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Abstract

Autonomous driving system development is critically de-

pendent on the ability to replay complex and diverse traffic

scenarios in simulation. In such scenarios, the ability to

accurately simulate the vehicle sensors such as cameras,

lidar or radar is hugely helpful. However, current sensor

simulators leverage gaming engines such as Unreal or Unity,

requiring manual creation of environments, objects, and ma-

terial properties. Such approaches have limited scalability

and fail to produce realistic approximations of camera, lidar,

and radar data without significant additional work.

In this paper, we present a simple yet effective approach

to generate realistic scenario sensor data, based only on

a limited amount of lidar and camera data collected by an

autonomous vehicle. Our approach uses texture-mapped

surfels to efficiently reconstruct the scene from an initial

vehicle pass or set of passes, preserving rich information

about object 3D geometry and appearance, as well as the

scene conditions. We then leverage a SurfelGAN network to

reconstruct realistic camera images for novel positions and

orientations of the self-driving vehicle and moving objects in

the scene. We demonstrate our approach on the Waymo Open

Dataset and show that it can synthesize realistic camera data

for simulated scenarios. We also create a novel dataset that

contains cases in which two self-driving vehicles observe the

same scene at the same time. We use this dataset to provide

additional evaluation and demonstrate the usefulness of our

SurfelGAN model.

1. Introduction

Recent advances in deep learning have inspired break-

throughs in multiple areas related to autonomous driving

such as perception [16, 27], prediction [5, 7] and plan-

ning [13]. These recent trends only underscore the increas-

ingly significant role of data-driven system development.

One aspect is that deep learning networks benefit from large

training datasets. Another is that autonomous driving sys-
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tem evaluation requires the ability to realistically replay a

large set of diverse and complex scenarios in simulation cap-

turing sensor properties, seasons, time of day, and weather.

Developing simulators that support the levels of realism re-

quired for autonomous system evaluation is a challenging

task. There are many ways to design simulators, including

simulating mid-level object representations [5, 12]. How-

ever, mid-level representations omit subtle perceptual cues

that are important for scene understanding, such as pedes-

trian gestures and blinking lights on vehicles. Furthermore,

as end-to-end models that combine perception, prediction,

and sometimes even control become an increasingly more

popular direction of research, we are faced with the need to

faithfully simulate the sensor data, which is the input to such

models during scenario replay.

Frameworks for autonomous driving that support realistic

sensor simulation are traditionally built on top of gaming

engines such as Unreal or Unity [12]. The environment

and its object models are created and arranged manually, to

approximate real-world scenes of interest. In order to en-

able realistic LiDAR and radar modeling, material properties

often need to be manually specified as well. The overall

process is time-consuming and not scalable. Furthermore,

simple ray-casting or ray-tracing techniques are often insuffi-

cient to generate realistic camera, LiDAR, or radar data for a

specific self-driving system, and additional work is required

to adapt the simulated sensor statistics to the real sensors.

In this work, we propose a simple yet effective data-

driven approach for creating realistic scenario sensor data.

Our approach relies on camera and LiDAR data collected in

a single pass, or several passes, of an autonomous vehicle

through a scene of interest. We use this data to reconstruct

the scene using a texture-mapped surfel representation. This

representation is simple and computationally efficient to cre-

ate and preserves rich information about the 3D geometry,

semantics, and appearance of all objects in the scene. Given

the surfel reconstruction, we can render the scene for novel

poses of the self-driving vehicle (SDV) and the other sce-

nario agents. The rendered reconstruction for these novel

views may have some missing parts due to occlusion differ-

ences between the initial and the new configuration. It can
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Figure 1. Overview of our proposed system. a) The goal of this work is the generation of camera images for autonomous driving simulation.

