
Surfing Wavelets on Streams: One-Pass Summaries for
Approximate Aggregate Queries

Anna C. Gilbert Yannis Kotidis S. Muthukrishnan Martin J. Strauss

AT&T Labs-Research
agilbert,kotidis,muthu,mstrauss @research.att.com

Abstract

We present techniques for computing small space
representations of massive data streams. These
are inspired by traditional wavelet-based approx-
imations that consist of specific linear projec-
tions of the underlying data. We present general
“sketch” based methods for capturing various lin-
ear projections of the data and use them to pro-
vide pointwise and rangesum estimation of data
streams. These methods use small amounts of
space and per-item time while streaming through
the data, and provide accurate representation as
our experiments with real data streams show.

1 Introduction
Situations abound in which data arrives and is processed in
a stream. For example, network service providers collect
logs of network usage (telephone calls, IP flows, etc) in
great detail from switches and routers into data processing
centers, and use them for trend-related analysis. In most
cases, not all past history can be accumulated and stored
in databases; in cases when data is archived, access to the
data is often expensive. Hence it is highly desirable to
have approximate, but reasonably accurate, representation
of the data stream that can be stored in small amount of
space. However, unlike typical selectivity estimation sce-
narios where such summary data structures are used, it is
not realistic to make several passes over the data in the
streaming setting. It is crucial that the summary represen-
tation be computed on the stream directly, i.e., in one pass.
Consider the following application scenario that arises

in telecommunications network monitoring. Switches in
telecommunications networks handle a tremendous num-
ber of connections every minute. Typically, for each call it

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

handles, a switch dumps a record (known as a Call Detail
Record or CDR). These get written when calls complete
and, when buffers get full, switches dump them into a cen-
tral or distributed data processing facility. Eventually, these
records flow through the system and get channeled into
centers for billing, network operations etc. However, for
many mission-critical tasks such as fraud, security and per-
formancemonitoring, telecommunications companies need
rapid access to the CDRs to perform trend-related analysis:
what is the total number of outgoing calls from a telephone
number? what is the total traffic at an npa-nxx (the first 6
digits of a telephone number) in the past two hours? Is the
outgoing calling pattern of a telephone number unusual?
Can a signature be maintained of user profiles? etc. All
of these queries need to be answered on the stream since
trend analyses are urgent (the sooner a fraud is detected,
the sooner it gets stopped). Similar issues arise in monitor-
ing Internet Network elements such as routers, web servers
etc. where traffic is potentially far more voluminous.
The need for processing data streams is beginning to

be understood, and, consequently, there is effort under-
way in the data mining [8, 10], database [32] and algo-
rithms [21] communities to address the outstanding prob-
lems that arise. Within the database community, it is un-
derstood that “...Today’s database systems and data pro-
cessing algorithms (e.g., data mining) are ill-equipped to
handle data streams effectively, and many aspects of data
management and processing need to be reconsidered in the
presence of data streams.” [32]. In this paper, we address a
fundamental problem that arises in data streaming scenar-
ios, namely, to what extent can the data streams be summa-
rized in small amount of space so accurate estimates can be
provided for basic aggregate queries on the underlying sig-
nal. While small space data summarization has been stud-
ied in the database community recently, data streaming ap-
plications present novel issues, chiefly, first, the ability to
summarize accurately the signal in one pass, rather than
over multiple passes, and, second, the massive scale of the
updates to the underlying signal over time.
Our contributions are as follows: We study different

data models and formats in data streaming context, and as-
sociated aggregate queries that are prevalent. We present a
general approach for building small-space, one pass sum-

mary of the signal to enable answering point, range and
“aged aggregate” queries of one or more data streams. Our
approach is inspired by wavelet transformation methods
which are certain linear projections of the signal. If the
underlying signal has a small, highly accurate, transform-
based representation (as natural signals tend to have), our
methods provably provide a high quality approximation.
To the best of our knowledge, no such provable results were
known before. Our method relies on keeping a “sketch”
of the signal so that any linear projection of it can be es-
timated, and the large projections get estimated provably
accurately. Our methods are likely to have further applica-
tions for data stream processing, e.g., mining streams using
cluster analysis, processing multidimensional streams, etc.
We perform an experimental study of our methods for ba-
sic and aged aggregate estimation with Call Detail Records
drawn from a data stream within AT&T. These results show
that our methods capture the underlying signal with a small
amount of space very accurately over several hundred mil-
lion data points.
In Section 2 we discuss related work, while in Sec-

tion 3 we present different data models and formats for data
stream applications and provide the necessary background
on wavelet computations. In Section 4 we address some of
the theoretical issues in designing algorithms for wavelet
transform computation in stream models. In Section 5 we
present our approach, together with provable results and
address the implementation issues that arise in our sketch-
based methods. In Section 6, we present experiments with
real data while in Section 7 we present concluding remarks.
The proofs of many of our formal claims will be available
in the full version of this paper.

