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Abstract

thermal storage.

We report for the first time the preparation of highly stable graphene (GE)-based nanofluids with ionic liquid as
base fluids (ionic liquid-based nanofluids (lonanofluids)) without any surfactant and the subsequent investigations
on their thermal conductivity, specific heat, and viscosity. The microstructure of the GE and MWCNTSs are observed
by transmission electron microscope. Thermal conductivity (TC), specific heat, and viscosity of these lonanofluids
were measured for different weight fractions and at varying temperatures, demonstrating that the lonanofluids
exhibit considerably higher TC and lower viscosity than that of their base fluids without significant specific heat
decrease. An enhancement in TC by about 15.5% and 18.6% has been achieved at 25 °C and 65 °C respectively for
the GE-based nanofluid at mass fraction of as low as 0.06%, which is larger than that of the MWCNT-dispersed
nanofluid at the same loading. When the temperature rises, the TC and specific heat of the lonanofluid increase
clearly, while the viscosity decreases sharply. Moreover, the viscosity of the prepared lonanofluids is lower than that
of the base fluid. All these advantages of this new kind of lonanofluid make it an ideal fluid for heat transfer and
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Background

A nanofluid is a dilute suspension produced by disper-
sion of metallic or nonmetallic nanomaterials with a typ-
ical size of less than 100 nm in a base liquid, having the
advantages of high dispersion stability and reduced
pumping power and particle clogging as compared with
conventional solid-liquid suspensions for heat transfer
intensifications [1]. Since the pioneer work by Chol in
1995 [2], nanofluids have attracted extensive attention
due to their enhanced thermophysical properties and
heat transfer performance and their potential applica-
tions in many fields including cooling, thermal power
generation, refrigeration, and so on [3]. Up to now, most
of the previous researches have been focused on the
nanofluids based on water, ethylene glycol, and synthetic
oil [4-6]. Although these base fluids are readily available,
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water and ethylene glycol are usually used in relatively
low temperature, and synthetic oil suffers from high
vapor pressure and poor thermal stability. Therefore, it
is necessary to develop novel nanofluids based on the
fluids other than these conventional fluids.

Ionic liquids (ILs), organic salts with low melting
points, have the characteristics of a wide range of liquid
temperature, low vapor pressure, and high thermal sta-
bility, which make them possibly be used as a new group
of heat transfer fluids for heat exchange in chemical
plants, absorption cooling cycle system [7], and solar
thermal power generation [8], where water and ethylene
glycol may not be suitable for the application owing to
the limitation of their thermophysical and chemical
properties. Consequently, the nanofluids based on ILs
are being explored intensely in recent years, in which
Au [9], CuO [10], Al,O5 [11], and multi-walled carbon
nanotubes (MWCNTs) [12] have been used as the
nanoadditive. It has been shown that the ionic liquid-
based fluids (Ionanofluids) exhibit enhanced thermal
conductivity (TC) as compared with the pure ILs, which
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just overcomes the inherent shortcoming of ILs. GE is a
novel carbon nanomaterial with excellent electronic,
mechanical, and thermal properties. The TC of GE is as
large as around 5,000 W/m K, which makes it to be the
most promising nanoadditive for nanofluids [13]. Ac-
cordingly, the nanofluids containing GE have attracted
an increasing attention in the past 2 years, in which only
the conventional fluids including water [14], ethylene gly-
col [15] and engine oil [16] have been used as the base
fluids. In order to obtain stable GE-dispersed nanofluids,
several measures have been taken in those previous work,
such as adding surfactants into the nanofluids [15], mak-
ing GE functionalized by chemical treatments [17], or
using graphene oxide instead of GE as the additive [18].
It has been presented that GE can be functionalized by
ILs through noncovalent interactions owing to their
unique structure [19]. In the current work, with the pur-
pose of combining GE possessing excellent TC with ILs
having good thermophysical properties along with the
virtue of making GE functionalized, GE has been dis-
persed into the IL 1-hexyl-3-methylimidazolium tetra-
fluoroborate ((HMIM]BF,) without using any surfactant to
prepare novel GE-based Ionanofluids for the first time.
The thermophysical properties of the GE-dispersed Iona-
nofluids were investigated together with those of the Iona-
nofluids containing MWCNTs for comparison purpose.