When provided with a novel trajectory of the self-driving vehicle in simulation, the system generates realistic visual sensor data that is useful

for downstream modules such as an object detector, a behavior predictor, or a motion planner. At a high level, the method consists of two

steps: b) First, we scan the target environment and reconstruct a scene consisting of rich textured surfels. c) Surfels are rendered at the

camera pose of the novel trajectory, alongside semantic and instance segmentation masks. Through a GAN [15], we generate realistically

looking camera images.

also have visual quality artifacts due to the limited fidelity of

the surfel reconstruction. We address this gap by applying a

GAN network [15] to the rendered surfel views to produce

the final high-quality image reconstructions. An overview of

our proposed system is illustrated in Fig. 1.

Our work makes the following contributions: 1) We de-

scribe a pipeline that builds a detailed reconstruction of a

dynamic scene from real-world sensor data. This represen-

tation allows us to render novel views in the scene, corre-

sponding to deviations of the SDV and the other agents in the

environment from their initially captured trajectories (Sec.

3.1). 2) We propose a GAN architecture that takes in the

rendered surfel views and synthesizes images with quality

and statistics approaching that of real images (Tab. 1) 3) We

build the first dataset for reliably evaluating the task of novel

view synthesis for autonomous driving, which contains cases

in which two self-driving vehicles observe the same scene

at the same time. We use this dataset to provide additional

evaluation and demonstrate the usefulness of our SurfelGAN

model.

2. Related Work

Simulated Environment for Learning Agent. There have

been many efforts towards building simulated environments

for various tasks [6, 12, 40, 41, 42]. Much work has focused

on indoor environments [6, 40, 42] based on public indoor

datasets such as SUNCG [36] or Matterport3D [8]. In con-

trast to indoor settings where the environment is relatively

simple and easy to model, simulators for autonomous driving

exhibit significant challenges in modeling the complicated

and dynamic scenarios of real-world scenes. TORCS[41] is

one of the first simulation environments that support multi-

agent racing, but is not tailored for real-world autonomous

driving research and development. DeepGTAV [1] provides

a plugin that transforms the Grand Theft Auto gaming envi-

ronment into a vision-based self-driving car research envi-

ronment. CARLA[12] is a popular open-source simulation

engine that supports the training and testing of SDVs. All

these simulators rely on manual creation of synthetic envi-

ronments, which is a formidable and laborious process. In

CARLA [12], the 3D model of the environment, which in-

cludes buildings, road, vegetation, vehicles, and pedestrians,

is manually created. The simulator provides one town with

2.9 km of drivable roads for training and another town with

1.4 km of drivable roads for testing. In contrast, our system

is easily extendable to new scenes that are driven by an SDV.

Furthermore, because the environment we are building is

a high-quality reconstruction based on the vehicle sensors,

it naturally closes the domain gap between synthetic and

real contents, which is present in most traditional simulation

environments. AADS [24] shares similar ideas as ours in

that it also utilizes real sensor data to synthesize novel views.

The major difference is that we reconstruct the 3D environ-

ment, while AADS uses a purely image-based novel view

synthesis. Reconstructing the 3D environment gives us the

freedom to synthesize novel views that could not be easily

captured in the real world. Moreover, once our environment

is built, we no longer need to store the images as well as the

query of the nearest K views upon synthesis, which saves

time for deployment.

Learning on Synthetic Data. Besides enabling end-to-end

training and evaluation of embodied agents, the simulated

environment can also provide a large amount of data for

training deep neural networks. [33] uses a synthetic scene

to generate a large amount of fully labeled training data for

urban scene segmentation. [20] generate images containing
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novel placement of dynamic objects to boost the performance

of object detection.

Geometric Reconstruction and 3D Representations. Our

work is also closely related to 3D reconstruction for outdoor

environments. The typical approach is to use structure from

motion [37, 39] and multi-view stereo[14] to recover a dense

3D point cloud from image collections, then optionally use

Poisson reconstruction[22] to obtain a mesh representation.