2 Related Work
Streaming or one pass algorithms have been studied in dif-
ferent areas. In the area of theoretical algorithms, stream-
ing models have been studied in [21, 3, 12, 13, 22, 20],
where methods have been developed for comparing data
streams under various distances, or clustering them.
Within the database community, one-pass algorithms have
been designed for getting median, quantiles and other order
statistics [25, 17], correlated aggregate queries [15], min-
ing [14], etc. We focus on summarizing a data stream so
that we can accurately estimate individual point and range
estimates, a problem not directly considered in the stream-
ing context previously within databases.
Since our work involves small space representation of

a data, it relates to selectivity estimation, a well studied
topic in databases. Many approaches have been devised in
databases for small space approximation of a given func-
tion for quick, approximate estimates for point and range
queries: sampling techniques [19, 29], histograms [28],
wavelet methods [26], etc. A lot of this work is for static
data sets where the signal is analyzed off-line to generate
summary representation. This does not apply to our data
stream scenario. Sampling methods do work for the dy-
namic case when input is read over time, but they do not

directly yield any performance bounds for linear projec-
tions that generate wavelet coefficients.
Some amount of work has been done previously on dy-

namic maintenance of histograms. In [18], the authors
show techniques for maintaining an equidepth histogram
on the signal. In [1], the authors adopt a learning approach
to self-tune any histogram procedure to be more accurate.
These techniques maintain a partition of the signal and the
central technical difficulty lies in adjusting bucket bound-
aries, over time. Recently, the problem of maintaining
wavelet transforms as data dynamically changes was con-
sidered in [27]; in contrast to the problem of maintaining
traditional histograms, maintaining wavelet transforms re-
quires tracking significant wavelet coefficients over time,
a nontrivial task as the authors argue. When a data item
changes in value, many coefficients may get affected and
the set of significant coefficients could change rather dra-
matically (as is revealed from our experiments). Another
transform, namely, the Discrete Cosine Transform, was
used in [23] where the authors again attempted to maintain
the significant transform values over time.
Conceptually, maintaining the set of significant trans-

form values is somewhat similar to the problem of main-
taining bestseller items where the goal is to maintain the
top- selling items as sales continue, but could be signif-
icantly harder depending upon the transformation. The
main difficulty in the hot lists (a special case of what is
known as iceberg queries [11]) is in detecting which infre-
quent values become significantly frequent as data items
accumulate, using small amount of space. The authors
in [23] propose maintaining a fixed set of transform coef-
ficients over time. The authors in [27] propose a sophisti-
cated probabilistic counting technique. In either case, no
provable results are known on how effective these methods
are in tracking the significant coefficients.
There is an effort to study the general principles behind

data streaming [32, 33] in database community. To the best
of our knowledge, a study of different kinds of data stream
models and queries such as aged aggregate queries that we
perform in this paper has not previously appeared.

3 Data Streams and Query Processing
In this section, we formally define data streams and differ-
ent data stream models.

Streaming Data Models. Our input, that we refer to as the
stream, arrives sequentially, item by item, and describes
an underlying signal. In the simplest case which we use
to develop the notions, the signal is a one-dimensional
function , that is, the domain
is assumed to be discrete and ordered1, and the function
maps it to non-negative integers. For example, a signal is
the number of employees in different ages (the domain is
the set of ages and the range is the number of employees
of particular age), or the number of outgoing call minutes

1Signals over continuous domains are assumed to be discretized in a
sensible fashion, for the purposes of this paper.

from a telephone number (domain is the set of all telephone
numbers and the range is the total number of outgoingmin-
utes).
The stream may describe the underlying signal in one

of many ways, yielding different data models as a result.
There are two distinct models for rendering the signal: cash
register, or aggregate models. In the cash register model,
the items that arrive over time are domain values in no par-
ticular order, and the function is represented by implicitly
aggregating the number of items with a particular domain
value. For example, in the telephone calls case, the stream
could be:

The underlying signal, namely ,
, has to be constructed

by aggregating the total number of minutes outgoing from
numbers , , etc.2 In
the aggregate model, the items arrive over time are the
range values in no particular order, and the signal is there-
fore explicitly rendered. For example, in the telephone calls
case above the stream could be:

There are also two distinct formats for the stream: ordered,
or unordered. In the ordered case, the items arrive over
time in the increasing (or decreasing) order of the domain
values. For example, in the telephone calls case above:

is an example of ordered format in the cash register model.
In the unordered case, the items that arrive over time are
not necessarily directly in the order of the domain values,
and may in fact be an arbitrary permutation of the repre-
sentation.
The two data models and the two data formats jointly

give us four possible stream renditions of the underlying
signal: ordered/unordered cash register/aggregated rendi-
tions. In the cash register model, there is yet another vari-
ation depending on whether all the items with a given do-
main value is contiguous. Data streams in the cash register
model can be contiguous but not ordered, for example:

Contiguous cash register rendition is equivalent to un-
ordered aggregate rendition under aggregation of the range
value for the “running” domain value. Therefore, this ren-
dition is not considered henceforth.
Natural data streams in different application domains

may be in different renditions, for example, a time series
data is likely to be in ordered aggregate rendition while
network volume data is likely to be in the unordered cash
register rendition. The unordered cash register model is
the most general, posing the most challenges in designing

2This model is called the cash register model because the flow of sales
through a cash register in a store generates a stream in this model.

