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INTRODUCTION

The distance and direction of larval dispersal have

considerable influence on the demography and genetic

structure of marine species. Recent studies indicate

that despite their small size, coral reef fish larvae are

not passive (for a review, see Leis 2007, this Theme

Section [TS]). They have a diversity of traits and con-

siderable behavioral capabilities that can lead to suc-

cessful completion of the early pelagic life phase

(Fig. 1). In particular, vertical migration during onto-

geny increases retention near natal reefs and de-

creases dispersion losses, likely enhancing survival

(Paris & Cowen 2004). Larvae can come back to their

native reefs or can be exchanged among breeding sub-

populations. However, the dynamics of these interac-

tions at both the individual and population levels are

not fully understood (deYoung et al. 2004). For those

larvae that do not return home, the extent to which

their behavior influences their arrival pattern among

adjacent and distant reefs (or larval connectivity net-

work) is not known. More importantly, interactions of

the small-scale larval movements with transport pro-

cesses due to larger-scale currents need to be quanti-

fied with regard to the spatial patterns of recruitment.

Since actively moving larvae may be diluted and to

some extent dispersed by currents, an in situ study of

them is very difficult. Spatially explicit, individual-

based modeling (IBM) has emerged as a key tool

for understanding organism–environment interactions
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ABSTRACT: Coral reef fish have considerable larval behavioral capabilities that can lead to success-

ful completion of the early pelagic life phase. In particular, vertical migration during ontogeny

increases retention near natal reefs and decreases losses due to transport by currents. For those

larvae that are not returning home, the relative influence of behavior (biology) and currents (physics)

on their arrival pattern among adjacent and distant reefs is not known. Moreover, interactions of the

naturally small-scale larval movements with those of larger-scale currents need to be evaluated with

regard to the spatial patterns of recruitment. We used an offline Lagrangian stochastic modeling

approach to explore the relative influence of physical (i.e. eddy perturbation, diffusion) and biologi-

cal processes (i.e. vertical movement, mortality) on the connectivity of the coral reef fish population

in the western Caribbean, a region with complex geomorphology and circulation. This study re-

vealed that the impact of larval behavior extends beyond enhancing the process of self-recruitment

by changing population connectivity patterns. Connectivity was significantly influenced by larval

vertical movement, survival, and by the eddy field, all controlling arrival patterns near reefs. A sen-

sitivity analysis was done to gauge the robustness of the results by varying the model parameters. We

found that particle-tracking models with homogeneous parameterization of the sub-grid motion

tended to bias dispersal from and along the reef track, which can be mitigated by using spatially

explicit parameters calculated from the Eulerian velocity fields. Finally, larval survival emerged as a

key component for connectivity estimates, the study of which poses a great challenge in tropical

ecosystems.

KEY WORDS:  Modeling fish larvae · Transition probability matrix · Dispersal kernel · IBM ·

Population connectivity · Lagrangian · Stochastic model · Spin · Offline model

Resale or republication not permitted without written consent of the publisher

OPENPEN
 ACCESSCCESS



Mar Ecol Prog Ser 347: 285–300, 2007

(Werner et al. 2001) and is particularly relevant to

investigate larval fish fluxes in the complex coral reef

ecosystem. Currently, the spatial scales of the dispersal

of reef fish larvae are estimated using indirect and

empirical techniques (Thorrold et al. 2002, Jones et al.

2005) or modeling approaches (Cowen et al. 2000,

2006, James et al. 2002). The interactions between

physical and biological factors and their role in shap-

ing populations have been previously discussed in

landscape ecology (Levins 1969), but this discussion is

a relatively recent development for marine ecosystems

(Barber et al. 2002, Baums et al. 2006, Cowen et al.

2006). The spatial arrangements and connectivities of

marine populations are poorly understood, yet they are

assumed to enhance resilience to exploitation and be

of critical importance for population persistence (Kin-

lan et al. 2005, Hasting & Botsford 2006). Measures of

natal dispersal are typically determined by the disper-

sal kernel k(x,y), defined as the probability of a larva

settling at a distance x given that it was released at y.

The modal dispersal distance from the dispersal kernel

has demographic relevance (e.g. population spatial

pattern, persistence), while the tail, representing long-

distance dispersal, is relevant on an evolutionary level

(e.g. genetic mixing, species persistence; Hanski &

Gaggiotti 2004, Steneck et al. 2006). Models of popula-

tion connectivity should thus emphasize where and

how frequently larval linkages occur, and how these

observed patterns are created. Here, we use a bio-

physical model designed to output spatially explicit

transition probability matrices (or connectivity matri-

ces) from which dispersal kernels are generated. The

connectivity matrix describes the probability that an

individual moves during its pelagic larval stage from

the birthplace (or source population) to its settlement

location (or sink population) as a settling larva, all in a

3-dimensional dynamic system. Such transition proba-

bility matrices are of considerable value for metapopu-

lation and genetic studies (Hedrick 2000), as well as for

spatial management and conservation issues (Urban &

Keitt 2001). We show that they also provide a method

to quantify the relative influence of biological and

physical factors on realized larval dispersal and on

levels and spatial patterns of recruits.