Such a paradigm is most suitable for the case where we have

multiple images covering the same area from different per-

spectives, which is not always true in our case. Thanks to

the rapid advancement of LiDAR technology, we can have

accurate depth information to complement the camera image

data. Our work uses this to augment the traditional surfel[32]

representation with fine-grained image textures, which not

only greatly simplifies the reconstruction process, but it also

effectively enhances the representation of the colored real

world. Truncated Signed Distance Functions [11] and their

most recent variants [30] are also promising alternatives to

the surfel. We also noted the recent work [3] that learns a

point-wise dense descriptor on point cloud for rendering pur-

pose. Although they’ve shown promising results, however

their approach assumes a static environment, and is not prac-

tically applicable to outdoor scenario where a scene usually

contains tens of millions of points.

GAN-based Image Translation. Generative Adversarial

Networks (GAN) [15] have attracted broad interests in both

academia and industry. While [15] aims at synthesis realistic

images, [19] generalizes its framework to a more practical

conditional image synthesis setting. Subsequent research [4,

21, 31, 44] has made great strides in improving the quality of

images generated by GAN methods. We refer the readers to

[10] for details on this topic. [38] trained a video synthesizer

on Cityscape[9] that can convert video of a semantic map

into a video of realistic images. However, their training

procedure requires pixel-wise annotated semantic images,

which is very expensive in practice. In contrast, our approach

uses labeled 3D bounding boxes for several dynamic object

classes and therefore is more cost-effective. We believe even

this requirement can be further relaxed, by replacing the

ground-truth 3D boxes with 3D boxes produced by a high-

quality offline 3D perception pipeline. Finally, we address

the usual problem of GAN evaluation by proposing two new

metrics that are suitable for the task of novel view synthesis.

3. Approach

In this section, we explain the key innovations of this

work, which lays the foundation for creating a data-driven

simulation environment supporting sensor realism: surfel

scene reconstruction and image synthesis via the SurfelGAN.

3.1. Surfel Scene Reconstruction

Enhanced Surfel Map. A good scene reconstruction

should achieve faithful preservation of the sensor informa-

tion while being efficient to compute and storage. We pro-

pose a novel texture-enhanced surfel map representation.

Surfels are compact, easy to reconstruct, and because of

their fixed size, easy to texture and compress. Below we

describe our approach, which contains more fine-grained de-

tails compared to traditional surfel map representations [32].

We discretize the scene into a 3D voxel grid of fixed size

and process LiDAR scans in the order they are captured. For

each voxel, we construct a surfel disk by estimating the mean

coordinate and the surfel normal, based on all the LiDAR

points that fall within that voxel. The surfel disk radius is

defined as
√
3v, where v denotes the voxel size. For the

LiDAR points binned in a voxel, we also have corresponding

colors from the camera image, which we can use to estimate

the surfel color. Note that traditional surfel maps suffer from

the trade-off between geometry consistency and fine-grained

details, i.e., a large voxel size gives better geometry con-

sistency but fewer details, while small voxel size results in

finer details but less stable geometry. Therefore, we take

an alternative approach that aims to achieve both good ge-

ometry consistency and rich texture details. Specifically,

we discretize each surfel disk into a k × k grid centered

on its point centroid, as illustrated in subfigure b) in Fig. 1.

Each grid center is assigned an independent color to encode

higher-resolution texture details.

Since each surfel may have a different appearance across

different frames, due to the variations of the lighting con-

ditions and the changes of relative pose (distance and view

angle), we propose to enhance the surfel representation by

creating a codebook of such k × k grids at n various dis-

tances. For each bin, we determine its color from the first

observation, which we found is important to obtain a smooth

rendering image. During the rendering stage, we determine

which k×k patch to use based on the camera pose. The final

rendering is shown in Fig. 2. We can see that the baseline

surfel map introduces many artifacts at object boundaries

and yields non-smooth coloring at non-boundary areas. In

contrast, our texture-enhanced surfel map eliminates much

of the artifacts and gives vivid-looking images. In our exper-

iments, we use v = 0.2m, k = 5 and n = 10.

Handling Dynamic Objects. We consider vehicles as rigid

dynamic objects and reconstruct a separate model for each.