Data Stream

Sketch

Random
Seeds

Pool

Query
Processing

Auxiliary
Store

Figure 1: Stream Processing

data processing algorithms. We will present results appli-
cable to all these renditions. For the most part, we focus
on the most general one for our upper bounds, and the least
general one for the lower bounds, so our results are broadly
applicable.
All of the above discussion on data stream models and

renditions generalize to multiple signals. For example, a
concatenated stream is one in which the stream for each
signal arrives concatenated one after another. For example,
the signal could be the traffic on a telecommunications net-
work from a particular IP address over time for the whole
day, and signals for multiple number of days may arrive one
after another. Also, the signal may be multidimensional,
say the (source IP address, destination IP address) aggre-
gation of traffic in networks. As long as all queries are on
one of the dimensions, or on all dimensions, or on a sub-
set of dimensions specified a priori, the one-dimensional
streaming techniques will work. Although our results can
be extended to the multidimensional case when this is not
the case, additional techniques will be needed, and will not
be a subject of this paper.
Stream Processing Model. Now we focus how data
streams may be processed. We will present the basic one-
pass version of data stream processing. Each data item, as it
arrives, is read and processed. No backtracking is allowed
on the data stream, and explicit access to arbitrary past
items is not permitted. We are allowed a certain amount
of additional memory. This may be used, for example, to
store a recent window of items we have read or some arbi-
trary subset of items in the past, or other summary informa-
tion about the past data stream. The size of this auxiliary
store crucially determines what computations can be per-
formed on the data stream. For applications that we con-
sider here, the auxiliary store is significantly smaller than
even the signal domain size. Hence, the signal can only
be partially represented in the auxiliary store as data items
continue to arrive, see Figure 1.
Two performance parameters of our interest are the time

needed to process each item on the stream and the auxil-
iary storage used; our goal would be keep both as small as
possible.
Aggregate Queries on Streams. In data stream scenarios,
queries are motivated by trend-related analyses. In what
follows, we give examples of different types of aggregate
queries that tend to be asked, all in the context of telecom-

munications data. The domain is the telephone number
(npa-nxx-line)3 and the range is the total number of min-
utes per day of outgoing calls. There is a natural numerical
ordering of the domain. Consider the concatenated streams
case wherein the signal for each day is concatenated to the
previous one but each signal is in unordered cash register
model. In how many minutes of outgoing calls was partic-
ular telephone number involved? This is a typical “point”
query on the signal. How many total minutes of call were
handled by a telephone exchange which is given by partic-
ular npa-nxx combination? This is a typical “range” query.
An interesting aggregate query in the concatenated data
stream scenario is the aged aggregate query—from a con-
catenated data stream , where is
a stream of the most recent data (say, today’s data),
is the data from one period before (yesterday’s data), etc.,
define a -aging data stream to be:

Thus, recent data contributes to the -aging data stream
with exponentially more weight than old data. Aggregate
queries are posed on the current aged version. Note that
aging is not done at the time the data is read, but rather
over time, so one can not simply replace the read data item
by the final aged data-item.

General Issues. We present techniques to accurately ap-
proximate the underlying signal from a stream in the model
in Figure 1 that will apply to all aggregate queries above.
In evaluating solutions, two parameters of interest are the
time it takes to answer a query as well as the accuracy of
the answers. We will also assume that we know in advance
the size of the domain of ’s and a maximum bound for the

’s. Our techniques can be extended easily to the case
when neither is known in advance.

Background on Wavelet Tranforms. Wavelet trans-
forms [6] (like Discrete Cosine and Fourier transforms)
are special mathematical transforms, that attempt to cap-
ture the trend in numerical functions. Often, very few of
the wavelet coefficients of empirical data sets are signifi-
cant and a majority are small or insignificant. In practice,
a small number of significant coefficients is needed to cap-
ture the trends in numerical functions. While the theory
of wavelets is extensive, we will only use the rudimentary
wavelet transforms in this paper.
We will develop the wavelet background as is typically

done using an example computation; see [26] for similar
background. Consider the signal of length4 given by
array ; its Haar wavelet trans-
form computation is shown in Table 1. The transform is
computed by convolving the signal with the low pass filter

3Under the North American Numbering Plan, npa is the three digit
area code, nxx is the three digit exchange code, and line gives the four
digit specific numbering to a telephone in that npa-nxx.

4Throughout the exposition, we will assume that is a power or two.
This simplifies notations and discussions without affecting the generality
of the results.

A(i)

Level−0

Level−1

Level−2

Figure 2: Wavelet-vectors (=8)

and the high pass filter ,
followed by down-sampling by two. In the discrete case if
there are values in the array, this process yields “av-
erages” and “differences” (these are averages and dif-
ferences respectively, but scaled by a suitable scaling fac-
tor). We store the differences as the wavelet coefficients
at this level. We then repeat this procedure on the “aver-
ages”, computing “averages” and “differences” again, until
we are left with only one “average” and “differences”
over scales or resolutions. The total collection of all
the “differences” over the scales together with the fi-
nal “average” gives the Haar wavelet transform of the input
signal. The entire computation can be quite naturally rep-
resented by a binary tree over the signal array, each node
in the tree representing the “average” of the nodes under it
and the “difference” between the left and right child of that
node.
The description above of Haar wavelet transforms is il-

lustrative, but not conducive to streaming computations di-
rectly, especially when the signal is rendered in unordered
cash register model. We will unravel the computation
and visualize Haar wavelet transforms in terms of vec-
tor computations. Let us number the levels of the binary
tree as shown in Table 1 with the bottommost level be-
ing , and the topmost being in this case. For

and , define the vector
1 for , and

otherwise. We further define
for and . The scaling
factor at level is , for all .
Now we can define wavelet vectors to be for each
, giving in all. These respectively yield the

wavelet coefficients corresponding to the differences given
by where is the inner product
of vectors and . The final “average” is the coefficient
that corresponds to the all ’s vector with scaling factor

, that is, ; vector together
with the wavelet vector form the wavelet basis
vectors, see Figure 2.
Formally, we refer to the coefficients (“differ-

ences” and one “average”) as wavelet basis coefficients,
and denote them by , so

1 3 5 11 12 13 0 1
2.8284 11.3137 17.6777 0.7071 1.4142 4.2426 0.7071 0.7071
10.0000 13.0000 6.0000 -12.0000
16.2635 2.1213

Level

Table 1: The table shows Haar wavelet decomposition of array and the general formula, with
entries in the latter shifted horizontally to fit. The wavelet coefficients (i.e., the local differences) are in bold at each level.
The final average (16.2635) plus the wavelet coefficients represent the Haar wavelet transformation of the original array.

