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Surfactants at the Design Limit 

Adam Czajka,Ϯ Gavin Hazell,Ϯ and Julian EastoeϮ* 

ϮSchool of Chemistry, University of Bristol, Bristol, BS8 1TS, UK. 

This article analyzes how the individual structural elements of surfactant molecules affect surface 

properties. In particular, the point of reference defined by the limiting surface tension at the 

aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the 

hydrophobic tails influences γcmc. By comparing the three different classes of surfactants, fluoro-, 

silicone and hydro-carbon, a generalized surface packing index is introduced which is independent 

of the chemical nature of the surfactants. This parameter ɸcmc represents the volume fraction of 

surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ɸcmc is a useful 

index for understanding the limiting surface tension of surfactants and can be useful for designing 

new super-efficient-surfactants. 
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1. Introduction 

Surfactants are amongst the most versatile chemicals, being key components in a diverse range 

of products and technologies such as the petroleum industry, pharmaceuticals, detergents, 

firefighting foams, inks, paints, electronic printing, bio- and medical technologies.1-5 The inherent 

versatility of surfactant molecules originates from their amphiphilic character, the molecules 

possess both polar, water-soluble sections ("head group") and non-polar, water-insoluble moieties 

("tail"). The dual characteristics of surfactant molecules give them a wide range of properties, 

connected to two key features – adsorption at interfaces and self-assembly in bulk solution.  

Surface tension arises due to an imbalance of attractive intermolecular interactions at a liquid 

surface. Molecules in the final surface layer have no neighbours above, and consequently are 

attracted into the bulk. This imbalance of intermolecular attractive interactions creates an excess 

energy at the surface compared to the bulk (the surface free energy), which forces liquid surfaces 

to contract, reducing exposed surface area. When present at low concentrations, surfactant 

adsorption to the air-water interface is a spontaneous process resulting in an oriented monolayer, 

which alters the surface free energy. The surface tension of a liquid γ (units: J m-2 or N m-1) is the 

interfacial free energy per unit area but strictly referring to a gas-liquid interface (by convention 

interfacial tension refers to liquid-liquid, or liquid-solid interfaces). To expand, a minimum amount 

of work (Wmin) is required to create the additional surface, which is a product of the surface tension 

γ and increase in the surface (interfacial) area dA, so Wmin = γ dA. A surfactant is a substance that 

will adsorb to a surface, significantly altering the surface (interfacial) tension and therefore change 

the work required to expand the liquid surface. 

Pure water has a surface tension of about 72 mN m-1 (298 K),
 and the extent of reduction of γ is 

one of the most commonly measured properties of surfactant solutions.6-8 The critical micelle 
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concentration (cmc), the limiting surface tension at the cmc (γcmc) and the dynamics of adsorption 

are all influenced by surfactant structure. The hydrophobic tail has a major effect on controlling 

important physiochemical properties such as cmc, γ, γcmc, Г, Гcmc and Acmc (Figure 1).  

 

Figure 1. Surfactant adsorption at the air-water interface. The surface tension (γ) is reduced as 

surfactant molecules adsorb to the air-water interface, simultaneously increasing the surface excess 

(Г) until the cmc is reached. At which point there is generally a plateau. Acmc corresponds to the 

area per surfactant molecule at the air-water interface at the reference concentration, cmc. 

In order to provide a quantitative description of surfactant adsorption, surface excess (Г) is 

introduced. Defined as the concentration of surfactant molecules in a surface plane, relative to that 

at a similar plane in the bulk. The Gibbs adsorption equation (eq. 1) relates the change of surface 

tension with concentration to the amount adsorbed at the surface: 

                                                                 Γ = −1𝑚𝑅𝑇 ( d𝛾d lnC)                                                         (1) 

Where m is the number of adsorbing species, R is the ideal gas constant, T is temperature, γ is 

surface tension and C is the surfactant concentration. Hence, by application of the Gibbs analysis, 

𝐴cmc =  
1Γcmc 𝑁𝑎  

Гcmc

cmcC/(mol dm-3)

Г/(mol m-2)

γ/(mN m-1)

ln[C/(mol dm-3)]

γcmc

cmc

Γ =  
−1𝑚𝑅𝑇  d𝛾

d ln C
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measurement of γ as a function of C allows a quantitative determination of the absorbed amount 

Г(C).   

Structure-function relationships on surface and solution properties have been investigated for 

many surfactant types.9-12 This article provides an overview of this area for fluoro-carbon (FC), 

silicone (SiC) and hydro-carbon (HC) surfactants, which are known to generate low γcmc, and also 

a new class of highly branched HC surfactants also achieving low γcmc values. Table 1 shows some 

of the surfactant structures discussed in this article. 

Table 1. Structures of fluoro-, silicone and hydro-carbon surfactants discussed in this article. 

 Structure             Abbreviation References 

 

1 

(Hydro) 

 

 
 
 

di-PhC4SS 
 

 
 
 

16 

 

2 

(Fluoro) 

 

 

diHCF4 
 

 

13, 31, 53 

 

3 
(Fluoro) 

 

 

diCF4 
 

 

13, 31, 53 

 

4 
(Fluoro)  

 

NaPFN 
 

 

13 



5 

 

 

 

5 

(Silicone) 

 

 

 

M(D'E8OH)M 
 

 

 

43, 44 

 

6 
(Hydro) 

 

 

AOT 

 

49, 55 

 

7 

(Hydro) 

 

 

iC18S(FO-180) 

 

57 

 

 

8 

(Hydro) 

 

 

iC18S(FO-180N) 

 

57 

 

9 

(Hydro) 

 

 

di-BC6SS 

 

51 

Figure 2 shows the aqueous limiting surface tension, γcmc, and corresponding molecular area, 

Acmc, for examples of common linear fluoro-, silicone and hydro-carbon surfactants. Referring to 

Figure 2 a large variation in γcmc is seen, highlighting the importance of chemical structure. Note, 
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the common linear chain sodium dodecylsulfate (SDS) is a poor performer on this scale, suggesting 

such simple HC surfactants are inefficient. This article shows how the performance of HC 

surfactants can be significantly improved by controlled design of the chain architecture. 