For simplicity, we leverage the high-quality 3D bounding

box annotations from the Waymo Open Dataset [2] to accu-

mulate the LiDAR points from multiple scans for each object

of interest. We apply the Iterative Closest Point (ICP) [34]

algorithm to refine the point cloud registration, producing a

dense point cloud that allows an accurate, enhanced surfel

reconstruction for each vehicle. Please see Supplementary
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Figure 2. Visualization of different scene modeling strategies. Top row: Surfel baseline; Center row: our Texture-Enhanced Surfel Map

(also known as surfel rendering in the rest of the paper); Bottom row: Real camera image.

Sec. A for reconstructed examples. Our approach does not

strictly require 3D box ground-truth; we could also lever-

age a state of the art vehicle detection and tracking algo-

rithm [28, 35] to get initial estimates for ICP. However, we

leave this experiment for future work.

When simulating our environment, the reconstructed ve-

hicle models can be placed in any location of choice. In the

case of the pedestrians, which are deformable objects, we

reconstruct a separate surfel model for each LiDAR scan

separately. We allow placement of the reconstructed pedes-

trian anywhere in the scene for that scan. We leave the task

of accurate deformable model reconstruction from multiple

scans to future work.

3.2. Image Synthesis via SurfelGAN

While the surfel scene reconstruction captures a rich en-

vironment representation, it produces surfel renderings that

have a non-negligible realism gap when compared to real

images, due to incomplete reconstruction and imperfect ge-

ometry and texturing (see Fig. 2. SurfelGAN is designed to

address the issue.

Ultimately, we like to learn a generator (SurfelGAN) that

converts surfel renderings rendered from the surfel scene

reconstruction to realistically looking images. We treat se-

mantic and instance segmentation maps as part of the surfel

rendering. For the sake of simplicity, we omit to mention

them explicitly.

Let the generator GS→I
θS

be an encoder-decoder model

parameterized by the learnable variable θS . Given pairs

of surfel renderings Sp and images Ip, the supervised loss

can be applied to train the generator. We call SurfelGAN

that is trained solely with supervised learning SurfelGAN-S.

Additionally, We can add an adversarial loss dictated by a

real image discriminator DI
φI

parameterized by trainable

variable φI . SurfelGANs trained with this additional loss is

named SurfelGAN-SA.

However, paired training data between surfel rendering

and real image is very limited. Unpaired data is however

easy to obtain. We leverage unpaired data for two purposes,

i.e. improving the generalization of discriminator by training

with more unlabeled examples, and regularizing the genera-

tor by enforcing cycle consistency. Let the reverse generator

GI→S
θI

be another encoder-decoder model which has the

same architecture as GS→I
θS

except more output channels

for semantic/instance map, any surfel rendering, paired Sp

or unpaired Su can be translated to a real image and trans-

lated back to a surfel rendering, where a cycle consistency

loss can be applied. The same applies to any paired Ip or

unpaired Iu real image as well. Finally, we add the surfel

rendering discriminator DS
φS

that judges generated surfel

images. We call SurfelGANs trained with additional cycle

consistency SurfelGAN-SAC. An intuitive overview of the

training strategy is shown in Fig. 3. And please refer to

Sec. 4 for a detailed description of paired and unpaired data.

We optimize the following objective:

max
φS ,φI

min
θS ,θI

Lr(G
S→I
θS

,Sp, Ip) + λ1Lr(G
I→S
θI

, Ip,Sp)

+ λ2La(G
S→I
θS

, D
I
φI
,Sp,u) + λ3La(G

I→S
θI

, D
S
φS

, Ip,u)

+ λ4Lc(G
S→I
θS

, G
I→S
θI

,Sp,u) + λ5Lc(G
I→S
θI

, G
S→I
θS

, Ip,u)
(1)

where Lr, La, Lc are supervised reconstruction, adversarial,

and cycle consistency loss. We use hinged Wasserstein loss

for adversarial training [25, 29, 43] in our experiments as it
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Figure 3. (Best viewed in color) SurfelGAN training paradigm. The training setup has two symmetric encoder-decoder generators

mapping from surfel renderings to real images GS→I and vice versa GI→S . Additionally, there are two discriminators, DS , DI , which

specialize in the surfel and the real domain. The losses are shown as colored arrows. Green: supervised reconstruction loss. Red: adversarial

loss. Blue/Yellow: cycle-consistency losses. When training with paired data, e.g. WOD-TRAIN, the surfel renderings translate to real images,

and we can apply a one-directional supervised reconstruction loss (SurfelGAN-S) only or add an additional adversarial loss (SurfelGAN-SA).