. Similarly, we refer to the corresponding
vectors as wavelet basis vectors and denote them by , so
that . That
is, . Hence, informally, wavelet transforma-
tion is the inner product of the signal with a specific (rather
special) set of vectors, or equivalently, specific linear
projections of the signal. This is the view of wavelet trans-
formations that we adopt henceforth.
Our focus is not on keeping all coefficients, but rather

a much smaller number. In the process, some information
about the underlying signal will be lost. Suppose we sort
the coefficients, so that . The high-
est -term approximation is defined to be ,
It is easy to derive and it is well known that the highest
-term approximation is in fact the best -term approxi-

mation, that is, it minimizes the sum squared error (sse) for
a given .
The energy of signal is defined to be the square of its
norm and is preserved under the wavelet transform i.e.,

.

General Comments. One of the reasons wavelet trans-
formations are popular in engineering, science and finan-
cial applications is that most signals that arise in nature
have highest (best) -term approximation with small er-
ror for very small values of , that is, there tends to be a
rapidly decaying behavior by which increasing beyond a
small “threshold” does not significantly decrease the sum-
squares-error. As an example, Figure 3 plots the sse/energy
as a function of () for a day’s worth of call
detail data. The graph reveals a fast decay in the reduction
of the sse as more coefficients are used.
This small- approximation property motivated the

use of wavelets in databases, for similarity search [5] as
well as approximate query answering for point and range
queries [26, 9, 16]. We were also motivated by this small-
approximation property of wavelets to choose them for

data stream processing. However, we are able to exploit
this property in two quite distinct ways. First, we use small
to represent the underlying signal to a reasonable ap-

proximation. Second, we are able to show how to maintain
a small “sketch” of the signal on the stream so that if the
original signal had a small representation which is accu-

rate, then we can generate a possibly different and approx-
imate -term representation which is nearly as accurate.
We are able to do this in a provable manner. This is the
basis for our work.

4 Some Foundational Issues
In this section, we will address some of the theoretical is-
sues in designing algorithms for wavelet transform compu-
tation in stream models. This section will serve to show
the theoretical challenges in designing such algorithms and
show the intuition for our approach in the next section.
Let us recall that our goal is to compute the highest

(best) -term approximation to a signal of domain size .
We are working on the data stream that renders this sig-
nal. The data stream could be possibly much larger than
depending on the data stream model and the range of the
signal.
First, let us consider the ordered aggregate model. Our

first theoretical result is a positive one, showing that for the
ordered aggregate model, the highest -term representa-
tion can be computed exactly.
Consider the tree representation of the Haar wavelet

transformation specified in Section 3. Recall also that in the
ordered aggregate model, we get the signal values specified
as in the increasing order of ’s. Our algorithm is
as follows. Consider reading the data stream and say we
are at some position in it, that is, we have seen all ’s
for , for some . We maintain the following two sets
of items:

1. Highest -wavelet basis coefficients for the signal
seen thus far.

2. straddling coefficients, one for each level of the
Haar wavelet transform tree. At level , the wavelet
basis vector that straddles is where

, and there is at most one
such vector per level.

When the following data item is read,
we update each of the straddling coefficients at each level
if they get affected. Some of the straddling coefficients
may no longer remain straddling. When that happens, we

compare them against the highest -coefficients and retain
the highest ones and discard the remaining. At levels in
which a straddling coefficient is no longer straddling, a new
straddling coefficient is initiated. There will be only one
such new straddling coefficient for each level. In this man-
ner, at every position on the data stream, we maintain the
highest -wavelet basis coefficients exactly. This gives,

Theorem 1 With at most storage, we can
compute the highest (best) -term approximation to a sig-
nal exactly in the ordered aggregate model. Each new data
item needs time to be processed.

In contrast, computing the highest -term approxima-
tion seems to be hard in any other streaming model. Intu-
itively, keeping track of the highest numbers in a stream
is trivial with the unordered aggregate streaming model
(and therefore, the contiguous cash register model), but
keeping track of the highest values of where ’s
and ’s appear any which way seems to be difficult (and
likewise for more complex linear projections like wavelet
coefficients). In the unordered cash register model, even
keeping track of highest ’s is difficult in general; this
is the top- queries in [11, 4, 2]. We are able to formal-
ize all these intuitions in rigorous mathematical framework
and prove that computing the highest -term approxima-
tion for a signal in any of these data streaming models is
difficult, i.e., would require storing too much data, nearly
equal to the size of the signal, and even that of the stream
itself! We state our result formally below, but the proof is
beyond the scope of this paper.

Theorem 2 Any streaming algorithm that correctly calcu-
lates the highest wavelet basis coefficient (excluding the
overall average) of the signal rendered by unordered ag-
gregate stream data (and hence cash register streams) uses

space.