 

Figure 2. Aqueous limiting surface tension and corresponding interfacial molecular area for a 

typical linear fluoro-, silicone and hydro-carbon surfactant. Column height represents γcmc and 

column width is proportional to Acmc. Data from NaPFN,13
 SS1,14 and SDS.15  

Pitt et al. highlighted how the hydrophobic tail structure heavily influences surface tension by 

investigating sulfosuccinate and sulfotricarballylate surfactant series.16 By comparing two classes 

of surfactants (hydrocarbon and fluorocarbon) it was possible to identify some general properties 

which are required by surfactant molecules to effectively reduce surface tension. The aim of this 

article is to identify additional properties and this is achieved by identifying and comparing the 
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structure-property relationships of fluoro-, silicone and hydro-carbon surfactants in aqueous 

systems.  

1.1 Surface tension as a sum of parts 

The surface tension of a liquid is intimately related to intermolecular interactions.17 Fowkes 

suggested that by approximating intermolecular interactions as additive, surface tension γ may be 

represented by two dominant contributions, one due to dispersion interactions γd and the other 

accounting for all other polar interactions γp, i.e. γ = γd + γp.18 This concept can be applied directly 

to the solid/liquid interface to obtain the two separate components of surface tension energy, 

analyses of contact angles are conducted using a method pioneered by Zisman and co-workers.19 

The studies of Zisman et al. amassed a large body of data for contact angles of many liquids on 

low-energy surfaces such as polymers. This also introduced the concept of the critical surface 

tension of a solid substrate (γc), which is defined as the maximum liquid surface tension to fully 

wet a given solid surface. Pitt compared Zisman’s critical surface tension data γc to the limiting 

surface tension values γcac (cac - critical aggregation concentration corresponds to the surfactant 

concentration at which aggregates of surfactant start to form on polymers) taken from the 

sulfosuccinate and sulfotricarballylate series, and found a good correlation within any given 

surfactant class (ref.16), see Figure 3.  

The polar, and dispersive components of the sulfosuccinate and sulfotricarballylate surfactant 

series were investigated further by contact angle analyses of surface coated systems. Surface free 

energies were then compared with the limiting surface tensions of aqueous solutions. For both 

surfactant series a strong correlation was seen between the dispersive component of the solid free 

energy γd and γcac, but no correlation was found for the polar component γp. This implies γcmc (or 
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γcac) values depend very strongly on the chemical interactions which are strongly influenced by the 

chemical identity of the surfactant tails.  

 

Figure 3. Comparison between limiting surface tension values of surfactants in aqueous gelatin 

buffer solution (7% (w/w) deionised) and critical surface tension γc data for solid substrates with 

a chemical identity of terminal groups (example sulphosuccinate surfactant with phenyl tip, Table 

1. 1). Reprinted with permission from (ref 16). Copyright 1996 Elsevier Science B.V. 

1.2 Limiting surface tension of surfactant solutions 

In order to help compare the performance of surfactants, Rosen et al. provided specific 

definitions of the efficiency (i.e. the bulk concentration required to produce a significant reduction 

in surface tension) and effectiveness (i.e. the maximum reduction in tension regardless of the bulk 

concentration) of surfactant molecules.20 Pitt et al. demonstrated how γcmc of aqueous solutions in 

a gelatin buffer is influenced by surfactant chemical structure, comparing hydrocarbon and 

fluorocarbon surfactants (ref. 16). This interesting approach expanded on a review by Rosen (ref. 

20), but with a particular emphasis on the influences of chemical nature and structure of 

hydrophobic tails on limiting surface tension. This was the first study to highlight clearly the strong 

relationship between surface activity and chemistry of the hydrophobic tails. Although the majority 
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of work was conducted using aqueous solutions in a buffer containing 7% (w/w) deionised alkali-

processed bone gelatin, the study also demonstrated the same trends with pure aqueous solutions.  

By holding the tail carbon number constant to ensure surfactant cacs (critical aggregation 

concentrations) were over similar concentration ranges (1 x C12, 2 x C7, 3 x C5 and 4 x C4), it 

was shown increasing the number of tails (single, double, triple - Table 1. 4 and 6 for example 

single and double tail structure respectively) caused a lowering of surface tension. Furthermore, 

for both surfactant classes a significant increase in surfactant effectiveness was seen changing from 

single to two-tail surfactants, whereas a comparatively smaller increase was noted on moving from 

two-tail to three-tail surfactants. This trend of decreasing γcmc (γcac) with increased number of tails 

is a consequence of two effects: an increased packing efficiency of the tail groups versus the 

electrostatic repulsion between neighbouring anionic sulfonate head groups, and an increase in the 

ratio of CH3- to -CH2- groups per headgroup. CH3- being of lower surface energy than -CH2-, 

based on the following order of increasing surface energy for single carbon based moieties: CF3 < 

CF2 < CH3 < CH2 (ref. 19). The reason for the comparatively smaller increase in effectiveness 

changing from a two-tail to three-tail surfactant was considered to be linked to the underlying polar 

groups. The thinner the packed hydrocarbon tail layer region, the more the polar head groups 

contribute towards increased surface energy. A wide structural variation of two-tail and three-tail 

sulfosuccinate surfactants was investigated. The terminal chain groups were varied to include 

fluoroalkyl, alkyl and aryl groups (Table 1. 1) showing the following trend for γcmc: CF3-CF2- < 

H(CF2CF2)- < branched alkyl < single-tail alkyl < phenyl. The influence of a single hydrogen (ω-

substituted) on an otherwise perfluoroalkyl endgroup raised the γcmc by about 6 mN m-1. The effect 

of various tail chemistries on limiting surface tension was extended to four decaglycidol non-ionic 

surfactants (ref. 16). Despite being charge neutral the pattern of behaviour as well as the effects of 
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tail chemistry on γcmc were in the same order as seen with the anionic surfactants, highlight clearly 

the strong relationship between surface activity and chemistry of the hydrophobic tails.  