When training with unpaired data, we can go either from the surfel renderings (e.g. WOD-TRAIN-NV) or the real images (e.g. Internal

Camera Dataset), use one of the encoder-decoder networks to get to the other domain and back. We can then apply a cycle consistency loss.

(SurfelGAN-SAC). The encoder-decoder networks consist of 8 convolutional and 8 deconvolutional layers. Discriminators consist of 5

convolutional layers. All network operate on 256× 256 sized input.

helps to stabilize the training. We use ℓ1-loss as reconstruc-

tion and cycle-consistency loss for renderings and images

and cross entropy loss for semantic and instance maps.

Distance Weighted Loss. Due to the limited coverage of

the surfel map, our surfel rendering contains large areas of

unknown regions. The uncertainty in those regions is much

higher than that of the region with surfel information. Also,

the distance between the camera and the surfel introduces

another factor of uncertainty. Therefore, we use a distance

weighted loss to stabilize our GAN training. Specifically,

during data pre-processing, we generate a distance map that

records the nearest distance to the observed region and then

uses the distance information as weighting coefficients to

modulate our reconstruction loss.

Training Details. We use Adam[23] optimizer for training.

We set the initial learning rate to 2e−4 for both the generator

and the discriminator and set β1 = 0.5 and β2 = 0.9. We use

batch normalization [18] after Relu activation. We set λ1 =
1, λ2, λ3 = 0.001, , λ4, λ5 = 0.1 in all of our experiments.

The total training time of our network is 3 days, based on

one Nvidia Titan V100 GPU with batch size 8.

4. Experimental Results

We base our experiments mainly on the Waymo Open

Dataset [2], but we also collected two additional datasets to

support our experiments further.

Waymo Open Dataset (WOD) [2]. The dataset consists

of 798 training (WOD-TRAIN) and 202 validation (WOD-

EVAL) sequences. Each sequence contains 20 seconds of

camera and LiDAR data captured at 10Hz, as well as fully

annotated 3D bounding boxes for vehicles, pedestrians, and

cyclists. The LiDAR data covers a full 360 degrees around

the agent, whereas five cameras capture the frontal 180 de-

grees. After reconstructing the surfel scenes, we can render

the surfel images in the same pose as the original camera im-

ages, hence generating surfel-image-to-camera-image pairs

that can be used for paired training and evaluation. Since

during the reconstruction process are know the category for

each surfel, we can easily derive both semantic segmenta-

tion mask and instance segmentation mask by first rendering

an index map that associates each pixel with a surfel index

and then determine the semantic class or instance number

through a look-up table.

We derive another dataset from WOD, which we call

Waymo Open Dataset-Novel View (WOD-TRAIN-NV and

WOD-EVAL-NV). We again start from reconstructed surfel

scenes, but we now render surfel images from novel camera

poses perturbed from existing camera poses. The perturba-

tion consists of applying a random translation and a random

yaw angle perturbation to the camera mounted vehicle. We

use annotated 3D bounding boxes to ensure the perturbed

vehicle does not intersect with others.

We generate one new surfel image rendering for each

frame in the original dataset. Noted that although this dataset

comes for free, i.e. we could generate any number of test-

ing frames, it does not have corresponding camera images.

Therefore, this dataset can only be used for unpaired training

and not all types of evaluation paradigms.

Internal Camera Image Dataset. We collected additional

9.8k short sequences (100 frames for each) similar to WOD

images. These unannotated images are used for unpaired

training of real images.

