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Abstract

A statistical representation of three-dimensional shapes
is introduced, based on a novel four-dimensional feature.
The feature parameterizes the intrinsic geometrical relation
of an oriented surface-point pair. The set of all such features
represents both local and global characteristics of the sur-
face. We compress this set into a histogram. A database of
histograms, one per object, is sampled in a training phase.
During recognition, sensed surface data, as may be ac-
quired by stereo vision, a laser range-scanner, etc., are pro-
cessed and compared to the stored histograms. We evaluate
the match quality by six different criteria that are commonly
used in statistical settings. Experiments with artificial data
containing varying levels of noise and occlusion of the ob-
jects show that Kullback-Leibler and likelihood matching
yield robust recognition rates. The present study proposes
histograms of the geometric relation between two oriented
surface points (surflets) as a compact yet distinctive repre-
sentation of arbitrary three-dimensional shapes.

1 Introduction

Robust scene interpretation by means of machine vision
is a key factor in various new applications in robotics. Part
of this problem is the efficient recognition and classifica-
tion of previously known three-dimensional (3D) shapes in
arbitrary scenes. So far, heavily constrained conditions have
been utilized, or otherwise solutions have not been achieved
in real time.

With the availability of ever faster computers and
3D-sensing technology (real-time stereo processing, laser
range-scanner, etc.), more general approaches become fea-

sible. They allow for weaker scene restrictions and hence
facilitate new scenarios. Fundamental to visual object
recognition are descriptions of general free-form shapes.
A good overview of the currently prevalent approaches is
given in [2].

In computer graphics, surface meshes are a popular de-
scription of free forms. They are also useful for recognition
purposes and the Internet makes them accessible to every-
body for testing and comparing algorithms. A major draw-
back, however, is their large memory requirement. Further-
more, surface meshes are defined with respect to a global
coordinate system. Thus time consuming registration is
necessary to align the object of interest to the frame of the
referenced object model before matching is possible. The
same problems apply to voxel-based descriptions of shape.

Representations based on superquadrics, generalized
cylinders, and splines all suffer from a great sensibility to
noise and outliers in the sensed data. A significant effort
is required to obtain a robust fit procedure and to select the
model order so as to avoid over-fitting.

It is, therefore, most desirable to develop a shape rep-
resentation that (i) is compact, (ii) is robust, (iii) does not
depend on a global coordinate frame, and (iv) has the de-
scriptive capacity to distinguish arbitrary shapes.

A promising approach is to analyze the statistical occur-
rence of features on a surface in 3D space. This has been
pursued by extracting local features such as surface curva-
tures or geometric relations such as distances. Their distri-
butions are represented as discrete histograms or piecewise-
linear approximations thereof. The classification step may
be realized by matching a measured distribution against dis-
tributions in a reference database of prototypes or by the
search for characteristic patterns in a distribution.

For instance, Osada et al. [8] sample the statistics of



point-pair distances across the whole surface of 3D objects.
They demonstrate similarity search based on the distance
distribution. However, a lot of information on shape is dis-
carded by reduction to this one-dimensional feature. Vande-
borre et al. [11] use three distributions of one-dimensional
geometric features, based on curvature, distance, and vol-
ume. In both works, recognition performance is moderate
and only suitable for a preliminary selection as performed,
e.g., by an Internet search engine.

Hameiri and Shimshoni [3] look for symmetric form
primitives, such as cylinders, cones, etc., in depth images.
As the basic local feature, they use the two principle surface
curvatures, accumulated in a two-dimensional histogram.
The surface-curvature histogram is characteristic of each
ideal form primitive and known a-priori from geometri-
cal considerations. For real measured data, however, re-
liance upon curvatures is very sensitive to noise and arti-
facts. Moreover, for general shapes the distribution of cur-
vatures will not be as crisp as for highly symmetric shapes,
may hence be less informative, and many histograms may
be required to cover all object views.

Multiple view-based histograms have been used by Het-
zel et al. [4, 7] who adapted a probabilistic approach from
Schiele and Crowley [9] to depth images. According to
Bayes’ rule, the best match is calculated as the one with
the highest a-posterior probability, given a set of random
feature samples. As feature they have employed a collec-
tion of local surface measures, namely, pixel depth, surface
normal, and curvature. Generally, however, a high number
of histograms per object model increases processing time.