Lagrangian stochastic models (LSMs) have been de-

veloped for modeling atmospheric transport problems

(e.g. Sawford 1999). These are being increasingly ap-

plied to track the dispersal of larvae (see Levin 2006 for

a review). Motions at small scales that are not resolved

by ocean general circulation models (OGCMs) are

usually parameterized. These include motions due to

small-scale currents and random or oriented motions of

individual, simulated larvae (Paris et al. 2002, Codling

et al. 2004). Parameterization of subgrid-scale pro-

cesses is critical for accurate modeling of trajectories

and capturing variability (Siegel et al. 2003, deYoung
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Fig. 1. Morphological diversity in fish larvae: (A) the pelagic sunfish Mola mola develops heavy pigmentation (melanophores)

presumably to sustain UV radiations near the ocean surface, while coral reef fish larvae such as (B) the bicolor damselfish

Stegastes partitus and (C) the candy bass Liopropoma sp. are mostly clear, with red-orange pigments (erythophores); as the

ocean strongly absorbs colors in the red-orange part of the spectrum, these erythophores would appear dark at the depth where

these larvae were captured (20 to 40 m and 60 to 80 m strata, respectively; Paris & Cowen 2004, R. K. Cowen unpubl. data), break-

ing up the larva’s shape. Diversity in shape and presence of appendages and elongated spines imply that these larvae occupy 

specific behavioral niches in the water column
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et al. 2004). Yet, to date, very few larval dispersal stud-

ies address the parameterization of the random compo-

nent statistics in tracking models. The extent to which

parameterization of the Lagrangian parameters and

larval traits plays a role in estimating population

connectivity, and influences arrival patterns among

native, adjacent, and distant reefs, is not known. More-

over, even though larvae are irrefutably not passive

(Leis 2006), the question still remains of how biological

processes weigh against oceanographic process.

To answer these questions, we present a numerical

experiment approach that isolates parameters from the

larval tracking algorithm and quantifies the relative

influence of physical and biological processes on the

spatial scales and patterns of larval exchange. Our

main goal was to test the hypothesis that the impor-

tance of larval traits in shaping dispersal and popula-

tion networks is comparable with that of ocean circula-

tion. The primary objectives were to (1) use various

LSM configurations to isolate and determine the most

sensitive physical parameters in estimating dispersal

kernels for the study region, (2) investigate the inter-

actions of those parameters with biological parameters

reproducing early life-history traits of coral reef fish,

and (3) rank the relative importance of parameters and

their interactions in estimating population networks in

the meso-American region.

BIOPHYSICAL MODEL SETUP

We simulated the dispersal and recruitment of

larvae using a spatially explicit Lagrangian

stochastic framework (e.g. Hermann et al. 2001),

linking biological and physical modules or code

units. The coupled biophysical IBM tracked indi-

vidual larvae within a population, each interact-

ing with the environment based on its present

state and past history, and produced probabilis-

tic simulations of both larval trajectories and

connectivity matrices (Fig. 2). Integration of

archived velocity fields of an ocean circulation

model moved virtual larvae (particles). A sto-

chastic scheme parameterized the subgrid turbu-

lent motion, which was added to the particle

displacement at each integration time step. A

biological module simulated larval traits

(i.e. mortality, ontogenetic vertical migration,

pelagic duration) as a function of developmental

stage and settlement habitat, while a seascape

module tracked the presence of the particles in

selected coral reef areas. Explicit treatment of

spatial history was achieved by simultaneous

inclusion of the seascape (e.g. spawning and set-

tlement areas) and the velocity fields in the IBM.

Hydrodynamic module. The hydrodynamic data used

was generated with the 3-dimensional Regional Ocean

Modeling System (ROMS), which is discretized in

coastline- and terrain-following curvilinear coordi-

nates (σ-coordinates model; Marchesiello et al. 2003,

Shchepetkin & McWilliams 2004). We used the UCLA

ROMS version, which performs local refinement via

nested grids (Adaptive Grid Refinement in Fortran;

Blayo & Debreu 1999) and has the ability to manage an

arbitrary number of embedded levels as well as to do

adaptive grid-refinement. The model has 25 vertical

layers, and its state variables (temperature, salinity) at

the open ocean boundaries are relaxed monthly to

the Levitus ocean (http://ingrid.ldeo.columbia.edu/

SOURCES/.LEVITUS94/) climatology (World Ocean

Atlas). Tides are set at the boundary by the TPXO6

global tide model (www.esr.org/polar_tide_models/

Model_TPXO62_load.html). Monthly varying surface
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Fig. 2. Flowchart of the offline larval tracking system. The general al-

gorithm for the code consists of several steps: (1) initialization reads the

grid coordinate of the ocean model and spatially explicit habitat and

population information, (2) individual particles are advanced using the

ocean model output frequency, and (3) individual larval behavior and

mortality rate is imposed. Finally, if a larva is competent, its location is

checked to verify if it falls near settlement habitat. It is then assumed to

have successfully recruited, and the time and day and location of

recruitment are saved. Otherwise, the larval dispersion is continued

until it is recruited or the model is integrated for the number of days 

specified by the maximum competency period
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fluxes (wind, rain, solar, radiative heat fluxes, evapora-

tion) were obtained from the Comprehensive Ocean

Atmosphere Dataset(http://icoads.noaa.gov/status.html)

(COADS) climatology. Our region of simulation was

the Meso-American Barrier Reef System (MBRS) in the

western Caribbean, which encompasses one of the

largest barrier reefs, off the coast of Belize (Fig. 3). This

region is of interest to this study because of the pres-

ence of submesoscale eddies (~10 to 100 km diameter),

coastal currents, and topographic features that con-

strain the circulation and connectivity (Tang et al.