 

2. Fluorosurfactants  

In the 1950s an accidental discovery at 3M highlighted the potential of fluorochemical cleaning 

products and catalysed the development of fluorosurfactants. Fluorosurfactants now constitute an 

important class and appear in a diverse range of applications including biomedicine, firefighting 

applications, cosmetics, lubricants, paints, polishes, and adhesives, representing a multi-billion 

dollar industry.21-23 Furthermore, the hydrophobic tails of fluorosurfactants display both oil and 

water repellency and because of this, fluorosurfactants are used as low surface energy coatings, 

for example on textiles or paper.24 

In fluorinated surfactants, at least one hydrogen in the hydrophobic tail has been replaced by 

fluorine. Both the extent of fluorination and position of the fluorine atoms affect the characteristics 

of the surfactants. Fluorosurfactants can be described as perfluorinated, where all hydrogen in the 

hydrophobic tail has been replaced by fluorine, or as partially fluorinated. Fluorosurfactants 

display greater surface activities than their hydrocarbon counterparts and can lower surface 

tensions effectively at very low concentrations, typically lowering the surface tension of water 

from 72 mN m-1 to around 15-25 mN m-1. The essential reasons fluorocarbon (FC) surfactants 

generate low γcmc are:- 

 The lower polarisability of fluorine compared to hydrogen results in weaker attractive 

intermolecular forces. 

 The greater molecular volume of perfluoroalkyl moieties over hydrocarbon moieties 

makes fluoroalkyl chains more hydrophobic. 
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 The larger cross section of fluorocarbon chains makes the packing density per unit area 

lower and hence so are the intermolecular forces. 

More  recently it has been identified that fluorinated compounds with C8-C15 chain lengths are 

hazardous pollutants.25 It has been shown that bioconcentration and bioaccumulation of 

perfluorinated acids are directly related to fluorination.26 Hence there is now a need to develop 

replacements for fluorosurfactants. Therefore, an aim of this article, to improve understanding 

about structure-function relationships important to guiding design of replacements for 

fluorocarbon surfactants.  

2.1 The special activity of fluorosurfactants 

The greater surface activity of fluorosurfactants over their hydrocarbon counterparts stems from 

the unique properties of fluorine. The cohesion of a liquid is due to the attractive forces between 

molecules. Although due to the high electronegativity of fluorine a C-F bond is polarised, a 

perfluorocarbon chain is overall non-polar and has a zero dipole moment. In non-polar liquids only 

the induced-dipole/induced-dipole dispersion interactions are of relevance. The strength of this 

interaction is governed by the polarisability of the interacting atoms. Fluorine has a lower 

polarisability than hydrogen and therefore the total dispersion interaction is lower for the 

interaction between fluorine atoms. Hence, perfluoroalkane liquids are expected to have weaker 

attractive intermolecular forces than similar hydrocarbons. 

The other principal reason for the lower surface tensions exhibited by perfluoroalkane liquids in 

comparison to analogous hydrocarbons is the larger volume of perfluoroalkyl moieties. The mean 

volumes of -CF2- and CF3- groups have been estimated as 38 Å3 and 92 Å3
, whereas those of -

CH2- and CH3- are around 27 Å3 and 54 Å3 respectively.27 Linked to these steric reasons, the 

average limiting cross sectional area for a fluorocarbon chain is 27-30 Å2, which is larger than the 
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range of 18-21 Å2 typically achieved for a hydrocarbon chain (ref. 27). It is also instructive to 

examine the free energy of transfer of a non-polar carbon moiety into water, ΔG, and hence 

quantify the hydrophobic effect. Table 2 compares the size and incremental changes in free energy 

of adsorption for the transfer of a mole of -CH2- or -CF2- groups from water to the air-water 

interface. It can be seen that a more favourable free energy of transfer is obtained for -CF2- groups 

and therefore, F-chains are considerably more hydrophobic than H-chains due to their relative 

larger size. Hence, due to the 'bulk' of fluorocarbon surfactants, they will show an enhanced 

tendency to segregate, self-assemble, and collect at the air-water interface to alter the surface free 

energy.  

 

Table 2. Comparison of size and free energy of transfer from water to the air/water interface at 

298.15 K for one mole of -CH2- and -CF2- groups. Data from literature, (ref. 27). 

Group Cross 
sectional 
area (Å2) 

Group 
Volume 

(Å3) 

-ΔG/    
(kJ mol-1) 

-CH2- 18-21 27 2.60 

-CF2- 27-30 38 5.10 

 

The larger cross section of a fluorocarbon chain also means that the molecular packing density 

per unit area is lower than for hydrocarbon chains and hence so are the intermolecular interactions. 

Hence, due to the unique chemistry of fluorine over hydrogen, it can now be understood why 

fluorocarbon surfactants possess greater surface activities over hydrocarbon analogues, and why 

longer fluoroalkyl chain lengths give the lowest reported surface energies.  

2.2 Structure-property relationships 
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One strategy to increase hydrophobicity and hence improve surface properties without 

increasing chain length is to increase the number of perfluoroalkyl chains. Gemini surfactants (i.e. 

two surfactant molecules chemically bonded together by a spacer) have led to greater surface 

activity and lower cmcs than expected.28 Dramé et al. recently synthesized a family of short tailed 

anionic gemini surfactants which showed aggregation behaviour almost equivalent to those of long 

chain (bioaccumulable) perfluorooctyl surfactants, reporting surface tensions from 15 to 33 mN 

m-1.29  

    As highlighted by Pitt et al., the hydrophobic chain structure of a surfactant plays a major role 

in controlling physiochemical properties such as surface excess Г, surface tension γ, and cmc. It 

was also shown how with double-chain, partially fluorinated anionic sulfosuccinates, the simple 

difference of a CF3- and -(CF2-H) terminal group can noticeably affect physiochemical properties 

(ref. 13). The replacement of a terminal F atom for an H atom introduces a notable permanent 

dipole moment into the chain tip (Table 1. 2) which leads to higher surface tensions by increasing 

the polar contribution γp. This, along with the lower surface excess because of dipolar repulsion, 

will have the effect of increasing the surface tension for solutions of the ω-H surfactants relative 

to those of the fully fluorinated analogues (Table 1. 3), see Figure 4. The terminal H atom, and the 

pursuant dipole moment, decreases the surfactant tail hydrophobicity which is evident from the 

higher cmcs compared to the fully fluorinated analogues (~ x 5 per chain).  
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Figure 4. Surface tension measurements of diCF4 (3), diHCF4 (2), NaPFN (4) and HNaPFN in 

aqueous solution (3 and 4 have chain terminal CF3- groups, whereas 2 and HNaPFN have chain 

termini bearing -(CF2-H) moieties). Measurements were made at 30 oC except those for diHCF4 

which were at 25 oC. Reprinted with permission from (ref. 13). Copyright 1999 American 

Chemical Society. 