An alternative line of research has sought to describe sin-
gle, possibly characteristic points on an object by their lo-
cal surface shape. This includes the spin images of Johnson
and Hebert [6] and the surface signatures of Yamany and
Farag [12]. For creating their histograms, surface points are
picked and a plane is rotated about their local surface nor-
mal. The surrounding points are accumulated in that plane.
Both approaches require dense surface meshes. Hillenbrand
and Hirzinger [5] have characterized singular surface shape
by four-point-relation densities that are directly constructed
from a 3D-point set.

In this paper, we propose statistical analysis of a new
four-dimensional geometric feature. The distribution of this
feature captures both local and global aspects of shape. The
relevant measures may be calculated from a surface mesh or
be estimated from multiple 3D-data points. Here we rely on
triangular meshes as the input data. We need just one stored
histogram per object that is learned from training data. In
the presence of significant noise or occlusion, we still obtain
reasonable recognition rates above 80%. The processing
time with a database containing 20 object models is around
five milliseconds. The present study describes preliminary
results that justify further research along this line.
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Figure 1. (a) Two surface points � ��( � � and
their orientations � �&( � � . (b) Illustration of the
four parameters of our feature. The vector
���� is the projection of � � in the �)� -plane. � ,�
	���$���&% , and �
	�������� are angles;

 
is the length

of the vector � � � ��� .

The paper is organized as follows. Section 2 introduces
the four-dimensional geometric feature. In Section 3, the
sampling of histograms in the training phase is discussed.
Section 4 defines six different criteria for comparison of
sensed data with the trained histograms. We evaluate these
criteria for classifiers in Section 5. Recognition rates and
processing times are demonstrated for artifical data, and
performance under conditions of noise and partial object
visibility is investigated. Furthermore, we verify general-
ization of the classifiers across a wide range of mesh reso-
lutions. The paper concludes in Section 6 with a final rating
of the different classifiers and a prospect of future work.

2 Four-dimensional geometric feature

We now introduce a four-dimensional feature which is
invariant to translation and rotation. The intrinsic geomet-
rical relation between a pair of oriented surface points is
parameterized, where an oriented point consists of its posi-
tion and its local surface normal. In the following, oriented
points are referred to as surflets.

Surflet-pair relations can be viewed as a generalization of
curvatures. While curvatures measure geometric relations



between neighboring surflets, surflet-pair relations encode
the same for any two surflets.

Each surflet is described by a pair � � ( ��� , consisting of
the position vector � and the surface normal � . Positions
and surface normals are here extracted from a triangular
mesh, but may as well be estimated from multiple 3D-data
points.

Let � denote the scalar product of two vectors, � the
cross product of two vectors, �����	��� the Euclidean norm of a
vector, and �
��� the modulus of a real number. For each pair
of surflets � ��� ( ����� and � � � ( � � � , we define a coordinate
system as follows. The origin is chosen to be � � , if� ��� ��� � � � ����� ���� � � ��� � � � ����� � ( (1)

and it is � � else. Let us now assume that � � is the origin.
The base vectors of the coordinate system are then defined
as

� � ��� ( (2)

' � � � ��� � � � � �� � � � � ����� � � � ( (3)

� � � � '�� (4)

The relation between the surflets � � � ( ����� and � � � ( � � � is
described by the parameters

� � �
	�������� � � � � � ( � � � � � ( (5)
% � ' � � � ( (6)
� � � � � � � ���� � � � ��� � ( (7)
 � � � � � ��� � ( (8)

which define our feature � � � � ( % ( � (  � . Here we have
used the shorthand notation

�
	����"��� ��� (�� � �
�� � �!	"� �"��� � �"! � � for �$#&%(' � #&% ,�!	"� �"��� � �"! � ��)+* for �$,&% ,�!	"� �"��� � �"! � ��).-�* for �$#&%(' � ,&% .

The attributes � and % represent � � as an azimuthal angle
and the cosine of a polar angle, respectively; � and

 
rep-

resent the direction and length of the translation from � �
to � � , respectively. This parameterization is illustrated in
Figure 1. Of course, if Condition (1) determines � � to be
the origin, the parameters are obtained by interchanging the
indices 1 and 2 in the equations above.