2006). In general, the modeled circulation was consis-

tent with observations from float trajectories (Richard-

son 2005) and with model simulations from Ezer et al.

(2005). On average, the Caribbean Current flows west-

ward between 18 and 19° N and veers north along the

Yucatan Peninsula into the Gulf of Mexico. South of

the Caribbean Current, cyclonic eddies are formed

and constrain the circulation in the Gulf of Honduras

(Fig. 3). The extent and strength of the cyclonic gyre is

variable, as it can extend beyond the limits of the Gulf

of Honduras and reach 85° W on the Honduras coast,

recirculating water from Honduras to Belize (Chérubin

et al. 2007). Daily outputs of the first 5 layers (i.e. from

0 to 100 m) of the ROMS simulations were inputs to the

offline larval tracking model. Vertical velocities, w,

were not incorporated in the particle motion.

Particle-tracking module. Individual particle move-

ments are tracked offline with LSM, assuming that the

evolution of particle velocity and position in non-

homogeneous, non-stationary turbulence can be rep-

resented as a Markovian process (Griffa 1996). We

used different LSM configurations to test the effect of

spatial and temporal averaging of Lagrangian parame-

ters (i.e. decorrelation time scale TL; horizontal vari-

ance of the velocity σ2 = <u ’2>, where < > is a spatial or

temporal average; spin parameter Ω allowing for the

vorticity of the eddy field; Veneziani et al. 2005a,b) on

larval dispersal estimates. Our baseline model was

Markovian for (x,u), the particle position and velocity

field, respectively, and its governing equations were:

(1)

(2)

where i is 1 or 2 (x and y directions), dx is the particle

displacement and du’ is the velocity increment of the

turbulent velocity at each time step. The first and sec-

ond terms on the right-hand side of Eq. (1) are the mean

velocity and the turbulent velocity, respectively, dt is

the time step, and (x, y, z) are the coordinates. The first

term on the right-hand side of Eq. (2) represents a fad-

ing memory for velocity fluctuations; the second term,

a, the drift correction term, is zero when turbulence is

stationary and homogeneous (Berloff & McWilliams

2002). The third term represents random forcing, where

dW is a random increment from a Wiener process (i.e.

continuous-time Gaussian stochastic process) with zero

mean and variance dt and b is the amplitude of the ran-

dom increment (Berloff & McWilliams 2002). Applied to

larval transport, b could also describe larval swimming

(e.g. oriented motion; see Codling et al. 2004). Some

measure of the rotation of trajectories is necessary to

account for subdiffusive processes, driven, for instance,

by submesoscale coherent vortices. Reynolds (2002a)

coined the measure of rotation the ‘spin’ parameter (Ω)

and introduced it in the LSM. Thus, the drift correction

term a is associated with the spin parameter Ω (Borgas

et al. 1997, Reynolds 2002a, Veneziani et al. 2004), and

the amplitude of the random forcing is a function of the

horizontal variance of the velocity field. The velocity in-

crement equations were:

d du u T a x y z u t b x y zi i L i j i’ [ ’ / ( , , , ’)] ( , , ),= − + + ddW t( )

d d d dx u x y z u t u ti i i i[ ( , , ) ’] ’= < > + +
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Panel B) showing the domain of the numerical experiments

with the boundaries of the Regional Ocean Modeling System
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the release locations of simulated online floats (n = 70) used to

calculate the intrinsic Lagrangian parameters; only those
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analyses of larval dispersal (n = 48)
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(3)

(4)

Here, the eddy diffusivity is K = (2σ2/TL)1/2, which is

b in Eq. (2). The Lagrangian parameters of the bio-

physical model (i.e. TL, σ, and Ω) were directly esti-

mated from the Eulerian fields of the ocean model

using Middleton’s relationships between the Eulerian

and Lagrangian decorrelation spatial and temporal

scales (Middleton 1985, Lumpkin et al. 2002) such that:

TL /TE =  q [q2 + (u’/c*)2]–1/2 (5)

where q = 1222π/8. The ratio c* ≡ LE/TE is the evolution

speed of the eddy field constructed from its Eulerian

time (TE) and length scales (LE). The parameters u ’ and

v ’ (in the x and y directions) are the root mean square

eddy speed calculated from the Lagrangian statistics

using float trajectories.

The spin obtained from the direct calculation of the

Eulerian mean rate of rotation 〈ds〉:

(6)

This model was constrained by the well-mixed condi-

tion criterion (Thomson 1987), which implies that a pas-

sive tracer uniformly mixed over the full domain re-

mains uniformly mixed at all times. In this classical form

of the LSM model, the Lagrangian parameters (i.e. TL,

σ2, and Ω) are then spatially uniform or constant in time.