Comparable increases in surface tension have also been reported on substitution of chain 

terminal F for H.30 Compared to the equivalent perfluoromethyl-tipped compounds an increase in 

Acmc was observed: 43 Å2/51 Å2 for NaPFN(4)/HNaPFN and 56 Å2/65 Å2 for diCF4(3)/diHCF4(2) 

respectively. The investigations were extended to single chain nonionics to examine the generality 

of these reported effects, and compare nonionic behaviour with anionics.31 Almost identical 

changes in cmc, limiting molecular area and surface tension were observed for both surfactant 

series. Hence, regardless of headgroup there is a strong structure-function relationship, dependent 

on the differences in the fluorocarbon chain structure only. Such large changes in surfactant 
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properties cannot be so easily achieved with hydrocarbon amphiphiles, highlighting the unusually 

sensitive structure-activity relationship of fluorosurfactants. 

The limiting molecular area, Acmc, is a measure of the ability to form packed layers at the 

interface. There is no definitive conclusion pertaining to the effect of chain length on observed 

Acmc but it is generally accepted that lower interfacial molecular areas indicate an increase in 

interfacial packing ability. Klapper et al. investigated the correlation between chemical structure 

of several short chain fluorosurfactants and resulting surface properties by comparing a wide range 

of surfactants which could be split into three structural classes: Type A with thio-linkages, Type 

B with triazole-linkages, and Type C without spacers, see Table 3.32 

 

Table 3. Static interfacial properties of several fluorosurfactants with various chain lengths and 

number of RF groups. 3.CF
3 corresponds to three perfluoroalkyl chains each composed of three 

carbons, 2.CF
3 corresponds to two perfluoroalkyl chains each composed of three carbons etc. Data 

from (ref. 32). 

Set Fluorinated Group Type Static interfacial properties 
CMC / (10-3 g L-1) γcmc / (mN m-1) Acmc / (Å2) 

i 3.CF
3 A 10 19.5 61 

B 20 19.5 55 

C 15 19.8 49 
ii 2.CF

3 A 30 20.5 239 

B 50 20.3 241 

C 10 21.9 217 
iii 2.CF

3OCF
2 A 50 18.1 164 

iv 2.CF
2 A n.o. 24.8 212 

B n.o. 23.6 213 
v 1.CF

6 - 20 17.4 73 
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From the Acmc values in Table 3 it is shown that surfactants with short chains (sets ii and iv) 

cannot pack as efficiently showing increased Acmc values compared to longer chain surfactants (set 

iii), which can form greater interactions with neighbouring surfactant molecules, pack more 

densely and hence, lower surface tension. Furthermore, increasing the number of chains leads to 

more hydrophobic surfactants with increased chain-chain intermolecular interactions, hence 

efficient packing, producing surface films composed of low energy CF3-/-CF2- groups. 

 

3. Silicone Surfactants 

 

Silicone surfactants, also commonly referred to as siloxane surfactants, comprise permethylated 

siloxane hydrophobic groups coupled to one or more hydrophilic polar groups. There are three 

common molecular structures for silicone surfactants, rake-type copolymers (comb or graft 

copolymers),33 ABA copolymers ("B" represents the silicone portion),34 and trisiloxane surfactants 

(Table 1. 5).35 Although the polar groups can be nonionic, anionic, cationic or zwitterionic, 

nonionic groups based on polyoxyethylene (PEO) and polyoxypropylene (PPO) are the most 

common. Silicone surfactants can effectively reduce aqueous surface tensions, achieving γcmc in 

the range 20-30 mN m-1.36 The essential reasons silicone (SiC) surfactants generate low γcmc are:- 

 The low intrinsic surface activity and lower surface energy of methyl groups (CH3-). 

 The unique flexibility of the siloxane backbone which can adopt conformations to 

present available organic groups to their best advantage, i.e. a surface that is dominated 

by methyls.  

These systems also display unique spreading properties, and as of such, are widely used in 

applications such as stabilizers for polyurethane foams, emulsifiers in cosmetics, agricultural 

adjuvants, textile conditioning, coating, and ink additives.37  
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The Si-O-Si linkage is susceptible to hydrolysis in the presence of moisture,38 and the hydrolytic 

instability of trisiloxane surfactants is an inherent weakness, reducing their performance. This has 

also lead to discrepancies between published works on supposedly identical compounds. 

≡Si-O-Si≡  ↔  ≡Si-OH + OH-Si≡ 

The reaction is catalysed by acid or base and the rate is slow near pH 7.0 (ref. 38). Residual 

acidity or basicity of glass-ware surfaces can catalyse the degradation requiring plasticware or 

glassware treated by hydrophobic silanization. Furthermore, at sustained temperatures above 70 

oC hydrolysis leads to rapid loss of surfactancy for most trisiloxane surfactants (ref. 38). The rate 

of hydrolysis is higher for free molecules than for those aggregated in micelles.39 Thus, 

concentrated solutions may appear to be stable for long periods of time and polymeric siloxane 

surfactants are generally more hydrolytically stable owing to low cmcs (cacs). 

3.1 Surface Activity 

Silicones are effective surfactants able to lower γcmc to ≈ 20 mN m-1 (compared to the value of ≈ 

30 mN m-1 for typical hydrocarbon surfactants) and can be surface active in both aqueous and 

nonaqueous media.40 The surface activity of silicone surfactants is due to both the nature of the 

backbone and pendant organic groups (CH3-). The -O-Si-O-Si- backbone serves as a flexible 

framework on which to attach multiple methyl groups. The low intrinsic surface energy of methyl 

groups (ref. 19), coupled with the unique flexibility of the siloxane backbone enables the 

surfactants to adopt a variety of configurations, and to present surfaces that are dominated by 

methyl, compared to typical linear chain HC surfactants, which promote films with a greater 

proportion of higher surface energy -CH2- groups (Figure 5). 
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Figure 5. Schematic comparison of the surface character of hydrocarbon versus silicone 

surfactants. Typical values of Acmc and γcmc for a linear hydrocarbon and silicone surfactant 

provided. Redrawn based on illustration from (ref. 37). 