Methods

Chemicals and materials

MWCNTs and graphite were purchased from Nanjing
XFNano Material Tech Co., Ltd. (China); H,SO,4, HNO3,
and KMnQy,, from Alfa Aesar (Ward Hill, MA, USA).
[HMIM]BE, (CAS number, 244193-50-8) was provided
by Lanzhou Institute of Chemical Physics, Chinese Acad-
emy of Sciences. Other reagents such as H,O, and
N,H,.H>O were used as received.

Synthesis of GE nanosheets

Graphite oxide (GO) was synthesized using Hummers'
method [20]. Graphite powder (2.0 g) was put into cold
(4 °C) concentrated H,SO, (46 mL) followed by grad-
ually adding 6.0-g KMnO, under stirring for 2 h while
the temperature of the mixture was kept at below 10 °C.
After stirring the mixture at 35 °C for 30 min, 92 mL of
deionized (DI) water was slowly added into the system
to keep the temperature of the mixture at 98 °C for
15 min. Then, the mixture was further diluted using ap-
proximately 300-mL DI water. After that, 15-mL H,0,
(30%) was added to the mixture to reduce the residual
KMnO, until the color of the mixture changed into bril-
liant yellow. Finally, the mixture was filtered and washed
with 5% of HCl aqueous solution to remove metal ions
followed by washing with 1.0 L of DI water to remove
the acid. The obtained solid was dried at 60 °C for 24 h.
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For further purification, the as-obtained GO was re-
dispersed in DI water and then was dialyzed for 1 week
to remove residual salts and acids.

Prepared GO powder (100 mg) was added to 100-ml
water. After being ultrasonically dispersed for 1 h, 1-g
hydrazine hydrate was added to the mixture followed by
being refluxed for 24 h to reduce graphene oxide to GE
nanosheets. The solid product was isolated by centrifu-
gation, washed with distilled water and ethanol for three
times, and finally dried at 60 °C in a vacuum oven for
24 h to remove residual solvent.

Preparation of ionanofluids based on ILs

MWCNTs and GE were dispersed into [HMIM]BF,
using a 100-W, 40-kHz ultrasonicator for 8 h. Then, the
mixtures were sonicated for 2 min using a 25-W Ultru-
sonic Cell Disrupter System (JYD 900, Shanghai Zhisun
Equipment Co., Ltd, China). Figure 1 displays the digital
photograph of the graphene and MWCNT-dispersed
nanofluids, respectively. In this paper, we prepared lona-
nofluids at very low weight percentage of 0.03% and
0.06%; when the weight percentage goes up to 0.09%,
the Ionanofluids are not stable and they will coagulated
in a couple of hours.

Characterization and measurements

TEM images were obtained on a PHILIPS TECNAI 10
electron microscope (FEI Corporation, Hillsboro, OR,
USA) at an accelerating voltage of 100 kV. The TEM
samples were prepared by dispersing the powder pro-
ducts in alcohol by ultrasonic treatment followed by
dropping the suspension onto a holey carbon film sup-
ported on a copper grid and drying it in air. Dispersion
and stability of these ionanofluds were observed by
a light microscope (LEICA, DM 2500P, Leica

Figure 1 Digital photograph of (a) pure [HMIM]BF,, (b) 0.03%
of GE/[HMIM]BF,, and (c) 0.03% of MWCNT/[HMIM]BF,.
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200 nm

Figure 2 TEM image of pristine GE.
A\

Microsystems Ltd., Milton Keynes, UK) at same magnifi-
cation (x500).

TC of the samples were measured at the temperatures
ranging from 25 °C to 65 °C using a thermal constants
analyzer (Hot Disk TPS 2500 S, Hot Disk AB, Gothenburg,
Sweden). In order to precisely control the temperature, a
cyclic silicone oil bath was applied. After every increase in
temperature, the samples were equilibrated for at least
5 min before measurements. The TC measurements were
repeated several times, and the average values were calcu-
lated for use in this paper.

The specific heat of the samples were evaluated with a
differential scanning calorimeter (DSC Q20, TA Instru-
ments, New Castle, DE, USA) using the sapphire
method. The temperature was kept at 0 °C for 5 min
then ramped to 80 °C at the increasing rate of 10 °C .min™"
followed by keeping for another 5 min. We have checked
the accuracy of the measurements by measuring the
specific heat of DI water between 20 °C and 85 °C and
found deviations less than 0.98%, with an average devi-
ation of 0.418%.