Equations (5)–(8) map every configuration of a surflet
pair onto a unique set of parameters, and every possible
set of parameters describes exactly one such configuration.
Moreover, Condition (1) ensures that the base vectors � , ' ,
� are defined in the most robust manner: by choosing the
more orthogonal angle between � �)� � � and the two surface
normals � � , � � for defining ' [cf. Equations (2) and (3)],
the direction of ' is determined with higher accuracy. From
a surface with / surflets we obtain a total of /0��/ �21 � ! -
features.

3 Training phase

The four-dimensional feature distribution as sampled
from a surface in 3D space is described by a histogram.
Each feature � is mapped onto exactly one bin 3 of the his-
togram 45��3 � , 687

�+9:;3=<?> 1 ( - ( �@�A� (CB�D�E (9)B is the number of bins in the histogram. The mapping
6
�F� � is defined by quantizing each of the four feature di-

mensions in five equal intervals. The resulting number ofB ��G�H �JIK-�G bins for the complete histogram is both easy
to handle and sufficient for classification. The length di-
mension

 
[cf. Equation (8)] is normalized to the maximal

occurring length L . An entry 4.��3 � of the histogram is the
normalized frequency of features � that are mapped onto
bin 3 , 45��3 ��� ��!	CM >��5<ON��

6
�F� ��� 3 D

��!	CM N ( (10)

where N is the set of all sampled features and card denotes
the cardinality of a set.

When working with meshed surfaces, it is a good idea
to collect for training all samples from multiple meshes of
the same surface. In this way, we incorporate variations
introduced by the mesh procedure.

The histogram 45��3 � together with the maximal length L
constitute an object model. The additional information ofL is necessary for scaling at recognition time. We store a
collection of such models in a database, one for each object
we want to recognize.

4 Recognition phase

The goal of the recognition phase is to obtain feature dis-
tributions from sensed objects, to compare them with the
model database, and to find the closest match. In order to
avoid excessive computation time during recognition, we
draw only a tiny subset (0.005%) of all available features N .

Not the whole range of feature parameters � �� � ( % ( � (  � is necessarily covered by every subsample, or
even full sample of features from an object. Hence, some
bins of a histogram may remain zero. This leads to numer-
ical problems when computing divisions or logarithms. In
such cases, all zero bins of a histogram are set to a common
value, lower than the lowest non-zero value occurring in all
histograms. This value has the effect of a penalty term.

In this section, 4QP denotes the histogram of an object
model R from the database. We define six different criteria
that we will evaluate for their classification performance.
Five of them are based on comparison of 4SP to a histogram4 P�T that is built at recognition time from a test object R � .
One implements the maximum-likelihood classifier.



4.1 Histogram-similarity criteria

We calculate the histogram 4 P T from the sensed sub-
sample of features analogously to Section 3. The first cri-
terion for comparison with a database histogram 4 P is the
intersection� � 4QP ( 4QP T � � �� � ���	��
 � � 4QP ��3 � ( 4 P T � 3 ��� ( (11)

often used with fuzzy-set techniques and previously applied
to color-histogram classification [10]. It is very fast to com-
pute, because, apart from summation, no arithmetic oper-
ations are needed. Another straightforward criterion is the
squared Euclidian distance

� � 4 P ( 4 P�T ��� �� � �� � 4 P ��3 � � 4 P�T � 3 � ��� ( (12)

which is known to be sensitive to noise and does not gener-
alize very well. Next, the statistical � � -test is examined in
its two forms

� � � � 4 P ( 4 P�T ��� �� � �� � 4 P � 3 � � 4 P T ��3 ��� �4QP(� 3 � (13)

and

� �� � 4QP ( 4QP�T ��� �� � �� � 4QP(� 3 � � 4QP T ��3 � � �4 P ��3 ��) 4 P�T ��3 � � (14)

Finally, we test the symmetric form of the Kullback-Leibler
divergence

� � 4QP ( 4 P T ��� �� � �� � 4QP T ��3 � � 4QP(��3 � ��� � 4 P T ��3 �4 P ��3 � � (15)

Because of the logarithmic operation, it is the computation-
ally most expensive of all six criteria.