The high intermolecular forces associated with the inorganic silicate-like backbone are masked 

by the inter low-surface-energy organic groups. However, it would be reasonable to question if the 

high surface energy siloxane backbone directly affects surface energy. By splitting the surface 

energy into separate polar and dispersion components, evidence suggests the backbone has only a 

minor effect. Using Zisman's contact angle data Kaelble calculated γd 20.5 mN m-1 and γp 1.6 mN 

m-1 for polydimethlysiloxane.41 Similar values have been reported elsewhere,42 showing the 

backbone has a small direct effect on surface energy as the polar component is low. The prime role 

of the backbone is to present available organic groups to their best advantage which is achieved 

by virtue of its unique flexibility.  

In most hydrocarbon systems the bond angles are constrained, and steric packing considerations 

often prevent the available methyl groups from adopting their lowest surface energy orientations. 

Because of the electron orbital interactions between silicon and oxygen present in the siloxane 

-CH3 groups dominate the 
interface, Acmc ≈ 70 Å2, γcmc

≈ 20-21 mN m-1

-CH2- groups dominate the 
interface, Acmc ≈ 50 Å2, γcmc

≈ 30-35 mN m-1

Hydrocarbon
e.g. SDS

Silicone
e.g. Table 1, 5
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backbones, an extended flexible chain system is preferred. This freedom to rotate about bonds is 

reflected in the glass transition temperature of polymers (Tg), where a low Tg is indicative of a 

flexible polymer. Lee and Rutherford investigated Tg for several polymers with 

polydimethylsiloxane giving the lowest Tg,43 a direct consequence of the many orientations that 

the polymer can adopt as a result of the unique freedom of rotation.  

To determine the effects of siloxane backbone flexibility on surface activity, Kanner et al. 

prepared a number of low molecular weight siloxane polyoxyethylene surfactants.44 The most 

surface active were those with the smallest siloxane groups, having two to five silicon atoms in 

the chains. Branching of the siloxane hydrophobe and variation of the EO chain length had only 

minor effects on the surface activity. Replacing methyl groups with longer alkyl groups resulted 

in a decreased surface activity. The dependence of γ on molecular weight indicates that the 

conformation of polymeric siloxane surfactants at interfaces is a major factor dictating surface 

energy in these systems. The lower surface tensions provided by smaller siloxane groups and 

shorter alkyl chains on the backbones suggest efficient organization at the interface to produce 

dense surface films packed with CH3- groups. Thus the lower surface tensions given by siloxane 

surfactants can be traced directly to molecular structure, the unusual flexibility of the siloxane 

backbone, and the different surface energies of CH3- versus -CH2-.   

3.2 Wetting and spreading 

The spreading and wetting (ability of a liquid to maintain contact with a solid surface) of liquids 

over solid substrates is extremely important. Silicone surfactants are often called “superspreaders” 

so at this point in the article it is appropriate to briefly introduce the topic. As stated above, Zisman 

and co-workers introduced the critical surface tension, γc, indicating whether a liquid with a known 

liquid/vapour interfacial tension, γLV, wets a solid surface or not.  Liquids with γLV < γc will spread 



20 

 

out over the solid substrate. The surface tension of pure water (γLV ≈ 72 mN m-1 at 298 K) is much 

higher than the critical surface tension of typical hydrophobic materials such as leafy surfaces (γc 

≈ 50 mN m-1 at 298 K), and therefore, spreading of water does not occur on those materials. Hence, 

reducing the surface tension using surfactants means solutions are much more likely to wet low-

energy surfaces. Young's equation for contact angle (eq. 2) shows that spreading requires both a 

low surface tension for the surfactant solution (γLV) and a low interfacial tension between the liquid 

and the substrate (γSL).  

     0 =  𝛾SV − 𝛾SL − 𝛾LV𝑐𝑜𝑠𝜃𝑐                                            (2) 

Fluorocarbon surfactant solutions with limiting aqueous surface tensions of about 15 mN m-1 do 

not spread on low energy hydrocarbon surfaces because the interfacial tensions between 

fluorocarbon surfactant solutions and hydrocarbon substrates (γSL) are large. Certain siloxane 

surfactants greatly enhance the ability of aqueous mixtures to rapidly spread over and wet highly 

hydrophobic (leafy) surfaces, termed superspreaders. For example, the surfactant denoted as 

M(D´E8OH)M (Table 1. 5). Hence, due to the unique spreading and low γ of silicone surfactants, 

they have wide applications as adjuvants for agrochemicals facilitating spreading of crop spray 

formulations over hydrophobic/waxy leaf surfaces.45  

 

4. Hydrocarbon Surfactants 

The link between the limiting tension (energy) γcmc and chemical structure in the interfacial film 

depends on various factors. Table 4 shows a compilation of literature data on selected fluoro-, 

silicone and hydro-carbon surfactants.  

Table 4. Surface properties of some fluoro-, silicone and hydro-carbon surfactants from literature. 

aData from Eastoe (ref. 13). bData from Dickson.46 cData from Yoshimura.47 dData from Brown.48 

eData from Nave.49 fData from Mohamed.50 gData from Penfold.51 hData from Rosen.52 iData from 
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Goddard (ref. 14). Structures for C8FC3-2-C3C8F, L77 and SS1 can be found in Figure 9, 

compounds with bold numbers structures in Table 1. (TPA-DS) - Tetrapropylammonium 

dodecylsulfate; (TCl4) – trichain anionic surfactant; (TPA-TC) - Tetrapropylammonium trichain 

anionic; (di-BC9SS) - sodium bis(1-isobutyl-3,5,dimethyl-hexyl)-2-sulfosuccinate. 