However, the definition of Ω accounts for the spatial

variation of the variance of the velocity field;

thus, TL and σ2 can be spatially variable if sub-

regions made of homogeneous statistical proper-

ties are defined (Lumpkin et al. 2002, Veneziani

et al. 2004). Moreover, to improve the capabilities

of the LSM in simulating a broader range of inter-

mediate-time, non-diffusive, single-particle time-

dispersion behaviors involving a variety of time

scales and length scales, we followed Berloff

& McWilliams’ (2003) method to randomize our

LSM, by defining a distribution of each variable

of the triplet (TL, σ2, and Ω) in individual bins.

Biological module—stochastic ontogenetic

vertical migration and mortality. The vertical

distribution of larvae is time dependent. We built

species-specific matrices of larval probability

vertical distribution with time, based on field

observations combined with otolith analyses to

age the larvae (Paris-Limouzy 2001). Here, we

modelled 2 types of migration patterns, the

‘deep’ and ‘shallow’ ontogenetic vertical migra-

tions (OVMs) analogous to those of damselfish

(Pomacentridae; Fig. 4) and grouper (Serranidae;

see Fig. 3 in Cowen 2002) larval behavior, respectively.

The code reads the probabilities for the vertical distri-

bution of a given species Pspec(l,z) and converts the

probabilities into a random number 0 < RN < 1 by solv-

ing the integral equation for zi:

(7)

where l is the duration of the stage-specific vertical

distribution (e.g. 3 d; see Fig. 4) and zi is the depth

where the larvae are found. The frequencies of the

resulting depth values zi reflect the characteristics of

the probability distribution.

The mortality rate can be supplied either as a con-

stant value or as a 4-dimensional Eulerian field (x, y, z,

time), whereby its value close to an individual larval

location is used to calculate the probability of mortal-

ity. Here, we used a constant mortality rate assigned

stochastically among particles (i.e. patchy mortality).

Dead larvae were flagged and removed from further

calculations.

Seascape module. The seascape module serves to

quantify the ecological interactions (e.g. particle be-

havior, exchange of particles) at the boundary of the

pelagic and coral reef ecosystems. Coupled to the par-

ticle-tracking module, it traces the source location and

provides habitat information to the particle (e.g. pres-

ence of suitable nursery areas) at each time step. The

habitat (i.e. spawning and settlement areas) is derived

from remote sensing of reef-building corals (Burke &

Maidens 2004) and is buffered with a sensory zone

representing the ability of reef fish larvae to sense and

swim towards settlement habitat (Fisher et al. 2000,

R l z P l z zi spec
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Fig. 4. Stegastes partitus. Distribution of depth-specific density frequency

of 3 d cohorts (based on otolith daily increments) for larval damselfish

captured off the west coast of Barbados during May 1996 and May 1997

with a 1 m2 Multiple Opening and Closing Net and Environmental Sam-

pling System (MOCNESS). The bicolor damselfish mean larval duration

is 29 d, but larvae older than 19 d were too scarce for analysis. Error bars

represent the variance (SE) in the density of larvae in each 5 nets of the 

448 MOCNESS tows (n = 2240 samples) by Paris-Limouzy (2001)
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Fisher & Bellwood 2002, Gerlach et al. 2007). The

seascape habitat is further parted into sections of simi-

lar reef areas (e.g. nodes) that serve to build the con-

nectivity matrix. We used a 9 km sensory zone and ca.

50 km reef sections. The model domain is the southern

meso-American region (15 to 21° N, 84 to 89° W; Fig. 3).

Model output—connectivity matrix. The likelihood

of larval exchange from one population to another was

represented in a transition probability matrix, where

columns are source reefs (node i ) and rows are desti-

nation reefs (or node j ). The content of a given matrix

element describes the probability of an individual

larva making the transition from its source population

and successfully reaching the settlement stage in the

destination population. Elements along the diagonal of

the matrix (where source = sink) represent self-recruit-

ment within a population. Connections between popu-

lations may be represented by several types of matri-

ces: (1) the distance matrix dij represents the distances

between reefs i and j; (2) the transition probability

matrix Pij represents the probability that an individual

larva in node i at time t will disperse to node j at time

t + k, where k is the pelagic larval duration; (3) the

adjacency matrix (or edge) A = aij is a binary matrix in

which each element is defined as aij = 1, if nodes i and

j are connected, otherwise aij = 0. This matrix is mostly

used to analyze connectivity networks (Urban & Keitt

2001). The expected flux F from node i to node j is:

Fij =  Si/Stot × Pij (8)

where Si is the size of the population in node i and Stot

equals ΣSi. We set Si to be constant, corresponding

with uniform particle release at all locations.

NUMERICAL EXPERIMENTS AND ANALYSES

Two types of numerical experiments were carried out:

(1) an experiment that compared several types of offline

configurations with online calculations and (2) an exper-

iment with the ‘best’ offline model, but with different

biological attributes (e.g. behavior and mortality).

