss himself
considered surfaces given this way. So it is certainly not a new idea to use
the inverse Gauss map. When I wrote the paper I believed the idea was new
in geometric design, but I have just learned that the idea was suggested by
Malcolm Sabin already in 1974, see [14].

One way of obtaining the inverse Gauss map is to specify the support
function as a function of the normal, i.e., as a function on the unit sphere.
The support function is the distance from the origin to the tangent plane
and the surface is simply considered as the envelope of its family of tangent
planes. The latter point of view has been used previously, eg., in [11, 12].

The advantages of this surface representation is that geometric properties
are easily calculated when the inverse Gauss map is known. The motivation
for this paper is similar work on planar curves, [6, 7], where parametrisation
by tangent direction was essentially in the geometric modelling of a scroll
compressor.
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2 The Gauss Map and Support Function

Let Σ be a surface embedded in R
3 and let S2 denote the unit sphere in

R
3. The Gauss map of the surface Σ is the map Σ → S2 which to a point

x ∈ Σ assigns the normal N(x) ∈ S2. The differential of the Gauss map
at a point x ∈ Σ is a linear map dxN : TxΣ → TN(x)S

2 ∼= TxΣ. The
Weingarten map or shape operator at x ∈ Σ is defined as W (x) = −dxN.
The second fundamental form is the quadratic form II(x)v = v · W (x)v,
where ‘·’ is the usual inner product in R

3. The principal curvatures and
principal directions are the eigenvalues and eigenvectors of W (x). If the
Gauss curvature K = det W (x) = det dxN is non vanishing then the inverse
function theorem tells us that the Gauss map can be inverted locally. Thus,
any surface with non vanishing Gauss curvature is locally the image of the

inverse Gauss map.
The support function is the signed distance from the tangent plane to the

origin. If we denote the inverse Gauss map by r then the support function
can be written as a function of the normal as

h = n · r(n), (1)

where n ∈ S2. If (u, v) are coordinates on S2 then differentiation of (1) yields

hu = nu · r(n) + n · drn nu = nu · r(n) and hv = nv · r(n), (2)

where a lower index denotes partial differentiation and where we have used
that drn nu and drn nv are in the tangent space and hence are orthogonal
to n. As hu and hv are the directional derivatives of h in the directions nu

and nv respectively equation (2) shows that the gradient ∇S2h of h is the
projection of r onto the tangent plane. By (1) this projection is r− hn and
we obtain

r(n) = h(n)n + ∇S2h(n). (3)

Thus, if the inverse Gauss map exists then we have an explicit expression for it
in terms of the support function. Not any function h is the support function of
a surface with non vanishing curvature, it has to satisfy a regularity condition.
Most and probably all of the following lemma can be found in the literature,
but the proof is a straightforward calculation which we give here.

Lemma 1. Let h : S2 ⊇ U → R be a twice times differentiable function, let

HS2(h) be the Hessian of h, i.e., the second covariant derivative of h. Then h
is the support function of regular surface if and only if det(HS2(h)+h id) 6= 0
at all points of U . In this case the Weingarten map is W = −(HS2(h) +
h id)−1, the principal directions are the eigenvectors of HS2(h) and if λ is an

eigenvalue then the corresponding principal curvature is κ = −(λ + h)−1.
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Proof. Consider a point in n0 ∈ U which we after a rotation of the coor-
dinate system can assume is the north pole n0 = [0, 0, 1]T . If we use the
parametrisation n = [x, y,

√

1 − (x2 + y2)]T in a neighbourhood of the north
pole, then the inverse of the metric tensor is

[

gij

S2

]

=

[

1 − x2 −xy
−xy 1 − y2

]

.

If we write h = a + b1x + b2y + 1
2
(c0x

2 + 2c1xy + c2y
2) + o (|(x, y)|2) , then

the gradient of h is

∇S2h =

(

(1 − x2)
∂h

∂x
− xy

∂h

∂y

)

∂n

∂x
+

(

−xy
∂h

∂x
+ (1 − y2)

∂h

∂y

)

∂n

∂y

=





b1 + c0x + c1y + o (|(x, y)|)
b2 + c1x + c2y + o (|(x, y)|)

−(b1x + b2y + c0x
2 + 2c1xy + c2y

2) + o (|(x, y)|2)



 ,

and (3) becomes

r =







b1 + (c0 + a)x + c1y + o (|(x, y)|)

b2 + c1x + (c2 + a)y + o (|(x, y)|)

a − 1
2
(c0x

2 + 2c1xy + c2y
2) + o (|(x, y)|2)






.

At the north pole n0 the tangent plane is the xy-plane and the differential
of r has the matrix expression

dn0
r =

[

c0 + a c1

c1 c2 + a

]

=

[

c0 c1

c1 c2

]

+

[

a 0
0 a

]

= HS2(h) + h id .