The viscosities of the samples were measured by a
viscometer (DV-2+PRO, Shanghai Nirun Intelligent

{ ey

Figure 3 TEM image of MWCNTs.
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Technology Co., Ltd, Yangpu, Shanghai, China) at a
revolution rate of 100 rpm. Each sample was measured
at the temperatures ranging from 25 °C to 75 °C.

Results and discussion

TEM analysis

The morphology and structure of the pristine and GE
and MWCNT were observed by TEM, which were
observed again after all the experiments, as shown in
Figures 2 and 3. The observations from Figures 2 and 3
revealed that the received pristine MWCNT was not
only aggregated, but entangled, whereas the GE we pre-
pared was relatively well dispersed and stretched. The
obtained Ionanofluids are black and can keep stable for
a long time. It is suggested that GE and MWCNTs have
good dispersity in [HMIM]BEF,, which is probably attrib-
uted to that GE and MWCNTs can be functionalized by
[HMIM]BE,.

Stability and dispersion of ionanofluids

Optical images of these Ionanofluids were taken by put-
ting a drop of fluid on a cleaned glass and observing the
dispersion of particles in the base fluids. Figures 4 and 5
show that the MWCNT is not well dispersed in [HMIM]
BF, as the graphene does. The nonhomogeneity of
MWCNT particles is visible in Figure 3b, while Figure 3a
shows uniform dispersion and distribution of graphene
particles in [HMIM]BE,. Compared to MWCNT/[HMIM]
BF, Ionanofluid, graphene/[HMIM]BF, Ionanofluid is
more homogeneous and stable.

Thermal conductivity of ionanofluids

TC of the obtained Ionanofluids was measured at different
temperatures by the transient plane source (TPS) method,
which is an advanced technique evolved from the hot wire
method by Hot Disk AB. As shown in Figure 6, the TC of

Figure 4 Optical image of graphene/[HMIM]BF, lonanofluid
(0.03 wt.%).
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Figure 5 Optical image of MWCNT/[HMIMIBF, lonanofluid
(0.03 wt.%).
A

the Ionanofluid containing 0.03% of GE increases from
0.1862 to 0.2022 W.m “.K' as the temperature increases
from 25 °C to 65 °C and accordingly increases from 0.1924
to 02135 W.m "K' when the GE loading is 0.06%. In
this paper, k and k& refer to the TC of the Ionanofluid and
the pure ionic fluid, respectively, and (k — ko)/k, is defined
as the TC enhancement ratio. The TC enhancement ratios
of the Ionanofluid containing GE of 0.03% range from
11.8% to 12.3% as the tested temperature varies from 25 °C
to 65 °C and accordingly increases from 15.5% to 18.6% as
the GE loading is increased to 0.06%. It is indicated that
the TC enhancement ratio of the GE-dispersed Ionano-
fluids increases with the mass fraction of GE. The remark-
able TC enhancement ratio of more than 10% is achieved
by the Ionanofluid containing GE with the mass fraction of
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as low as 0.03%, implying that GE is a good nanoadditive
for the nanofluids based on ILs. For the Ionanofluids con-
taining MWCNTs, their TC enhancement ratios range
from 3.9% to 8.4% as the tested temperature varies from
25 °C to 65 °C and accordingly increases to 13.0% and
13.2% as the MWCNT loading is increased to 0.06%. It is
revealed that the TC enhancement ratios of the
MWCNTs-based Ionanofluids are less than those of the
GE-based Ionanofluids at the same nanoadditive loading,
which is probably due to the extraordinary high thermal
conductivity of GE and Brownian motion of nanoparticles
at the molecular and nanoscale levels [21]. Significantly,
the TC enhancement ratios of all the Ionanofluids are less
than 20%, consistent with the results obtained from the
benchmark study on the TC of nanofluids [22]. No anom-
alous TC enhancement is achieved by the obtained nano-
fluids, in which their TC values have been measured by the
TPS method other than the hot wire method commonly
used in the previous work.