The strong result above shows that nearly all of the sig-
nal must be in the auxiliary store in order to calculate (or
even estimate) the highest -term approximation in data
streaming models. This seems to indicate that there is
no hope for providing provably good data streaming algo-
rithms for constructing wavelet approximations to the sig-
nal. In the next section, we provide an algorithm that gets
around this bottleneck by using the small -term property
of wavelet coefficients.

5 Our Data Streaming Algorithms
5.1 Overall Description
We present general techniques for computing wavelet ap-
proximations for a signal in data stream models. In what
follows, we will describe our overall approach before pro-
viding details. All our discussion will be for the most chal-
lenging case, namely, the unordered cash register rendition
of the signal.
We see the data stream, one item after the other. We

maintain a sketch of the signal we have seen thus far. The

sketch is much smaller than the signal; for a signal over do-
main of size , the sketch is of size .5 As data
items get read, the sketch gets updated. The sketch has the
property that we can generate the linear projections (inner
products) of the signal with a small (polynomial) number of
vectors quite easily and accurately, provided the dot prod-
uct of the corresponding unit vectors (the cosine) is large.
This can be used in several ways. First, since any point
query on the signal can be viewed as merely the inner
product of the signal with a vector that has a in its th
component and elsewhere, we can use the sketch to di-
rectly estimate the point query; likewise for range queries.
Since there are only point queries and range
queries which is a small polynomial number, sketches will
suffice. Second, since wavelet transforms are linear pro-
jections of the signal with a specific set of vectors, we
can generate wavelet coefficient approximations from the
sketch which can in turn be used for point or range query
estimations on the signal. We will explore both mecha-
nisms, although the latter will prove to be more accurate as
our experiments will show.

5.2 Details of Our Approach
Now we will provide the various details, specifically, what
is a sketch of a signal, how to compute it on a data stream,
and how to use it for estimations.

Sketch and its Computation. Recall that a sketch will
be used to estimate the inner product of certain vectors
with the signal. We need the following parameters to for-
mally define a sketch and present our claims: , a distortion
parameter—we seek inner products correct to within the
factor approximation; , a failure probability—our
guarantees will hold with high probability, being the fail-
ure probability of our claims; , a failure threshold—if the
cosine between two vectors is greater than , we estimate
the desired quantity within approximation factor
with probability at least , but we make no guarantees
if the cosine is smaller than .
An atomic sketch of signal is the dot product ,

where is a random vector to be defined later.
This is the standard random projection approach found,
e.g., in [3]. A sketch of the signal is
independent atomic sketches, each with a different random
vector .
Since this sketch size is rather small compared to the

signal size, we explicitly store the sketch in the auxiliary
store. As data stream is read, it is straightforward to up-
date the sketch: when we see an item in the cash register
format, we add to the atomic sketch with random vector
. In an aggregate format, if we see , we add

(which may be rational-valued) to the atomic sketch with
random vector . Thus, it is easy to maintain the sketch
over a data stream.
An important detail arises, namely, how do we store the

random vector ’s. Notice that the ’s are of length
5In what follows, will suffice.

each, and explicitly storing them will defeat the purpose of
designing small-space sketch on data streams. The seminal
idea in [3] is that ’s can be generated from a seed of size
roughly provided the ’s be only -wise inde-
pendent random variables (each is not generated inde-
pendently randomly which would make them -wise in-
dependent). Such random vectors are easy to generate as
shown in [3].
We adopt this approach, but our requirements on the ran-

dom vectors ’s are somewhat more stringent. This is be-
cause, later, we will need to estimate the inner product of
the signal with the wavelet basis vectors. Each such vec-
tor is length and some of them have ’s for some
constant . Explicitly generating for each with nonzero
wavelet basis vector component will thus prove time con-
suming. What we need is a method to compute these inner
products much faster than considering each in the basis
vectors. In this paper, we are able to provide such a method.
Our construction of random variables is novel. It is

based on the second order Reed-Muller codes [24]. We
describe random variables that take the values 0 or 1; from
this construction, simply map and . Pick

symbols, . The random variables are
indexed by subsets of the symbols. A seed for the random
variable is a polynomial over the symbols of degree at most
, modulo , such that each possible term is chosen or not
with uniform probability. For example, is a
possible seed. Thus there are possible
terms and possible seeds. Using seed ,
the value of the random variable indexed by subset takes
the value of regarded as a polynomial when the symbols
in are set to 1 and the symbols not in are set to 0. For
example, if , then, under seed ,
the ’th random variable takes the value

mod , and is mapped to as a -valued random
variable.
The construction above has the property that (1) the ran-

dom variables are -wise independent, (2) from seed for
random vector and index , we can generate quickly,
and (3) from seed for , one can find the dot product

quickly for any wavelet basis vector . In both (2)
and (3) above, quicklymeans in time polylogarithmic in .
Property (1) will be used in proving our main claim about
wavelet approximations using a sketch. All of the above
will form part of the full version of this paper.

Using a Sketch to Compute Signal Estimates. A sketch
can be used to estimate the signal in two ways described
earlier, namely, direct estimation of point queries or esti-
mation of highest -coefficients. We describe each method
below.
For both methods, we need a technical primitive,

namely, estimating the inner product of two vectors given
their sketches. Given two vectors, and , let

and be their unit vectors. The in-
ner product can be expressed as ,
where is the Euclidean distance between and

. Given a sketch, , consisting of atomic sketches, ,
for stream , we can estimate the norm squared to

[3]: take the median of copies of av-
erages of copies of squares of atomic sketches,

. Similarly, we can es-
timate . By linearity of the sketching technique [3],
form and , which are sketches for and
. Next, estimate the squared distance to

between these two unit vectors by taking the me-
dian of copies of averages of
copies of , where and are
corresponding atomic sketches for and . Compute
the cosine as , and, finally, multiply by

to scale the inner product back from unit vec-
tors to the original. By [3], we estimate as

. Thus, if ,
our estimate of is good to within the factor

.