Dual-Camera-Pose Dataset (DCP) Finally, we built a

unique dataset tailored for measuring the realism of our

model. The dataset contains scenarios where two vehicles

observe the same scene at the same time. Specifically, we

find the interval where two vehicles are within 20m of each

other. We use the sensor data from the first vehicle to recon-

struct the scene, and render the surfel image at the exact pose
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Figure 4. Qualitative comparison bewteen different SurfelGAN variants and the baseline on WOD-EVAL under different weather conditions.

of the second vehicle. After filtering cases where the scene

reconstruction is too incomplete, we obtain around 1k pairs,

for which we can directly measure the pixel-wise accuracy

of the generated image.

4.1. Model Variants and Baseline

Most experiments were performed on three variants of

our proposed model. Supervised (S): we train the surfel-

rendering-to-image model in a supervised way by mini-

mizing an ℓ1-loss between the generated image and the

groundtruth real image. This type of training requires paired

data. Hence, it is only possible to train on WOD-TRAIN. Su-

pervised + Adversarial (SA): we still only consider WOD-

TRAIN as the training data. However, we add an adversarial

loss alongside the ℓ1-loss. Supervised + Adversarial + Cy-

cle (SAC): in this variation, we also use WOD-TRAIN-NV

and the Internal Camera Image Dataset. Since these two sets

are unpaired, the supervised loss does not apply. We propose

to use a cycle-consistency loss in addition to the adversarial

loss, as discussed in Sec. 3.2.

The baseline for our applications is the direct surfel ren-

derings (Surfel) that serve as the input to our model.

4.2. Vehicle Detector Realism

Since the primary application of this work is the simula-

tion of the camera data, a natural quality metric is to evaluate

it using a downstream module. To this end, we like to know,

without any fine-tuning, how well an off-the-shelf vehicle

detector performs on the generated images, and, whether

the detector perceived the generated images similarly to real

images. We chose to use a vehicle detector with a ResNet ar-

chitecture [17] and an SSD detection head [27], trained and

evaluated on resized images of a 512× 512 resolution. It is

trained on a mixture of datasets that include WOD-TRAIN.

We trained our SurfelGAN model variants on a mixture of

WOD-TRAIN, WOD-TRAIN-NV, and the Internal Camera

Image Dataset, and generated images on WOD-TRAIN-NV,

WOD-EVAL and WOD-EVAL-NV. Tab. 1 shows the quan-

titative comparison of the detector’s quality on the original

surfel renderings that is the input SurfelGAN, images gener-

ated from the variants of SurfelGAN and real images. A few

examples are displayed in Fig. 4. Please find additional visu-
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WOD-TRAIN-NV WOD-EVAL WOD-EVAL-NV

AP@50 ↑ AP@75 ↑ AP ↑ Rec ↑ AP@50 AP@75 AP Rec AP@50 AP@75 AP Rec

Surfel (baseline) 0.444 0.168 0.211 0.342 0.521 0.168 0.239 0.371 0.462 0.154 0.213 0.348

SurfelGAN-S (ours) 0.508 0.177 0.236 0.359 0.576 0.164 0.252 0.341 0.514 0.159 0.230 0.358

SurfelGAN-SA (ours) 0.554 0.200 0.259 0.382 0.610 0.174 0.266 0.394 0.567 0.180 0.257 0.387

SurfelGAN-SAC (ours) 0.564 0.200 0.263 0.385 0.620 0.181 0.272 0.400 0.570 0.181 0.258 0.388

Real (upper bound) - - - - 0.619 0.198 0.281 0.424 - - - -

Table 1. realism w.r.t. an off-the-shelf vehicle object detector. We generated images using the proposed SurfelGAN and ran inference

on them using an off-the-shelf object detector. We report the standard COCO object detection metrics [26], including variants of the

average-precision (AP) and recall at 100 (Rec). Surfel is the surfel rendering that is the input to SurfelGAN. SurfelGAN is the proposed

model. The S variant is trained with paired supervised learning only. The SA variant adds the adversarial loss, and the SAC variant makes

use of additional unpaired data and applied a cyclic adversarial loss. Real is the real image captured by cameras, which is only available in

WOD-EVAL. It serves as an upper bound to the detector’s quality. As shown above, SurfelGAN significantly improves over the baseline,

and reaches competitive quality metric values as the real images.

alizations in the supplementary material. Fig. 5 highlights

our system’s ability to generate images in novel views.