Viscosity studies of ionanofluids

The viscosities of pure [HMIM]BF, and the GE- and
MWCNT-dispersed Ionanofluids at the same nanoaddi-
tive loading of 0.03 wt.% were measured at different tem-
peratures, respectively. As plotted in Figure 7, the viscosity
of the Ionanofluid containing 0.03% of GE decreases from
217.4 to 40.6 cp as the temperature increases from 25 °C
to 75 °C, indicating that the viscosity of the Ionanofluid
can be dramatically reduced by increasing temperatures.
Previous works also demonstrated the decrease of the vis-
cosity of nanofluids against the increase of temperature
[23-25]. However, according to previous reports, the vis-
cosity of TiO,/water nanofluids [26] and Al,Os/water

0.22

Figure 6 TC enhancement as a function of temperature.
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Figure 7 Viscosity as a function of temperature.

nanofluids [27] is found to be substantially higher than the
values of pure water, alumina/propylene glycol nanofluids
[28], and copper/ethylene glycol nanofluids [29], which
are reported to exhibit higher viscosity than their base
fluids. The viscosity increase of these nanofluids compared
with their base fluids may restrict their application as heat
transfer fluids. Conversely, in our experiments, the
addition of GE or MWCNTs can slightly decrease the vis-
cosity of the base fluid, consistent well with Baogang
Wang's result, in which the F-MWCNTs/[Bmim][PF]
nanofluids show lower viscosity than pure [Bmim][PF]
especially under high shear rates [30]. This phenomenon
could be attributed to the self-lubrication of GE and
MWCNTs. Definitely, the Ionanofluids with lower viscos-
ity and higher TC than their base fluids are what we
expected to see.

Specific heat study of ionaofluids

The specific heat of pure [HMIM]BE, and the GE- and
MWCNT-dispersed Ionanofluids were tested at the same
nanoadditive loading of 0.03 and 0.06 wt.% at different
temperatures. As shown in Figure 8, the specific heat of
pure [HMIM]BEF, increases from 2.266 to 2.369 Lg’l."(f1
as the temperature increases from 20 °C to 80 °C, indicat-
ing that the specific heat of the IL increases with the tested
temperature, and the same trend was found in Ionanofluids
too. It can be seen that the specific heat of the GE-
dispersed Ionanofluid is lower than that of the MWCNT-
dispersed one at the same loading. Moreover, the specific
heat capacities of these Ionanofluids are lower than that of
the neat IL at the same temperature, which has been also
observed for the carbon black-based Ionanofluid.
According to Bridges' research, the specific heat of pure

[C4ammim][NTf,] decreases from 1.53 to 1.34 ].g’l."Cf1
after adding carbon black of 0.5 wt.%, which means the
nanoparticles cause a decrease of specific heat for more
than 12% compared with pure IL at a very low loading of
0.5 wt.%. The authors point out that the decrease in spe-
cific heat for the Ionanofluid may be due to the increased
thermal conductivity of the Ionanofluid [11]. In our
experiments, the specific heat of the Ionanofluid contain-
ing 0.03% of graphene decreases by 0.93% compared with
the pure [HMIM]BE, at 20 °C and by 1.14% at 80 °C,
which cannot be explained by traditional theory [31]. In
fact, a theoretical model for the specific heat of nanofluids
should take other factors into account, such as thermal
conductivity, thermal diffusivity, size effects, the interac-
tions of the surface atoms of nanoparticles and the sur-
roundings, and pH [32,33]. In this paper, the decrease in
specific specific heat of nanofluids may be attributed to
that the specific heat of the nanoadditives are lower than
that of the base fluid and the increased TC of the
Ionanofluids.

Conclusions

GE and MWCNTs can be dispersed into [HMIM]BEF,
without using any surfactant. The GE-dispersed Ionano-
fluids are more homogeneous and stable than those con-
taining MWCNTs at the same nanoadditive loading. The
remarkable TC enhancement ratio of more than 10% is
achieved by the Ionanofluid containing GE with the mass
fraction of as low as 0.03%. The TC enhancement ratios of
the GE-based Ionanofluids are larger than those of the
MWCNT-based Ionanofluids at the same nanoadditive
loading. No anomalous TC enhancement is achieved by
all the GE- and MWCNT-dispersed Ionanofluids. The
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Ionanofluids exhibit lower viscosity than their base fluids,
which is beneficial for their application as heat transfer
fluids. The specific heat of the GE- and MWCNT-
dispersed Ionanofluids is very close to that of the pure IL.
Ionanofluids containing graphene are a new class of heat
transfer fluids which exhibit fascinating thermophysical
properties compared to the base ionic liquids; they have
the potential applications from refrigeration systems at the
low temperature end to solar energy collection at high
temperatures owing to their unique characteristics of a
wide range of liquid temperature, low vapor pressure, and
high thermal stability. The further experimental research
on the thermal and optical properties of Ionanofluids con-
taining graphene at high temperature will be conducted in
our future work.
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