Surfactant γcmc / 
(mN m-1) 

±1 

Acmc / 
(Å2) ± 2 

Fluorocarbon   

NaPFN a (4) 25.6 43 

diCF4 
b (3) 17.9 62 

C8FC3-2-C3C8F c 13.7 91 

Hydrocarbon   

TPA-DS d 31.8 67 

AOT e (6) 30.8 75 

TCl4 f 27.0 80 

TPA-TC d 25.4 136 

di-BC9SS g 24.5 120 

Silicocarbon   

L77 h ~22 66 

SS1 i 20.7 70 

 

As previously highlighted perfluorocarbon surfactants provide lower surface tensions than 

hydrocarbon analogues due to 1) the low polarisability of fluorine and 2) the larger volume of a 

fluorocarbon chain. Furthermore, surfactants bearing siloxane chains have shown to generate 

lower γcmc values than those of typical linear chain hydrocarbon surfactants, due to the unique 

flexibility of the siloxane backbone. Initially, it would appear that hydrocarbon surfactants are 

somewhat inferior. However, due to the low hydrolytic stability of trisiloxane surfactants, and the 

environmentally hazardous nature of fluorocarbons, hydrocarbon surfactants might provide 

possible alternatives, being both stable and generally environmentally acceptable. Recently, highly 
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branched HC surfactants have been synthesized which provide low γ (ref. 51), and the essential 

reasons these hydrocarbon (HC) surfactants generate low γcmc are:- 

 The low intrinsic surface energy of methyl groups (CH3-). 

 Highly branched tails generate dense surface layers composed of CH3- groups with 

weaker tail- tail interactions compared to linear chain HC tails. 

By examining and developing structure-function properties for hydrocarbon surfactants, could 

viable replacements be found to the most commonly used silicone and fluorocarbon surfactants?   

4.1 Structure-property relationships     

Work by Mohamed et al. indicated that trichain HC surfactants could provide γcmc values 

comparable to those of certain fluorosurfactants.53 However, synthesis of trichain surfactants is 

time consuming and not so straightforward, limiting their commercial applications. It has been 

shown that chain branching of hydrocarbon surfactants, especially an increasing level of chain tip 

methylation (see Table 1. 6 and 7), can lead to γcmc lower than linear chain analogues.54 This 

approach to pack the hydrocarbon chain termini with low surface energy CH3- groups mirrors the 

architecture of the very effective siloxane surfactants mentioned in the previous section.  

Aerosol-OT (or AOT, Table 1. 6) is one of the most studied surfactants due to its high versatility, 

rich aqueous-phase behaviour and ability to form cosurfactant-free microemulsions. Investigations 

of the relationship between surfactant molecular structure and phase behaviour have been 

performed with sixteen different Aerosol-OT related surfactants, AOT with a limiting surface 

tension γcmc = 30.8 mN m-1 and an effective area per molecule Acmc = 75 Å2 was shown to behave 

in a very similar fashion to a range of related analogues.55 However, these studies revealed that the 

hydrocarbon backbone structure dictates interfacial packing. The branched chain compounds 

demonstrated a significant increase in Acmc, of between 10 and 20 Å2 over those found for 
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equivalent carbon number linear chain surfactants. Furthermore, slight variations in Acmc were 

detected reflecting changes in packing owing to differing extents of chain branching.  

In effect, the limiting γ that could be achieved with a HC surfactant would be that for the parent 

hydrocarbon. For example, the γcmc of SDS with linear nC12 chains is ~35 mN m-1 but γair-liquid for 

pure n-dodecane is ~ 26 mN m-1.56 The reason for the difference is because the water-soluble 

headgroups sterically hinder the surfactant tails from achieving a dense surface, and increase the 

dispersion contribution γd to the total tension by introducing dipolar interactions,. Therefore, to 

obtain soluble and useful low-surface energy HC surfactants, the van der Waals dispersion 

interactions must be maximized to promote dense surface packing of CH3- and -CH2- groups, 

whilst at the same time minimizing dipolar interactions, which are essential, and unavoidable, to 

promote water solubility. Hence, the net limiting surface tension γcmc is a result of the balance 

between these two opposing effects. 

One approach is to replace linear hydrocarbon chains with highly branched bulkier groups, also 

referred to as “hedgehog” surfactants owing to their unusual spiky brushlike structures. In these 

systems, branched alkyl moieties help to generate high densities of pure liquid alkanes at the air-

water interface. Several novel surfactants based on AOT, but with more highly branched alkyl tails 

(Table 1. 7, 8 and 9) have been examined in terms of γcmc to explore structure-function correlations, 

and optimize molecular design.57 For linear surfactants the cmc decreases logarithmically with the 

linear alkyl chain length of a surfactant, nc, based on the well-known Klevens equation (eq. 3).58 

                                          log(cmc) = A – Bnc                                            (3) 

where A and B are constants which vary according to the charge and type of the headgroup and 

contribution of the -CH2- groups, respectively. Within a series of branched surfactants, links 

between cmc and alkyl carbon number are more complex. However, the general trend of an 

increasing cmc with an increasing level of chain branching due to a shorter effective tail was 
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observed. With linear chains, the general trend is a decrease of γcmc with increasing carbon number 

which reflects an increase in the chain density in the surface films. Among the compounds studied, 

iC18S(FO-180) (Table 1. 7) gave the lowest surface tension, with values of 25.4 and 24.6 mN m-1 

with Na+ and TPA+ (tetrapropylammonium) counterions respectively. These values compare 

favorably with an example pure alkane, tetradecane for which γtetradecane = 24.8 mN m-1.59 

Therefore, it can be seen, γcmc has reached a natural limit of surface tension reduction. This 

remarkable reduction is believed to be a direct consequence of the increase in the CH3- : -CH2- 

ratio per headgroup based on the following order of increasing surface energy for single carbon 

based moieties: CF3 < CF2 < CH3 <CH2 (ref. 19).  These values suggest the surface layers of 

hedgehog molecules are more densely packed with CH3- and -CH2- groups compared to the linear 

chain surfactant counterparts, and as a result γcmc values are reduced. 

To develop HC surfactants with surface tensions as low as can be obtained for FC surfactants, 

dense surfactant films are needed, hence, the optimal thickness of a surfactant layer (i.e. the 

optimal length of surfactant tail) to attain very low γ must be considered. If the tails are too long 

the surfactant will only have a poor solubility in water owing to the hydrophobic effect, stronger 

tail-tail interactions will result in surfactants that are too hydrophobic, with low cmcs, tending to 

insolubility. On the other hand, too short a tail is insufficiently hydrophobic. The chain branching 

of hedgehog surfactants drives Acmc to be high due to the increase in bulkiness of the tail, optimal 

surface packing and therefore, weaker tail-tail interactions, illustrated in Figure 6. The effective 

area per headgroup at the cmc increases from 53 Å2 for iC18S(FO-180N) (Table 1. 8) to 73 Å2 for 

iC18S(FO-180) (7) due to an increase in chain branching. 
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Figure 6. Illustration of the differences in packing adopted by: A - linear, B - dichain and C - 

highly branched hydrocarbon surfactants.  