4.2 Likelihood criterion

Drawing a tiny, random subset of all features, we can
safely assume individual samples to be statistically inde-
pendent of each other. The logarithmic likelihood of objectR , described by database histogram 4 P , given the sensed
subsample N P�T of features, thus is� � R � N P�T � � �������� T � � 4 P �

6
�F� � � � (16)

The mapping

6
� � � is as defined in Equation (9). In con-

trast to the Kullback-Leibler divergence (15), all logarithms
can here be calculated in the training phase and logarithmic
histograms � � 4 P can be stored.

Table 1. In this test, the six classifiers de-
fined in Section 4 are evaluated using ran-
domly drawn feature samples from complete
and noise-free surface meshes of the 20 ob-
jects shown in Figure 2. Achieved recogni-
tion rates are given in percent. The process-
ing times are measured on a standard PC with
an Intel Pentium IV 2.66 GHz processor and
Linux as operating system.

criterion recognition in % time in ms�
42.7 5.12�
40.6 5.01� � � 75.4 6.16� �� 45.5 6.25�
99.6 7.42�
99.7 4.79

5 Experiments

All experiments are based upon the 20 objects shown in
Figure 2. The objects are initially given as surface meshes,
which are, however, unrelated to the meshes we use as in-
puts to our algorithm. To ensure that classification cannot
be dominated by object size, all objects are scaled to a com-
mon maximal diameter.

Models are trained by the following procedure. For each
object, five sets of points, from 25,000 to 389,000 points
per set, are drawn randomly from the surface and passed
to a mesh generator. A training mesh consists of between
3,500 and 5,500 vertices. Features are built from pairs of
surflets, which are in turn picked from each vertex. All fea-
tures obtained from the five training meshes, that is, be-
tween 30,616,250 and 75,611,250 features, are collected
into a histogram [cf. Section 3].

In the recognition phase, new meshes are generated from
each object. Features are randomly subsampled from the
vertices of these meshes. The number of features drawn is
0.005% of all available features. This arbitrary, low sam-
pling rate turns out to be high enough for good recognition.
Results presented on classification rate and timing are aver-
aged over between 100 and 1000 meshes per test object.

5.1 Ideal conditions

Under ideal conditions, the test objects’ surfaces are
completely exposed to the sensor and sensed data are free
of noise. Table 1 shows the achieved recognition rates and
times for the six criteria [cf. Section 4]. The measured times
include all steps from drawing feature samples to the out-
put of the best matching object model. Generating the sur-



A10 Ape Buffalo Bull Bunny

Cannon Cat Cube Cylinder Dragon

Gumby Heart Horse Kangaroo Missile

Shark Sphere Tetrahedron Triceratops X-Wing

Figure 2. The 20 objects of the database.

face mesh is not included. Almost perfect classification has
been achieved by the

�
and

�
criteria. Interestingly, the � ��

criterion performs dramatically weaker than the � � � crite-
rion. Apparently, the weighting of histogram differences by
the reciprocal of the trained histogram value alone is much
more reliable than taking also the estimate from the small
test sample into account [cf. Equations (13), (14)].

Correct classification and confusion rates between all
pairs of objects are shown in Figure 3. All classifiers work
well for simple shapes like cube or sphere. Interestingly, the
objects that are difficult to classify differ drastically across
the criteria. On the other hand, the � and � �� criteria exhibit
a strikingly similar pattern of classification performance.
This similarity will also be retained in all the other tests of
the classifiers we report below. The same similarity holds
for the best, the

�
and

�
criteria.

5.2 Noisy data

If the point cloud is obtained from real sensors like laser
range-scanners, laser profilers, or stereo cameras, the data
will be corrupted in various ways. Therefore, in a second set
of experiments, sensitivity of the feature histograms to noise
is evaluated. Uniformly distributed noise is simulated by
randomly translating vertices from a surface mesh inward or
outward along the local surface normal. The level of noise is
defined as the range of translations, measured in percent of
the maximal object diameter1. As an example, Figure 4(b)
shows a surface mesh corrupted by the maximal level of
noise we have tested (20%).