It is notable that our texture-enhanced surfel scene re-

construction already produces surfel renderings that achieve

good detection quality on the WOD-EVAL set at 52.1%

AP@50. But there is still a significant gap between these

surfel renderings and real images at 61.9%, which motivates

our SurfelGAN work. As shown in Tab. 1, SurfelGAN-S,

-SA and -SAC variants gradually improve over the baseline

surfel renderings. SurfelGAN-SAC ultimately improves the

AP@50 metric from 52.1% to 62.0% on WOD-EVAL, which

is on par to the real images at 61.9%. It shows that images

generated by SurfelGAN-SAC are close to real images in

the eyes of the detector, which is the primary motivation of

this work.

There are two types of generalization worth discussing.

The first type is whether a SurfelGAN model trained on one

set of scenes (e.g. WOD-TRAIN and WOD-TRAIN-NV)

generalizes to new scenes (e.g. WOD-EVAL and WOD-

EVAL-NV). We believe that the SurfelGAN model general-

izes well since the relative improvement of SurfelGAN over

the baseline is very similar between the WOD-TRAIN-NV

and WOD-EVAL-NV columns in Tab. 1.

The second type of generalization is whether surfel ren-

dering has a strong bias towards the poses from which the

scene was reconstructed. We compare the metric values

between WOD-EVAL and WOD-EVAL-NV. Although Sur-

felGAN improved by roughly 10% over the baseline in both

cases, there is a noticeable quality difference between the

two columns. To better understand this difference, in Tab. 2,

we breakdown the metrics of SurfelGAN-SAC on WOD-

EVAL-NV according to how much each pose deviates from

the original poses in WOD-EVAL. The deviation d(.) is de-

fined as a weighted sum of both translational and rotational

differences of the poses:

d((t, R), (t′, R′)) = ||t− t′||+ λR

||log(RTR′)||√
2

(2)

where t and R are the pose (translation and rotation) of the

Perturbation AP@50 AP@75 AP

d <= 1.0 0.574 0.174 0.257

1.0 < d <= 2.0 0.547 0.173 0.246

2.0 < d 0.488 0.153 0.218

Table 2. Detector metric break down at different perturbation level

on WOD-EVAL-NV.

Surfel SGAN-S SGAN-SA SGAN-SAC

ℓ1-distance ↓ 0.262 0.229 0.240 0.238

Table 3. Image-pixel realism. We applied the SurfelGAN on the

Dual-Camera-Pose Dataset, where it is possible to measure ℓ1-

distance error between the generated images and the real ones.

novel view in WOD-EVAL-NV, and t′, R′ the pose of its

closest pose in WOD-EVAL. λR is chosen to be 1.0.

It is an indication that the surfel renderings do have a

quality bias w.r.t viewing direction, which means we should

not perturb too much from the original poses if we want

higher quality synthesized data. However, we believe that

this problem can be negated if we were to reconstruct the

surfel scene from multiple runs which bring in more accuracy.

We did not explore this direction but left it to future work.

4.3. Image­Pixels Realism

The Dual-Camera-Pose (DCP) Dataset contains scenarios

where two vehicles observe the same scene at the same time

so that we can reconstruct the surfel scene using one camera

and generate images at the poses of the second camera. We

then match the generated image to the real one and report the

ℓ1-distance error on the pixels that are covered by the surfel

rendering. This is to ensure that there is a fair comparison

between the surfel renderings and the generated images. Like

in the previous experiment, the model is trained using WOD-

TRAIN, WOD-TRAIN-NV, and the Internal Camera Image

Dataset. The results are showing in Tab. 3. SurfelGAN

improves on top of the surfel renderings, generating images

that are closer to real images in ℓ1-distance. However, it

is worth noting that the SurfelGAN-S version outperforms

11124



Figure 5. Novel View Synthesis. The first column is Surfel image

under novel view, the second column is our synthesized result. The

third column is the original view. Additional visualization can be

found in Supplementary Sec. B.

both SA and SAC that used additional losses and data during

training. This finding is not unexpected since SurfelGAN-S

optimizes for the ℓ1-distance.