So r is regular at the north pole if and only if det(HS2(h) + h id) 6= 0 and
as r in the affirmative case is the inverse Gauss map, the Weingarten map
is W = −(HS2(h) + h id)−1. Finally we only have to note that the principal
curvatures and directions are the eigenvalues and eigenvectors of W .

If h is a Ck function with det(HS2(h) + h id) 6= 0 then the correspond-
ing surface is parametrised by r which obviously is of class Ck−1, but the
projection from the tangent plane is of class Ck, so we have a Ck surface.

Theorem 2. Let h : S2 ⊇ U → R be a Ck function, let r : U → R
3 be

defined by (3), and let πn : R
3 → TnS2 be the orthogonal projection to the

tangent plane at n.

If k = 1 and we for each n0 ∈ U have that πn0
◦r is local homeomorphism

around n0 such that
|r(n)−πn0

◦r(n)|

|n−n0|
→ 0 for n → n0, then r(U) is a C1 surface.

If k ≥ 2, and det(HS2(h) + h id) 6= 0 at all points of U , then r(U) is a

Ck surface.
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Proof. We immediately have that the tangent plane depends Ck−1 on the
points of r(U). The case k = 1 is now simply Theorem 10.1 in [5], and the
proof generalises verbatim to the case k ≥ 2.

The regularity condition in the C1 case is not easy to verify, but the map
h : U → R will in practical application be given as a piecewise C∞ function
and then it is possible to give a more manageable condition.

Corollary 3. Let h : S2 ⊇ U → R be a C1 function which is piecewise C2,

and let r : U → R
3 be defined by (3). If the possible multi valued function

det(HS2(h) + h id) is either strictly positive or strictly negative, then r(U) is

a C1 surface.

Proof. Clearly r(U) is a collection of C2 patches and if two patches meet
along a curve γ then they either form a C1 surface or meet at a cuspoidal
edge. The two differentials agree in the direction of γ so we only need to
check that the two differentials maps a direction orthogonal to γ to the same
side of γ, i.e., the orientations induced by the two differentials has to agree
and that in turn is determined by the sign of det(HS2(h) + h id).

It is important to be able to rotate, translate, scale, and offset surfaces.
Straight forward calculations proves the following theorem.

Theorem 4. Let Q ∈ SO(3), a ∈ R
3, and c, d ∈ R. Then we have

rotation: r∗(n) = Qr(Q−1n) ⇐⇒ h∗(n) = h(Q−1n), (4)

translation: r∗(n) = r(n) + a ⇐⇒ h∗(n) = h(n) + a · n, (5)

scaling: r∗(n) = cr(n) ⇐⇒ h∗(n) = ch(n), (6)

offsetting: r∗(n) = r(n) + dn ⇐⇒ h∗(n) = h(n) + d. (7)

2.1 Extending to R
3

In order to define the support function independent of a parametrisation of
S2 we let it be the restriction of a function defined on an open subset of
R

3. In order to use (3) we need the gradient of h|S2 , but this is simply the
projection of the ordinary gradient in R

3 on the tangent plane of S2. So we
consider the restriction to S2 of the map

r(x) = h(x)x + |x|2∇h(x) − (x · ∇h(x))x. (8)

Observe that (8) is linear in h. The factor |x|2 is of no importance on S2,
but when it is included then homogeneity of h implies homogeneity of r and
dr preserves the tangent planes of spheres with centre 0.
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Theorem 5. If a map r : R
3 ⊇ U → R

3 is given by (8) then the differential

dr is given by

dxr v = (h − x · ∇h)v + 2(x · v)∇h + |x|2H(h)v − (x · H(h)v)x, (9)

where h, ∇h, and the Hessian H(h) are evaluated at x. Furthermore, dr
preserves the tangent planes of all spheres centred at 0 or equivalently

x · v = 0 =⇒ x · (dxr v) = 0. (10)

Similar

x · (dxr x) = |x|2(h + x · ∇h). (11)

Finally, two of the eigenvalues, λ1, λ2 say, of dxr has corresponding eigen-

vectors v1,v2 ∈ x⊥ and if λ3 is the third eigenvalue then

λ1 + λ2 = 2(h − x · ∇h) + |x|2 trH(h) − x · H(h)x, (12)

λ1λ2 =
(

h − x · ∇h
)2

+
(

h − x · ∇h
)(

|x|2 tr H(h) − x · H(h)x
)

+ |x|2 x · H(h)Cx, (13)

λ3 = h + x · ∇h, (14)

where H(h)C is the co-factor matrix of H(h). If x ∈ S2 then the v1,v2

are the principal directions and the corresponding principal curvatures are

κ1 = −1/λ1 and κ2 = −1/λ2.