The ROMS was first used to diagnose the oceano-

graphic field by calculating the Lagrangian statistics to

be used in the offline LSM configurations. For this pur-

pose, 2 nested simulations were used, the parent and

the child grids, their respective resolution and inte-

gration time steps being 6 km/720 s and 2 km/240 s

(Fig. 3). The high-resolution simulation was used to

account for the unresolved subgrid-scale processes of

the coarser grid simulation where they overlap. The

Lagrangian parameters obtained constrain the various

LSM configurations used in this sensitivity study as

described below (Fig. 5). The time step used for the

LSM was 1 d, which is standard to ocean circulation

model archives. Such a time step prevents the resolu-

tion of some eddies, as the mean speed is enough to

prevent particles from being trapped by coherent

structures. By introducing the spin parameter, the par-

ticle-trapping effect of eddies is better resolved. At

smaller time steps, more and smaller eddies are

resolved, which might be sufficient to simulate particle

trapping by eddies without the spin parameter, but this

issue was not addressed in the present study, since

online tracking was used most of the time for <1 d time

steps. Online ROMS surface drift (or passive scenario)

simulations were used as a ‘null’ model (Model 0) to

estimate how the various offline LSM configurations

perform. A random turbulent velocity term was com-

puted to parameterize unresolved subgrid scales,

which is the same as in the offline model, where b is

calculated as in Eqs. (3) and (4). For the coarse grid

(6 km), the eddy diffusivity is K = 7.4 cm2 s–1, and in the

high-resolution grid (2 km), K = 5.1 cm2 s–1.

Numerical Experiment 1

To estimate the relative effect of the spatial average

of the Lagrangian parameters, several averaging

methods were used: we defined bins of 20 × 20 grid

points, where the model statistics are considered

homogeneous and the Lagrangian parameters are esti-

mated to fulfill the well-mixed condition. Each bin was

associated with a distribution of TL, σ, and Ω made of

the values calculated at each grid point of the bin. The

distribution was assumed to be normal in order to fit

with the LSM definition. The distribution of Ω was time

dependent. In the first configuration (Model 1), 1 triplet

of (TL, σ, and Ω) was randomly selected at each time

step of the LSM and for each particle; in the second

configuration (Model 2), TL and σ were constant per

bin, while Ω was a time-dependent distribution; in the

third configuration (Model 3), TL and σ were constant

290

Fig. 5. Spatial anisotropy of (A) the flow field variance and (B) the Lagrangian decorrelation time scale TL from the Regional

Ocean Modeling System (ROMS) at 6 km (parent grid) and 2 km (child grid), in the meso-American region from 1 to 30 January

of a climatological year. In Panels I and II the parameters are derived from the ROMS Eulerian field for the parent grid, while in

Panels III and IV they are derived from 30 d online float trajectories released along the reef edge; Panels V to VIII are the same as

Panels I to IV, but for the child grid; values are averaged over bins of 60 × 60 grid-cells in the child grid. Note that the Lagrangian 

binning captures the dominant values and spatial structure of the Eulerian field along the trajectories



Paris et al.: Bio-physical influences on population connectivity 291



Mar Ecol Prog Ser 347: 285–300, 2007292



Paris et al.: Bio-physical influences on population connectivity

in the entire domain and their values

were set by the average of the

Lagrangian parameters obtained

from the online trajectories and Ω = 0

(Fig. 5); in the fourth configuration

(Model 4), TL, σ, and Ω were obtained

from their Eulerian statistics at each

grid point. We assumed here that the

homogeneous statistics regions are

self-defined by the flow field and not

arbitrarily by bins as seen in Fig. 5.

As the calculation of Lagrangian

parameters depends on the estima-

tion of the mean flow, 2 averaging

methods are used to calculate the

mean flow: the time average at each

grid point (Tmn) or time average per

20 × 20 grid-cell bin (bin). Also, 2

methods were used to calculate the

absolute velocity at the particle loca-

tion: the velocity at the closest grid

point (cgp) or the bilinear interpola-

tion (int ). Subgrid-scale nesting was

computed in 2 different ways. (1)

Combined with Model 1, as each bin

of the parent grid contains several

bins of the child grid, the statistics of

the parent bin and child bins were

merged (nest1). (2) Subgrid-scale

nesting (nest2 ), which is combined

with Model 4, consists of merging the

statistics of a parent grid with those of

a child grid; each parent grid point

falls in a bin of the child grid (2 km)

where the statistics are calculated as

in Model 1. Therefore, the subgrid

parameters are obtained from each

bin where the distributions of the sta-

tistical parameters T 1
L, Ω1, and σ1 are also calculated.

The turbulent velocity of the subgrid (which contains

the turbulent field also parameterized by a random

term) was added to the turbulent velocity of each par-

ticle in the parent grid. The LSM model equations for

the nested model were:

(9)

(10)

u turb =  u’ + du’0 + du’1 (11)

where TL and Ω were calculated at each grid point of

the parent grid; T L
1, Ω1, and σ1 are distributions in the

child grid; u ’0 and u ’1 are the turbulent velocity in par-

ent and child grids, respectively; and u turb is the new

turbulent velocity from subgrid nesting.