4.4. Improving Detection by Data Augmentation

In a bonus experiment, we explore whether the generated

images are helpful as a tool of data augmentation to train-

ing a vehicle object detector. For the baseline, we trained

a vehicle detector on WOD-TRAIN and evaluated the de-

tector’s quality on WOD-EVAL. We then trained another

vehicle detector using both WOD-TRAIN and surfel images

generated from WOD-TRAIN-NV, and also evaluated on

WOD-EVAL.

WOD-TRAIN-NV only inherits 3D bounding boxes from

WOD-TRAIN, and does not contain tightly fitting 2D bound-

ing boxes like those in WOD-TRAIN. We approximate the

latter by projecting all surfels in the 3D bounding boxes to

the 2D novel view and take the axis-aligned bounding box as

an approximation. The results are shown in Tab. 4. The data

augmentation significantly boosted the detector’s metric on

average precision, boosting the AP@50 score from 21.9%

to 25.4%, the AP@75 from 10.8% to 12.1%, and the aver-

age AP from 11.9% to 13.0%. It is worth noting that these

AP scores are much lower than those in Tab. 1. The main

reason for the discrepancy is that images are resized differ-

ently in order to use the off-the-shelf detector in Tab. 1. We

also trained on surfel renderings directly. There is a slight

improvement compared to training only on WOD-TRAIN.

But there is still a significant gap between augmenting using

SurfelGAN synthesized images, which further demonstrate

the realism of the SurfelGAN model.

4.5. Limitations

The surfel scene reconstruction has its limitations. The

surfel scene reconstruction might fail to reconstruct certain

areas of the scene, as illustrated in the top row in Fig. 6.

Training Set AP@50 AP@75 AP

WOD-TRAIN 0.219 0.108 0.119

+ WOD-TRAIN-NV Surfel 0.228 0.111 0.120

+ WOD-TRAIN-NV SurfelGAN 0.254 0.121 0.130

Table 4. Detector metric on Open Dataset validation set when

trained with different combination of data.

Figure 6. We show two typical failure cases, the first is the case

where reconstructed Surfel map contains too large errors. The

second is on the unmapped region (top part of building in this

example).

In this particular case, SurfelGAN was unable to recover

from broken geometry, resulting in an unrealistically looking

vehicle. Another case is at the place where the surfel map

does not cover. Lacking any surfel cues forces the model’s

output to have a high variance, especially when it tries to

hallucinate patterns that infrequently appear in the dataset,

such as tall buildings. This observation suggests rooms for

improvement in the reconstruction stage. In the case where

we only have partial geometry, applying a learned geometry

completion model first could be more helpful than relying

solely on the generating module to resolve all artifacts.

5. Conclusion

In this work, we proposed a simple yet effective data-

driven approach, which can synthesize camera data for au-

tonomous driving simulations. Based on camera and lidar

data captured by a vehicle pass through a scene, we recon-

struct a 3D model using our Enhanced Surfel Map represen-

tation. Given this representation, we are able to render novel

views and configurations of objects in the environment. We

use our SurfelGAN image synthesis model to fix any recon-

struction, occlusion or rendering artifacts. To the best of our

knowledge, we have built the first purely data-driven camera

simulation system for autonomous driving. Experimental

results not only demonstrate the high level of realism of our

synthesized sensor data, but also show the data can be used

for training dataset augmentation for deep neural networks.

In future work, we plan to enhance camera simulation further

by improving the dynamic object modeling process and by

investigating temporally consistent synthesis module.
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