5.3 Answering Queries from the sketch.

We consider two variations of query processing: batched
and adhoc. In the batched model, queries may only be
posed at periodic intervals, for example, after the end of
the day; hence, queries need not be answered mid-stream.
We can perform some time-consuming additional process-
ing during the batching period, since it can be amortized
against the entire input stream and the collection of queries.
In the adhocmodel, queries may be posed at any time dur-
ing the stream processing and rapid response is desirable.

Batched Query Processing. We can use the techniques
of section 5.2 to compute an approximation to the high-
est -term representation using the sketch. We proceed by
estimating each wavelet coefficient as described6 and se-
lecting up to of the largest coefficients, but only those
whose square is greater than (in practice, we
take the largest coefficient estimates). We use the esti-
mates as coefficients in an at-most- term approximation
to the signal. When a point or range query arrives, us-
ing standard wavelet techniques, answer the query in time

[26]. To summarize, we define the energy of a
representation to be , and get

Theorem 3 There is a streaming algorithm, , such that,
given a signal with energy , if there is a -
term representation with energy at least , then, with
probability at least , finds a representation of at
most terms with energy at least ; otherwise,
reports “no good representation.” In any case, uses

space and per-item time while processing the stream. This
holds in both the aggregate and cash register formats.

6Note that a wavelet basis vector is already normalized, so one does
not need to normalize it explicitly.

day number of records
0 45,110,132
1 81,546,187
2 98,820,613
3 96,768,015
4 97,141,335
5 41,285,628
6 50,361,885

Total 511,033,795

Table 2: Dataset sizes

Adhoc Query Processing. Now we show how to estimate
point queries directly using the sketch. We give two meth-
ods; which method to use may depend on the data distri-
bution. For a point query , associate with it the vector
consisting of a 1 in position and zeros elsewhere; an

atomic sketch of with random vector is simply . We
compute the sketch of and the sketch of to estimate

. If , then our estimate will be
except with probability . If we make a total

of such queries (not counting repeated queries about the
same) then all of them will be approximately correct ex-
cept with probability . Notice that the procedure above
works for not only point queries, but also for any range
query or wavelet coefficient since they correspond to com-
puting the inner product distance with a vector. Another
way to answer point query directly from the sketch is to
estimate all wavelet basis coefficients that involve
, and sum the ’th components, from each of the corre-

sponding vectors such that . Use the
techniques described above to estimate large coefficients.

Details of our Implementation. A caveat of finding an es-
timate for the best -term approximation (for batch query
processing) is that the above implementation takes time

which may be prohibitive in applications with
large . In practice, we implement our query processing
engine as follows. We maintain the sketch of the signal as
well as a pool of coefficients. When a new data item
is read, we update the sketch as well as the pool of coeffi-
cients. Periodically, we cycle through the set of wavelet
basis vectors and estimate a batch of their coefficients and
update the pool to contain the highest coefficient esti-
mates in all. This way we amortize the cost of computing
the estimates against that of reading new data items. The
entire implementation needs space for
the sketch, the pool as well as all requisite seeds of random
vectors.

5.4 Extending Our Approach to Concatenated
Streams

Suppose a new stream arrives daily on the same domain, for
example, in the domain of phone numbers, the start times
and originating phone number of all phone calls made on
that day arrives. A data analyst may want to learn approx-
imately the average number of phone calls per day made
“recently” by a particular phone number. In practice, the

00 55 10 15 20 25 30 35 40
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Streaming
Off!line

Number of Wavelet Coefficients (B)

ss
e/

en
er

gy

Figure 3: Ratio sse/energy v.s. for day 0

number of calls made in the last day is not useful, since
the last day may be unusual; on the other hand, the average
number of calls made over the last year may contain other
than “recent” behavior.
One approach to this problem is to keep a sliding win-

dow of, say, the calls made in the last 30 days; queries are
made against this data set. When a new day’s data arrives,
the oldest day’s data is discarded. Thus, this technique re-
quires 30 times more storage than storing a single day’s
data.
Another approach [7], used in practice at AT&T, is to

use -aging data. We (inductively) maintain

When arrives, replace with . This
way, data from periods ago affect with exponentially-
small relative weight of , so queries against reflect
“recent” activity, but the storage requirement is roughly
comparable to storing a single day’s data, not 30 days’ data.
Note that the foregoing discussion applies to full data

sets. We now show that our sketching techniques support
queries from -aging data sets.
Our sketches are linear, that is, from sketches

and of and respectivelly, we can form
. Note that the weight

ultimately assigned to a data point depends on the time of
a query and may be different for several queries. Thus, it is
not (obviously) possible to modify data as it enters a data
structure to simulate a -aging data set.