These offline LSM configurations are listed in

Table 1. The ‘best’ configuration was evaluated based

on larval (particle) connectivity patterns. Two-dimen-

sional correlation coefficients (r) were computed be-

tween the probability transition matrices Aij (i.e. the

probability that an individual larva from i will

disperse to j ) generated by the offline models (Mod-

els 1 to 4) and the online model (Model 0, reference

matrix Oij):

(12)

The higher the correlations with the offline reference

matrix, the better the fit (Fig. 6). The configuration that

perform the best was selected for the second numerical

experiment on biological attributes.

r
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A Â

i j ij ij ij ij

i j ij ij

[( – ) ( – )]

( –
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∑ ∑ ×
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d d d du
u

T
t v t T W t

L
L’

’
/ ( )1 1

1
1 1
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u

T
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L

’
’
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Table 1. Lagrangian stochastic model (LSM) configurations. A series of spatial and

temporal schemes were explored to calculate the Lagrangian statistics used in

offline tracking. All parameters TL, σ, and Ω were calculated for 30 d, and 100 par-

ticles location–1 (48 sites) were released for each run, repeated 8 times. Results are

illustrated in Figs. 7 & 8. TL: Lagrangian decorrelation time scale; σ: variance of the

velocity; Ω: spin parameter (time dependant); bin: mean velocity is the time aver-

age per 20 × 20 grid-cell bin; Tmn: mean velocity is the time average at each grid

point; cgp: velocity (or σ or TL for Model 4) taken from the closest grid point to the

particle position; int: velocity interpolated from 3 grid points; int2: velocity interpo-

lated from 2 grid points; pdf: distribution of the ensemble of values calculated from

each grid point of the bin; CB: constant average value per bin; CD: constant aver-

age value in the entire domain calculated from the online trajectories; nest: sub-

grid-scale nesting by merging the statistics of a parent and child grid; shallow: on-

togenetic vertical migration (OVM) of damselfish type (Paris-Limouzy 2001); deep: 

OVM of grouper type (Fig. 3 in Cowen 2002)

LSM TL σ Ω LSM Averaging OVM Mortality

model type nesting method (d–1)

0 intrinsic intrinsic intrinsic – – – 0

1a pdf pdf pdf – cgp-bin – 0

1b pdf pdf pdf nest1 cgp-bin – 0

1c pdf pdf 0 – cgp-bin – 0

1d pdf pdf pdf – cgp-Tmn – 0

1e pdf pdf pdf nest1 cgp-Tmn – 0

1f pdf pdf pdf – int-Tmn – 0

1g pdf pdf pdf nest1 int-Tmn – 0

1h pdf pdf pdf nest1 cgp-bin shallow 0

1i pdf pdf pdf nest1 cgp-bin deep 0

1j pdf pdf pdf nest1 cgp-bin deep 0.05

1k pdf pdf pdf nest1 cgp-bin – 0.05

1l pdf pdf pdf nest1 cgp-bin – 0.1

1m pdf pdf 0 nest1 cgp-bin deep 0

2a CB CB pdf – cgp-bin – 0

2b CB CB pdf – cgp-Tmn – 0

2c CB CB pdf – int-Tmn – 0

2d CB CB pdf – int2-Tmn – 0

3a CD CD pdf – cgp – 0

3b CD CD 0 – cgp – 0

3c CD pdf 0 – cgp-bin – 0

3d pdf CD 0 – cgp-bin – 0

4a cgp cgp 0 – cgp-Tmn – 0

4b cgp cgp 0 nest2 cgp-Tmn – 0
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Numerical Experiment 2

The calibrated offline model served to control the

physical and biological parameters invoked in the par-

ticle-tracking scheme (i.e. Models 1h–1m in Table 1).

The relative effect of the biophysical factors and their

interactions on connectivity patterns was classified by

computing the 2-dimensional correlation coefficients

between the transition probability matrices generated

with a series of biological (i.e. behavior and mortality)

and physical (i.e. eddy field) attributes and a 30 d pas-

sive surface drift scenario. The lower the correlation

with the offline reference matrix, the greater the be-

havioral effect on dispersal. We quantified how much

single and combined factors depart from the simplified

assumption (i.e. passive dispersal and no mortality).

These numerical experiments were based on 30 d

runs, to reflect a mean pelagic larval duration common

among coral reef fish (Lindeman et al. 2005, Paris et al.

2005a). Due to the stochastic nature of the models, we

obtained a slightly different matrix for each reiteration

of the same model configuration. Therefore, each LSM

model was run 8 to 10 times.

SIMULATION RESULTS

Choice of the Lagrangian stochastic model

For the configurations of the offline LSM with con-

stant velocity variance and Lagrangian time scale, we

obtained clustered trajectories and a sparse matrix that

were poorly correlated with the online output (Figs. 6

& 7). When TL and σ were constant over the entire

domain, the spread and length of the trajectories de-

pended on the arbitrary choice of these values; adding

a spin parameter did not improve the fit. Introducing

spatially and temporally explicit parameters help to

reproduce both trajectories and patterns of larval ex-

change (Fig. 7). The various configurations of spatial

and temporal averaging of the parameters used in

the offline LSM model had little effect on cumulative

arrivals over the 30 d simulation period, although in-

stantaneous settlement on Day 30 differed (Fig. 6). The

‘best’ model configuration emerged from the nested con-

figurations with spin, as they tended to better resolve

subgrid-scale processes. The nested-bin model with

spin (i.e. Model Type 1b; Table 1) was thus selected for

the biophysical models in Numerical Experiment 2.

Influence of physical and biological parameters on

dispersal distances

The reef location of successful simulated larvae was

closer to the natal reef when behavior was invoked

(Fig. 8A), even though total displacements were well

conserved in all the models (Fig. 8B). In addition, lev-

els of both total and self-recruitment were increased

with vertical migration and eddy field, while they were

depressed with mortality by an order of magnitude,

albeit the mortality rate was in the low range of

observed values (i.e. 0.03 < m < 0.52; Houde 1989).