One of the clearest ways of characterizing an adsorbed layer is in terms of the limiting surface 

excess, Гcmc, and area per headgroup, Acmc, since these give an indication about molecular packing 

efficiency. As shown the minimum effective molecular area Acmc directly affects the effective mass 

density of the surfactant film, and this depends on branching position and length of tail. However, 

to relate γcmc to the density of the surfactant HC-tail layers, the apparent mass densities of surface 

films can be estimated using ρlayer = m / (Acmc x τ), where m is the weight of the surfactant double 

tail and τ is surfactant tail length (obtained by the Tanford equation: τ = 1.5 + 1.256x, where x is 

the carbon number of the longest alkyl chain in the tail.60). Figure 7 shows the relationship between 

γcmc and ρlayer for a series of Aerosol-OT-analogue surfactants (sulfosuccinate-type di-BCnSS and 

sulfoglutarate-type di-BCnSG) with highlybranched alkyl double tails, where n represents carbon 

number (ref. 51). 
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Figure 7. Relationship between γcmc and density of surfactant-tail layer ρlayer calculated with Acmc 

and tail length at 35 °C, (AOT1 and di-BC6SS Table 1. 6 and 9 respectively). Structures for other 

AOT analogues and hedgehog surfactants can be found in (ref. 55 and 51) respectively. Reprinted 

with permission from (ref. 51). Copyright 2014 American Chemical Society. 

It can be seen that ρlayer is an important property affecting γcmc, with a higher ρlayer leading to a 

lower γcmc. The lowest γcmc of 23.8 mN m-1 is obtained at the highest ρlayer of 0.73 g cm-3 for di-

BC6SS (Table 1. 9), it is interesting to note that pure liquid n-decane γ = 23.7 mN m-1 at 293 K and 

a density of 0.73 g cm-3.61 It should also be noted that these γcmc values for branched HC surfactants 

are approaching those of common linear FC surfactants, like NaPFN (Table 4.). Figure 7 shows 

that the hedgehog BC9 and BC12 tails give much lower γcmc, even at low ρlayer values. This might 

be because the order parameter of the layer is small in BC9 and BC12 tails, quantifying the degree 

of parallel ordering of anisotropic molecules along their longitudinal axes, i.e. low surface energy 

surfaces of pure liquid alkanes ≈ 0, when the state changes to solid (crystal) ≈ 1. Here the order 

parameter is defined as the degree of the average C-C bond ordering; the ordering of n-alkyl-tails 

with all trans-conformation of C-C bonds will give an order parameter of ~1. The symmetric 

structure of the individual units composing the BC9 and BC12 tails are likely to produce high 
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isotropy in C-C bond ordering, i.e. a low order parameter ~0. When incorporating order parameter 

theory into designing low surface energy surfactant tails, the order parameter should be as close to 

0 as possible. 

These results suggest that highly branched tail structures can generate dense surface layers, 

which mimic the surfaces of pure alkane analogues. Hence, hydrocarbon surfactants could be 

developed to achieve equilibrium surface tensions which match those of fluorocarbon or silicone 

surfactants.  

 

5. Comparison of different surfactants 

Above, the effect of surfactant structure on aqueous γcmc has been reviewed for fluorocarbon, 

siloxane and hydrocarbon surfactants. It has been shown that each class of surfactant possesses 

unique chemical properties which are at the heart of notable performance. Furthermore, there are 

many compounds that are highly effective at reducing surface tension. However, by comparing 

widely different classes of surfactants, is it possible to identify a general property, independent of 

the chemical type or structure, which explains low γcmc? An index to assess surface coverage at the 

cmc, Φcmc is introduced (eq. 4):  

                 Φcmc = Vcal Vmeas⁄                                                   (4)   

where Vcal is the total physical volume of surfactant molecular fragments (values taken from 

literature62-64), and Vmeas is the total volume occupied by a molecule at the reference air-water 

interface, calculated using experimental values (eq. 5):   
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                                                                  Vmeas = Acmc x 𝜏                                                (5) 

Acmc corresponds to the surfactant headgroup areas (which can be determined tensiometrically), 

and τ is an interfacial thickness which can be found by the Tanford Equation (ref. 60), or 

determined by Neutron Reflectivity (ref. 15). An illustration of these volumes and dimensions is 

depicted in Figure. 8.  

  

Figure. 8 A visual representation of surfactants at the air-water interface, showing the different 

fragment and interfacial volumes used in the calculation of Φcmc. The measured surfactant 

molecular volume is Vmeas, the calculated volume based on summation of fragments is Vcalc and 

Vfree represents the free space in the film. Reprinted with permission from (ref. 53). Copyright 

2011 American Chemical Society. 

The part of the interfacial layer which is not occupied by molecular fragments is free space, Vfree 

= Vmeas-Vcal. Assuming the layer is uniform, a high Φcmc is indicative of efficiently packed 

surfactant monolayers, with little free space.  

As an example, for the common SDS, γ = 31.2 mN m-1, Acmc = 47 Å2 and ɸcmc = 0.49, showing 

the majority of the surface layer is in fact free space.  Another common surfactant, AOT (Table 1. 

6) with aqueous γcmc = 30.8 mN m-1 and Acmc = 75 Å2 has a corresponding Φcmc = 0.63. In 

comparison di-CF2, a linear dichain fluorocarbon AOT-based analogue, γcmc = 22.4 mN m-1 and 
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VfreeVcal Vfree
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Acmc = 65 Å2, giving a surface coverage value of Φcmc= 0.79 (data from ref. 53). The values 

obtained for Φcmc are independent of both the surfactant geometry and chemistry of the surfactants, 

therefore, by comparing Φcmc alongside γcmc and Acmc for three main classes of low surface energy 

surfactants, it is possible to identify a general property that accounts for low γcmc. Simply put, an 

efficiently packed surface monolayer is required for low γcmc, consistent with a high value of Φcmc.  