Proof. By a straightforward calculation,

dxr v = (v · ∇h)x + hv + 2(x · v)∇h + |x|2H(h)v

− (v · ∇h)x − (x · H(h)v)x − (x · ∇h)v,

which simplifies to (9). Taking the inner product with x yields x · dxr v =
(h + x · ∇h)(x · v). Letting x · v = 0 proves (10) and letting v = x proves
(11). As dxr preserves x⊥, an eigenvector for dxr|x⊥ is also an eigenvector
for dxr with the same eigenvalue. So if λ1, λ2, λ3 are the eigenvalues for dxr

and v1,v2,v3 are the corresponding eigenvectors then we may assume that
v1,v2 ∈ x⊥. We can then write x = αv1 + βv2 + γv3 where γv3 · x = |x|2.
Hence

x · dxr x = x · (αλ1v1 + βλ2v2 + γλ3v3) = γλ3x · v3 = λ3|x|
2,
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and now (11) proves (14). In matrix notation we have

dxr = (h − x · ∇h)





1 0 0
0 1 0
0 0 1



 + 2





∂h
∂x
∂h
∂y
∂h
∂z





[

x y z
]

+ |x|2







∂2h
∂x2

∂2h
∂x∂y

∂2h
∂x∂z

∂2h
∂y∂x

∂2h
∂y2

∂2h
∂y∂z

∂2h
∂z∂x

∂2h
∂z∂y

∂2h
∂z2






−





x

y

z





[

x y z
]







∂2h
∂x2

∂2h
∂x∂y

∂2h
∂x∂z

∂2h
∂y∂x

∂2h
∂y2

∂2h
∂y∂z

∂2h
∂z∂x

∂2h
∂z∂y

∂2h
∂z2







and a short calculation shows that the trace of dxr is

tr dxr = 3h − x · ∇h + |x|2 tr H(h) − x · H(h)x. (15)

A longer calculation (using Maple) shows that the determinant of dxr is

det dxr = (h + x · ∇h)
[

(

h − x · ∇h
)2

+ |x|2 x · H(h)Cx

+
(

h − x · ∇h
)(

|x|2 tr H(h) − x · H(h)x
)

]

. (16)

As λ3 = h + x · ∇h we immediately get (12) and (13).

If h is homogeneous of degree n, i.e., h(tx) = tnh(x) then

x · ∇h(x) =
d

dt
h(x + tx)

∣

∣

∣

∣

t=0

=
d

dt
(1 + t)nh(x)

∣

∣

∣

∣

t=0

= nh(x), (17)

and ∇h is homogeneous of degree n − 1 so

x · H(h)(x)v =
d

dt

(

d

ds
h(x + tx + sv)

∣

∣

∣

∣

s=0

)
∣

∣

∣

∣

t=0

=
d

dt
v · ∇h(x + tx)

∣

∣

∣

∣

t=0

=
d

dt
(1 + t)n−1v · ∇h(x)

∣

∣

∣

∣

t=0

= (n − 1)v · ∇h(x). (18)

These two equations immediately yield

Corollary 6. If h is homogeneous of degree n then

r = (1 − n)hx + |x|2∇h, (19)

dxr v = (1 − n)hv + (1 − n)(v · ∇h)x + 2(x · v)∇h + |x|2H(h)v, (20)

= (1 − n)hv + 2(x · v)∇h + |x|2H(h)v − (x · H(h)v)x, (21)

λ1 + λ2 = (n + 2)(1 − n)h + |x|2 trH(h), (22)

λ1λ2 = (n + 1)(1 − n)2h2 + (1 − n)|x|2h trH(h) + |x|2 x · H(h)Cx, (23)

λ3 = (1 + n)h. (24)
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Clearly if h is a polynomial of degree n then the inverse Gauss map
has degree n + 1 and by choosing a rational parametrisation of the sphere
we obtain a rational parametrisation of the surface of degree 2n + 2 and
the support function has degree 2n in this parametrisation. The offsets are
rational too, of the same degree, so we have a rational surface with rational
offsets, see [8, 9, 11, 12, 13, 15]. We certainly do not obtain all rational
surfaces with rational offsets, e.g., in [12] Pottmann exhibit a 8-parameter
family of rational surfaces of degree 4 and in our setup they should correspond
to a support function of degree 4/2 − 1 = 1, i.e., the restriction of linear
functions to S2, but such a linear function h = a · x yields the constant
r = a, i.e., not even a surface.