Interestingly, the tail of the dispersal kernel was

greatly reduced with mortality. Finally, dispersal dis-

tances were always increased, and the level of self-

recruitment decreased in models where TL, and/or σ
were kept constant over the entire domain (data not

shown, Model 3).

Relative influence of biological and physical parame-

ters on connectivity

Biological parameters (i.e. ontogenetic vertical migra-

tion and mortality) and physical parameters (i.e. spin or

eddy field) changed the connectivity pattern from that

of simple drift (Fig. 9). Pairwise comparison of the

means of matrix correlations for each model configura-

tion indicated how much each factor departs from the

others. For example, ‘deep’ ontogenetic vertical migra-

tion combined with low mortality (Model 1j) differed

significantly from passive transport with no mortality

(Model 1b) or high mortality (1l), but not from the other

scenarios. The model with higher mortality (1l) showed

the largest divergence from passive drift and no mor-

tality (1b). When compared to passive drift (1b), onto-
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Fig. 6. Sensitivity analysis on the performance of the offline

Lagrangian stochastic model (LSM) configurations: patterns

of connectivity simulated by the offline models are weighted

against the online model’s (Model 0). The higher the correla-

tion (y-axis), the better the fit of the offline model for particle

position at the end of 30 d passive dispersal (Day 30) and for

cumulative arrivals during the 30 d integration (Cum. 30 d).

Parameterization of the offline LSM configurations is shown

in Table 1; shaded area indicates the best offline performance
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Fig. 7. Online–offline comparison of (A) trajectories and (B) connectivity matrices for 30 d passive dispersal of 100 particles re-

leased from 48 reef locations in the meso-American region in January of a climatological year, by ROMS. Parameterization of the

Lagrangian stochastic model configurations is shown in Table 1. Note that there seem to be fewer trajectories in the online model 

(0), since particles are absorbed at the land mask, whereas they are reflected in the offline model
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genetic vertical migration changed significantly the

patterns of larval exchange in the ‘deep’ (1i), but not in

the ‘shallow’ (1h), scenario (Fig. 9). Yet, recruitment

levels were augmented in ‘shallow’ vertical movement

(Fig. 8A). A similar trend emerged from monthly simu-

lations over the entire Caribbean (Fig. 10), where, in

most cases, recruitment increased with the implemen-

tation of ‘shallow’ vertical migration during larval

development (Fig. 11), e.g. direction of dispersal (e.g.

St Croix), connectivity pattern (e.g. Montego Bay,

Jamaica), and self-recruitment may change (e.g.

Florida Keys and Los Roques, Venezuela). Increased

survival with such behavior is mostly evident for self-

recruitment even for short larval durations. Vertical

migration became a significant factor in terms of rais-

ing the levels of subsidies when pelagic larval duration

was increased (Fig. 10).
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ticle traveled along its trajectory). The mean dispersal kernels

for a 30 d pelagic larval duration are derived from a series of
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out resolving small eddies, i.e. modal distance of 40 km for

OVM with no spin (Model 1m) vs. 20 km for OVM with spin

(Model 1i; p < 0.05). Mortality depresses the dispersal kernels, 

while self-recruitment increases with larval behavior
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(skew, upper and lower part of box) of the correlation co-
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Fig. 10. Influence of life-history traits on recruitment success

for subsidy (non-locally produced, ΣPij, when i ≠ j, Pij being

the probability that a larva in node i will disperse to node j )
and self-recruits (locally produced, ΣPij, when i = j ) compared

to the passive transport of inert particles. Life-history traits

are: pelagic larval duration, daily larval mortality rate (m),

and ontogenetic vertical migration (solid lines) using the

‘shallow’ scheme observed in damselfish Stegastes partitus.

The sensitivity analysis is based on 24 runs, each consisting of

1 560 000 trajectories (260 locations × 12 release times × 500

particles) throughout the entire Caribbean basin (see Fig. 1 in

Cowen et al. 2006). Results from passive transport (dotted 

lines) are plotted for comparison
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Fig. 11. Influence of larval behavior on dispersal: 30 d passive dispersal snapshots from various locations in the Caribbean are

compared to dispersal with ‘shallow’ ontogenetic vertical migration (OVM) of the bicolor damselfish Stegastes partitus. Percent 

of simulated larvae arriving onto any reef is indicated
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DISCUSSION

Currently, offline LSMs often assume homogeneity of

the Lagrangian parameters, and turbulent motion or

the eddy diffusivity is typically scaled by the horizontal

diffusion of the appropriate grid size according to

Okubo (1971). However, it may not represent the real

processes of dispersion and mixing. True eddy pertur-

bations occurring at the subgrid scale can vary both

spatially and temporally (e.g. cross-shore, with differ-

ent oceanographic regimes). We provided a simple and

effective technique to calculate the Lagrangian para-

meters TL, σ, and Ω that control the dispersion from the

Eulerian field intrinsic to the online hydrodynamic

model. With this approach, any other source of Lag-

rangian statistics, such as real float measurements, can

be integrated into the LSM equation. A major improve-

ment of LSMs is the addition of the spin parameter Ω,

which accounts for the properties of the eddy field.