Figure 9 shows an illustration of aqueous limiting surface tensions, γcmc, corresponding areas per 

molecule at the surface, Acmc, and film packing volume fractions Φcmc for some of the most 

effective fluoro-, silicone and hydro-carbon surfactants covered in this article. Column height 

represents γcmc and column width represents Acmc. Surface coverage Φcmc is also given on each 

column. From Figure 9 it can be seen that all classes of these super-efficient surfactants generate 

high interfacial coverages Φcmc. 

An important reason fluorosurfactants give the lowest surface energies is due to the 'fatness', 

which is reflected in typical cross sectional areas for fluorocarbon and hydrocarbon chains, 27 Å2 

and 20 Å2 respectively (ref. 27). A greater number of perfluoroalkyl chains and longer chain length 

result in greater surface activity. For example, C8
FC3-2-C3C8

F containing longer perfluoroalkyl 

chains than di-CF4 can form denser surface layers composed of low surface energy -CF2- and CF3- 

groups. Siloxane surfactants typically achieve aqueous γcmc values lower than hydrocarbon 

surfactants, accounted for owing to the flexibility of the siloxane backbone. 
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Figure 9. Comparison of the aqueous surface tension, area per molecule and surface coverage at 

the cmc for some of the most effective fluorocarbon (red), silicone (grey) and hydrocarbon (cream) 

surfactants. Column length shows γcmc and column width represents Acmc. Chains and endgroups 

in bold represent perfluoroalkyl chains. Data from literature: di-CF4 (ref. 46), C8
FC3-2-C3C8

F (ref. 

47), SS1 (ref. 14), L77 (ref. 52), di-BC6SS (ref. 51), Na+-iC18S(FO-180) (ref. 57). 

Compared to linear hydrocarbons dense surfaces can be formed dominated by CH3- groups. In 

order to generate low γcmc hydrocarbon surfactants must be able to pack sufficiently to create dense 

surface layers predominated by lower surface energy CH3- groups, whilst also keeping tail-tail 

interactions low. Normal linear hydrocarbon chains present packed surface layers dominated by -

CH2- groups, resulting in comparably higher surface energies. However, chain branching causes a 
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sufficient reduction in packing efficiency to decrease tail-tail interactions, whilst maintaining the 

all important high (CH3-) : (-CH2-) ratio per headgroup.  

The limiting aqueous surface tension depends on the ability of surfactant hydrophobic tails to 

form dense surface layers, regardless of surfactant type. This has been identified by evaluating 

surface tension in terms of surface coverages at the cmc, Φcmc, where the most effective surfactants 

known all show high surface coverages. Hence, it can be said that for all classes of surfactants a 

general structure-property relationship exists - low aqueous surface tensions are achieved through 

efficient surface packing and hence, superior coverages at the air-water interface. 

 

6. Conclusions 

The surface tension of a liquid is a direct measure of the intermolecular interactions stabilizing 

the liquid phase. The reduction of surface tension is one of the most commonly measured 

properties of surfactants in solution. Pitt et al. examined and compared how the different chemical 

structures of fluorocarbon and hydrocarbon surfactants affect the aqueous static limiting surface 

tension, γcmc (ref. 16). This new article represents an up to date review of structure-activity 

relationships of fluoro-, silicone and hydro-carbon surfactants.  

Fluorocarbon surfactants provide lowest γcmc values over the three classes of surfactants. This is 

due to weaker intermolecular forces, and the larger molecular volumes of perfluoroalkyl moieties 

over hydrocarbon groups. The greater the fluoroalkyl chain length, the lower the surface tension 

(ref. 32). Longer chains can form more group-to-group interactions with neighbouring chains, pack 

more densely (lower Acmc), and hence locate more distinctly at the air-water interface to produce 

surfaces with a greater proportion of low surface energy CF3- chain tip groups. Furthermore, a 

greater number of fluoroalkyl chains will also produce more 'hydrophobic' surfactants which will 
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reduce γ. On the other hand, branching of the tails will result in a greater difficulty in packing at 

the interface, thus producing inferior equilibrium properties. Regardless of headgroup there is a 

strong structure-function relationship dependent on differences in fluorocarbon chain structure 

only (ref. 13).  

Silicone surfactants are the most efficient spreading agents and typically achieve aqueous γcmc 

values in-between those of FC and HC surfactants. The Si-O groups provide a highly flexible Si-

O-Si backbone which presents available organic groups to their best advantage. The air-water 

interface is dominated by lower energy CH3- groups (based on the trend for surface energy of 

single carbon based moieties: CF3 < CF2 < CH3 < CH2 (ref. 19)) which explains the typical γcmc 

values achieved by siloxane surfactants. Smaller siloxane groups promote the surfactants to form 

the lowest surface energy conformations. On the other hand inhibiting efficient packing by 

replacing the backbone methyl groups with longer alkyl groups, results in a decreased ability to 

lower surface tension.  

Hydrocarbon surfactants, provide the highest aqueous γcmc values of the three classes. Chain 

branching of a hydrocarbon can lead to lower γcmc values over linear analogues (ref. 54). Recently, 

it was demonstrated with AOT analogues how structure of the hydrocarbon backbone dictates 

interfacial packing (ref. 55). By designing highly branched surfactants ("hedgehog surfactants") to 

increase the (CH3-) : (-CH2-) ratio per headgroup, it was shown that low surface tensions can be 

achieved, by trying to mimic the densities of pure alkanes (ref. 51 and 57). Long hydrocarbon tails 

result in poor water solubility and stronger tail-tail interactions which increase γcmc, but also drives 

Acmc lower. Counterbalancing this, chain branching drives Acmc higher due to increased bulkiness 

of the tails, causing a decrease in packing efficiency and therefore, weaker tail-tail interactions 
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between chains, resulting in the lowest aqueous surface tensions achieved for hydrocarbon 

surfactants.  

By comparing the performance of three classes of surfactants in terms of the packing index Φcmc, 

which is independent of molecular geometry and composition, it has been possible to identify a 

general property of all effective surfactants. Namely, reduction of surface tension is achieved by a 

high surface coverage (i.e. large Φcmc). This general structure-property relationship of surfactants 

has not been highlighted before, and it points to new ways of controlling surface energy through 

design of super efficient, environmentally acceptable and commercially viable surfactants.   
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