3 Interpolation

Suppose we are given a set of points and normals (xi,ni) in R
3 and that we

want a surface with non vanishing Gaussian curvature that fits these data.
The value of the support function at the point xi is hi = xi · ni and the
gradient is ∇S2h(ni) = xi − h(ni)ni. The surface with inverse Gauss map
r(n) = (1−n)h(n)n+∇S2h fits the data if h : R

3 ⊇ U → R is a homogeneous
map of degree n such that

h(ni) = xi · ni, (25)

and ∇S2h(ni) = xi − h(ni)ni which is equivalent to

∇h(ni) = xi + (n − 1)h(ni)ni, (26)

where we have used (17) and that ∇S2h(ni) = ∇h(ni) − (ni · ∇h(ni))ni. In
other words we have transformed the Gk surface interpolation problem to a
Ck interpolation problem on the unit sphere.

Now suppose, in addition to points and normal we are given principal
directions e1,i, e2,i and corresponding principal radii of curvature ρ1,i, ρ2,i.
The requirement that the surface fits this new second order data is a condition
on the differential of the map r(x) = (1−n)h(x)x+|x|2∇h. If we work in the
basis e1,i, e2,i,ni a short calculation shows that the conditions can be written

e1,i · H(h)e1,i = ρ1,i + (n − 1)xi · ni, (27)

e2,i · H(h)e2,i = ρ2,i + (n − 1)xi · ni, (28)

e1,i · H(h)e2,i = 0, (29)

where H(h) is the Hessian of h as a function on R
3.
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One way of solving a C1 interpolation problem on the sphere is given in
[1] where the data is triangulated and then a macro element, eg. a Powell-
Sabin element is used on each triangle. We consider two examples of G1

interpolation on a single spherical triangle. The first with positive Gaussian
curvature and the second with negative Gaussian curvature. In both cases
the given normals are the three standard basis vectors e1, e2, e3 of R

3. In
the first case we consider the points (2, 0, 0), (0, 3, 0), and (−1, 0, 4) and in
the second case we consider the points (−1, 0, 1), (0, 1,−1), and (0, 0, 0). We
first use a single Powell-Sabin element on the spherical triangle spanned by
the three basis vectors. The results are shown to the left and in the middle
of Figure 1. In the first example 1/K ≥ 2 and the surface is smooth. In the
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Figure 1: To the left a smooth positively curved surface with the support
function given as a single Powell-Sabin element. In the middle a singular
(mostly negatively curved) surface with the support function given as a sin-
gle Powell-Sabin element. To the right a smooth negatively curved surface
with the support function given as four Powell-Sabin elements, the apparent
corners are all contained in the tangent plane. The data are indicated by the
thick black lines and the grey scale corresponds to 1/K.

second example the value of 1/K goes between −5.33 to 2.00 and it vanishes
near the right hand edge. At these points the surface has a cuspoidal edge.
This is a general problem with the approach in this paper. First of all the
data needs to admit a surface with non vanishing curvature and if this is the
case then we have to make sure that 1/K = ρ1ρ2 6= 0. In the present case
we obviously want 1/K to be strictly negative.

We now subdivide the spherical triangle using a four split, i.e., we intro-
duce the three points e1+e2

|e1+e2|
, e2+e3

|e2+e3|
, and e3+e1

|e3+e1|
on the sphere, and nine free

parameters in form of corresponding points on the surface. By choosing a
suitable objective function we can formulate an optimisation problem with
1/K < 0 as a constraint. For simplicity we consider the following quadratic
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optimisation problem with quadratic constraints,

minimise

∫

△

(ρ1 + ρ2)
2 dAS2,

such that ρ1ρ2 < 0 for all n ∈ △.

The choice (ρ1 + ρ2)
2 is arbitrary, another choice could be |∇S2h|2 which

also leads to a quadratic problem. Using the optimisation toolbox of Matlab
we obtain the result to the right in Figure 1, where the value of 1/K is in
the interval [−4.32,−0.57]. It may look as though the surface has a cusp or
corner between the two given normals to the left and a similar problem at the
far right. The two ‘suspicious’ points corresponds to corners in the middle of
the four domain triangles. Recall that the parametrisation by the normals
need not be C1 so the boundary curve may indeed have corners at vertices
of the domain triangles. But such a corner is contained in the tangent plane
and does not contradict the smoothness of the surface.

4 Conclusion

Any surface with non vanishing Gaussian curvature can locally be given as
the image of the inverse Gauss map. If the support function is given as a Ck

function of the normal then the inverse Gauss map is a Ck−1 map and is given
as a linear functional of the support function, but the surface is of class Ck.
Furthermore, the sum and the product of the principal radii of curvature
is a linear and quadratic functional of the support function, respectively.
Rotation, translation, scaling, and offsetting of a surface is easily expressed
in terms of the support function. Finally, the problem of fitting a Gk surface
with non vanishing Gaussian curvature is transferred to a constrained Ck

interpolation problem on the sphere.
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