However, accounting for this eddy-resolving parameter

is incumbent upon the time step of the OGCM outputs

and the size of the eddies present in the study area. For

smaller time steps, this parameter might become obso-

lete. This effect was not addressed here since most of

the OCGM output time steps are 1 d or more. The spin

parameter contributes to looping trajectories, and the

LSM is then capable of simulating correctly both sub-

and super-diffusive behaviors in the mean spreading of

particles (Reynolds 2002b, Veneziani et al. 2004). As a

result, the LSM reproduces the effects of rotating co-

herent structures such as vortices and mesoscale ed-

dies, which are prominent at the shelf break and

around oceanic islands and atolls.

Both ontogenetic vertical migration and mortality

rates have a significant effect on the patterns of con-

nectivity. When the mortality rate increases, the transi-

tion matrix becomes sparser. Hence, connectivity

patterns are more stochastic at each run repetition.

Therefore, an ensemble of runs is necessary to produce

a ‘saturation’ curve on the number of possible patterns

generated. While increasing mortality rates may not

necessarily change the patterns of connectivity, spa-

tially explicit mortality rates may. This option still

needs to be explored. Such an exercise would not be of

great use without empirical knowledge of the clines in

mortality for reef fish larvae during ontogeny. More

prey–predator field surveys are urgently needed in

tropical ecosystems to understand the behavior of coral

reef fish larvae in relation to predation avoidance and

feeding (see Fiksen et al. 2007, this TS). Kobayashi

(2006) recently suggested that long-distance transport

exceeds local retention at longer pelagic durations.

However, larvae with longer pelagic durations are

subject to daily natural mortality rates for a longer

period; which changes recruitment levels by 1 or more

orders of magnitude. Mortality due to physical loss

may vary with the seascape, combined with larval

duration, while total natural mortality always increases

with pelagic time.

Determining the levels of recruits is necessary to

assess the nature of the connectivity (Cowen et al.

2006). If the number of settling individuals is sufficient

to sustain a given local population, the connectivity is

‘demographic’. Mortality is the single most imperative

factor when assessing levels of demographic ex-

changes (Cowen et al. 2000, 2006). Indeed, levels of

larval exchange are extremely sensitive to small

changes in mortality rates (Fig. 9).

Sensory capabilities could also contribute to chang-

ing connectivity patterns. Here, we used a constant

sensory zone, which was scaled by the parent grid of

the ocean circulation model. Yet, sensitivity analysis on

the sensory halo by Paris et al. (2005b) suggested that

levels rather than spatial patterns of recruitment were

affected in the western Caribbean. Baums et al. (2006)

found that patterns of connectivity are significantly

affected by the onset of active movement in the eastern

Caribbean, but not in the western Caribbean. They

attributed this to the very distinct geomorphology of

these 2 regions: one much more patchy and more nat-

urally fragmented than the other. In the meso-Ameri-

can region examined in this study, with continuous

coastlines and offshore atolls, levels of recruitment

changed with the duration of the pre-competent

period, while patterns of connectivity were not signifi-

cantly different. Thus, configuration of the recruitment

habitat seems to dictate the relative influence of larval

traits on connectivity patterns and spatial autocorrela-

tion should be explored to quantify the seascape effect.

More work is also needed to assess the spatial scale of

the sensory envelope.

Habitat patchiness and natural fragmentation have

been identified as major sources of variation in connec-

tivity patterns between regions (Baums et al. 2006).

Because of the heterogeneity of the coral reef habitat,

the patterns of connectivity may also change with the

scales of the seascape layer in the model. This aspect,

together with the effect of integration time steps,

requires further investigation. To accurately estimate

population connectivity and local retention with online

models, the seascape data need to be coupled with

Lagrangian tracking.

Although oceanographic distances measured in total

displacement show similar precision between all LSM

configurations presented here, analyses using transi-

tion matrices reveal that both the dispersal distances

from the source populations and the spatial arrange-

ment of the connections (i.e. end points of the trajecto-

ries) may differ between models and are very sensitive

to the mesoscale variability typical to the flow dynamics
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in coastal regions. As a result, the length of the path is

similar and related to the integration time and the mean

current, but the paths are different with the various

models, which is of critical interest in connectivity stud-

ies. Indeed, offline-tracking models in which TL and σ
are constant over the entire domain cannot predict the

end point of long-term trajectories. We selected a re-

gion with complex geomorphology and circulation

(Ezer et al. 2005, Tang et al. 2006) and demonstrated

that LSMs without spin have the lowest accuracy there.

Consequently, spin is an important parameter to take

into account when modeling larval transport in coastal

areas, particularly in coral reef ecosystems.

In summary, the accuracy of offline models depends

considerably on their parameterization, and it appears

that models with spatially explicit values for the

Lagrangian decorrelation time scale, TL, and the vari-

ance of the velocity field, σ, offer potentially increased

accuracy. This work underscores the relative roles of

biological and physical processes in patterns of larval

exchange and demonstrates the need for careful para-

meterization. Further validation with field studies is

also vital. We have shown that the impacts of larval

behavior extend beyond enhancing the process of self-

recruitment by changing population connectivity pat-

terns as much as eddies do. Finally, the consequences

of vertical migration and survival emerge as key com-

ponents in population connectivity estimates and need

to be further coupled.
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