6 Experiments
For the experiments presented in this section we obtained
traces from AT&Ts call detail data for a period of one
week. The dataset describes a certain type of long-distance
calls, aggregated at the npa-nxx level. The stream was in
an unordered cash-register format, being an unordered se-
quence of npa-nxx values, one for each phone-call of that
particular type made, where the npa-nxx value corresponds
to the originating number. Table 2 shows the number of
records for each one of the 7 days of the week as well the
total aggregate.
For the first experiment we used the data-feed for day-

0 (45M records) and computed off-line the highest-
wavelet coefficients for . For the streaming set-
up, the distortion and failure threshold where both set to

00 55 10 15 20 25 30 35 40
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Streaming (fixed!set)
Streaming
Off!line

Number of Wavelet Coefficients (B)

ss
e/

en
er

gy

Figure 4: Ratio sse/energy v.s. at the end of day 6

; thus, we were expecting to compute coefficients addi-
tively to within of the energy of the signal. The sketch
size for these parameters was 3,952 words long. In the end
of the day, we used the sketch to compute a highest- ap-
proximate set of wavelet coefficients for between 1 and
40. We then reconstructed the signal from both highest-
sets (varying) and computed the point-wise sum-square
error (sse) of each approximation; that is, the cumulative
sum-square error of all point-queries on the npa-nxx do-
main. Figure 3 plots the sse of both representations over
the energy of the signal, varying . The highest-7 wavelet
coefficients are accurately picked by the sketch as they con-
tain (cumulatively) roughly 91% of the energy. For
additional wavelet coefficients contain too little informa-
tion to be reliably identified by the sketch. This is seen in
the fact that the ratio for the off-line case flattens-out after
that point.
For the next experiment we used data from all 7 days.

We compare the highest- set of coefficients obtained from
the sketch with (i) the highest- selection obtained from
an off-line algorithm and (ii) a static highest- set that is
obtained by picking the best- coefficients after looking at
day-0 and dynamically maintaining these coefficients in a
streaming fashion, as described in [26]. The latter method
is denoted as Streaming (fixed-set). Figure 4 plots the ratio
of the sse (for point-queries) over the energy of the signal
for all three algorithms varying . The queries were ran
after the end of day-6 (e.g. after all 511M records had been
processed). This time the sketch managed to pick out most
of the good highest-40 wavelet coefficients. Again there is
a decrease in the accuracy for as the remaining
coefficients are too small to be computed from the sketch
with good accuracy. This streaming model, however, by
far outperforms the case when the highest- selection of
coefficients is fixed.
In order to check whether the static selection of coeffi-

cients was hindered because of a poor choice of the initial
data (day-0) we re-run the experiment starting from day-1
with similar results.

6.1 Processing -aging Streams

We futher tested -aged aggregate queries, varying be-
tween 0.3 and 0.9. Higher values of emphasize the recent
history more strongly. Figure 5 shows the ratio of the sse of
all point queries over the energy of the -aged signal, com-

0.3 0.5 0.7 0.9
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Off!line
Straming
Streaming
(fixed!set)

lambda

ss
e/

en
er

gy

Figure 5: Performance on -aged aggregate queries

puted at the end of day-6 after all data had been processed.
Again, streaming wavelets are very close to the error ob-
tained by an off-line processing of the stream.

6.2 Updating Wavelet Coefficients in the Background

To find the highest- coefficients from the sketch, all
coefficients need to be estimated, which may be prohibitive
in applications were adhoc queries are expected during the
streaming process.7 In an additional experiment, we used
a pool of coefficients and amortized the cost of es-
timating the wavelet coefficients by computing co-
efficients in the background every items (e.g.
we amortize the cost of a coefficient over 1,000 data items).
Figure 6 shows the performance of all methods for exe-
cuting all possible point queries, at the end of each day
(starting from day-1). For this set-up, each wavelet coef-
ficient was estimated about 7 times during the 6-day run
of the experiment. As more and more wavelet coefficients
are updated, the background computation catches up—and
sometimes even surpasses—the batch computation of all
coefficients. This is a result of different levels of “noise”
introduced from the sketch at the time of the wavelet com-
putation.
During these runs, we also computed the sse of answer-

ing a point aggregate query directly from the sketch, with-
out using the wavelet coefficients. However, this method
repeatedly produced the worst approximation and is not in-
cluded in the graphs.

7 Conclusions
In this paper, we addressed a fundamental question in the
data streaming context, namely, how to summarize the sig-
nal represented by the stream in small space so that aggre-
gates queries on the signal can be answered with reason-
able accuracy. We present general methods for solving this
problem based on storing a sketch of the signal from which
many linear projections of the signal can be generated. In
particular, we are able to obtain high quality approxima-
tions for the wavelet transform of the signal. Using real
data from AT&T call detail records, we show our methods
to be very effective.

7For this dataset, computing a single wavelet coefficient from the
sketch takes about 22msecs in a 700Mhz Pentium III PC.

11 22 33 44 55 66
1.00E+011

1.00E+012

1.00E+013

1.00E+014

Energy
Streaming (batch)
Streaming (background
updates)
Off!line

day

ss
e

Figure 6: sse at the end of each day, starting from day-1

Our methods are more general than the context in which
we have explored them. For example, one of the attractive
features of wavelet based methods is that (1) they scale well
for multi-dimensions unlike traditional selectivity estima-
tion methods [30], and (2) they have been found to work
for data-cube approximations as well [31]. Our methods
can be extended quite naturally to those contexts. Also, re-
cently, the notion of correlated or continuous queries has
been explored for data streams [15]; we believe that our
methods would supplement those results and enhance them
to include generalized correlations. Finally, there is some
focus on developing data mining algorithms for streams.
Such algorithms would need to be able to compare parts of
the stream with others repeatedly; hence, they would need
small space methods to approximate the distance between
“substreams” and “subsignals” efficiently. Our methods
may prove useful there.

References
[1] A. Aboulnaga and S. Chaudhuri Self-tuning Histograms:

Building HistogramsWithout Looking at Data. In Proceed-
ings of the ACM SIGMOD Conference, June 1999.

[2] N. Alon, P. Gibbons, Y. Matias and M. Szegedy. Tracking
join and self-join sizes in limited storage. In ACM Sympo-
sium on Principles of Database Systems (PODS), 1999.

[3] N. Alon, Y. Matias and M. Szegedy The Space Complexity
of Approximating the Frequency Moments. In ACM Symp
on Theory of Computing (STOC), pages 20–29, 1996.

[4] S. Chaudhuri and L. Gravano. Evaluating Top-k Selection
Queries. In Proceedings of VLDB Conference, 1999.

[5] K. Chan and A. Fu. Efficient Time Series Matching by
Wavelets. In Proceedings of ICDE, pages 126–133, 1999.

[6] C. K. Chui. An Introduction to Wavelets Wavelet Analysis
and its Applications, Vol 1, Academic Press, 1992.

[7] C. Cortes and D. Pregibon. Signature-based Methods for
Data Streams. KDD, to appear.

[8] C. Cortes, K. Fisher, D. Pregibon, A. Rogers and F. Smith.
Hancock: A Language for Extracting Signatures from Data
Streams. In KDD, pages 9–17, August 2000.

[9] K. Chakrabarti, M. Garofalakis, R. Rastogi and K. Shim.
Approximate Query Processing Using Wavelets. In Pro-
ceedings of VLDB, pages 111–122, September 2000.

[10] P. Domingos and G. Hulten. Mining High-Speed Data
Streams, P. Domingos, G. Hulten. In KDD, August 2000.

[11] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani
and J. Ullman. Computing Iceberg Queries Efficiently. In
Proceedings of VLDB Conference, pages 299–310,1998.

[12] J. Feigenbaum, S. Kannan, M. Strauss and M. Viswanathan.
An Approximate -Difference Algorithm for Massive
Data Streams. In FOCS, pages 501–511, 1999.

[13] J. Feigenbaum, S. Kannan, M. Strauss and M. Viswanathan
Testing and Spot-Checking of Data Streams. In SODA,
pages 165–174, January 2000.

[14] V. Ganti, J. Gehrke and R. Ramakrishnan. Mining Very
Large Databases. In IEEE Computer 32(8), 1999.

[15] J. Gehrke, F. Korn and D. Srivastava. On Computing Cor-
related Aggregates Over Continual Data Streams. In Pro-
ceedings of the ACM SIGMOD Conference, May 2001.

[16] A. Gilbert, Y. Kotidis, S. Muthukrishnan and M. Strauss.
Optimal and Approximate Computation of Summary
Statistics for Range Aggregates. In Proceedings of PODS,
pages 227–236, May 2001.

[17] M. Greenwald and S. Khanna. Space-Efficient Online
Computation of Quantile Summaries. In SIGMOD , 2001.

[18] P. Gibbons, Y. Matias and V.Poosala. Fast Incremental
Maintenance of Approximate Histograms. In Proceedings
of VLDB, Athens, Greece, pages 466–475, August 1997.

[19] P. Gibbons and Y. Matias. New Sampling-Based Summary
Statistics for Improving Approximate Query Answers. In
Proceedings of the ACM SIGMOD Conference, June 1998.

[20] S. Guha, N. Mishra, R. Motwani and L. O’Callaghan. Clus-
tering Data Streams. In FOCS, pages 359–366, Nov. 2000.

[21] M. Henzinger, P. Raghavan and S. Rajagopalan. Computing
on Data Streams. DEC SRC TR 1998-011, 1998.

[22] P. Indyk. Stable Distributions, Pseudorandom Generators,
Embeddings and Data Stream Computation. FOCS, 2000.

[23] J.Lee, D. Kim and C. Chung. Multi-dimensional Selectivity
Estimation Using Compressed Histogram Informantion In
Proceedings of the ACM SIGMOD Conference, June 1999.

[24] F. MacWilliams and N. Sloane. The Theory of Error-
Correcting Codes. North Holland Mathematical Library,
Vol. 16, North Holland, New York, 1977.

[25] G. Manku, S. Rajagopalan and B. Lindsay. Random Sam-
pling Techniques for Space Efficient Online Computation
of Order Statistics of Large Datasets. In SIGMOD, 1999.

[26] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-Based His-
tograms for Selectivity Estimation. In SIGMOD , 1998.

[27] Y. Matias, J. Vitter and M. Wang. Dynamic Maintenance of
Wavelet-based Histograms. In Proc. of VLDB, Sept. 2000.

[28] V. Poosala. Histogram-Based Estimation Techniques in
Database Systems. Ph. D. dissertation, University of
Wisconsin-Madion, 1997.

[29] Y. Wu, D. Agrawal and A. Abbadi. Using the Golden Rule
of Sampling for Query Estimation. In SIGMOD, May 2001.

[30] J. Vitter and M. Wang. Approximate Computation of Mul-
tidimensional Aggregates of Sparse Data Using Wavelets.
In Proceedings of ACM SIGMOD Conference, June 1999.

[31] J. Vitter, M. Wang and B. Iyer. Data Cube Approximation
and Histograms via Wavelets. In CIKM, November 1998.

[32] http://www-db.stanford.edu/stream/
[33] http://www.cs.cornell.edu/database/Himalaya/