In Figure 5(a), we present plots of recognition rates for
the six classifiers as a function of noise level. For the

�
,� � � , � , and

�
criteria, classification performance degrades

rapidly with increasing noise. This is explained by the fact

1Remember that the diameter was scaled to the same value for all ob-
jects.
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Figure 3. The six arrays represent classification results for the 20 objects shown in Figure 2 using
the six different criteria defined in Section 4. Surfaces are completely visible and data are noise free.
In each array, columns represent test objects, rows trained objects. Grey values indicate the rate of
classification of a test object as a trained object; a brighter shade means a higher rate. The more
distinct the diagonal, the higher the allover performance of the classifier. Evidently, the

�
and

�
criteria achieve almost perfect classification within our database of objects.

(a) (b) (c)

Figure 4. (a) X-wing; (b) X-wing with noise (4%); (c) partially visible X-wing (33%).
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Figure 5. Plots of recognition rates for the 20
objects shown in Figure 2 using the six differ-
ent criteria defined in Section 4. The condi-
tions for the test data are varied; (a) varying
level of noise (in percent of maximal object
diameter); (b) varying visibility (in percent of
complete surface area); (c) varying mesh res-
olution (in percent of training resolution). The
curves for the

�
and

�
criteria nearly coincide

in all three graphs.

that the angular attributes � , % , � are very sensitive to noise
such that surface information is largely lost. Interestingly,
these criteria reach a rather stable rate of between 10% and

15% correct classification. Some residual performance may
be expected, as the distance attribute

 
remains informative

up to much higher noise levels. The � �� and � criteria, on
the other hand, are a lot less sensitive to noise, exhibiting
significantly lower performance at low noise and higher per-
formance at high noise levels. Under realistic conditions of
measurement (noise , 1�

), however, the
�

and
�

criteria
yield a reasonable recognition rate above 80%.

5.3 Partial visibility

In real applications, objects to be recognized are often
just partially visible. Reasons are self-occlusion in single-
view data or occlusions by other objects. Partial objects
yield incomplete surface meshes. Therefore, in this set of
experiments, each test object is meshed and classified with
varying fraction of visible surface. Visible parts are deter-
mined by intersecting point clouds by a random plane. Sub-
sequently, data on one side of the plane are processed by
the mesh generator. Visibility is defined as the sum of re-
maining triangle areas in percent of the complete surface
area. Figure 4(c) gives an example of a partially visible
mesh (33%).

Results on recognition rates for various visibilities are
plotted in Figure 5(b). Performance can be seen to drop off
more gradually with occlusion than with data corruption by
noise [cf. Figure 5(a)]. Correct classification by the

�
and

�
criteria remains above 80% down to roughly 65% visibility.

We note that recognition with partial visibility depends
in fact heavily on the particular section of the object that
remains visible.

5.4 Generalization across mesh resolution

Since we have relied upon surface meshes as the input
representation, it is interesting to ask how recognition per-
formance is affected by changes to the mesh procedure.
The most demanding scenario is generalization across mesh
procedures, that is, being confronted at recognition time
with a mesh of a type essentially different from what train-
ing has been based on.

In a final set of experiments, we thus have investigated
the effect of varying the mesh resolution for the test objects.
Figure 5(c) shows plots of correct-classification rates under
such conditions, where mesh resolution is given in percent
of the (constant) resolution in the training phase. Appar-
ently, recognition performance does not critically depend
on test-mesh resolution. Only below 50% of the training
resolution, recognition performance drops off. In part, this
can be ascribed to the low absolute number of feature sam-
ples drawn. In particular, the

�
and

�
criteria exhibit a high

degree of generalization across meshes.



6 Conclusion

In this paper, we have introduced a novel four-
dimensional feature that describes the intrinsic geometri-
cal relation between a pair of surflets, i.e., oriented surface
points in 3D space. The statistical distribution of this fea-
ture as sampled from an object’s surface captures both local
and global aspects of shape. Empirically learned histograms
of the feature distribution have here been demonstrated as a
compact and efficient representation of arbitrary 3D shapes.
This representation allows for rapid classification of shapes
based on a single histogram per object model, independent
of translation and rotation.

We have evaluated six different criteria for the shape
classifier. The Kullback-Leibler and likelihood criteria have
been found to perform equally well and superior to the oth-
ers. They have shown nearly perfect classification under
ideal sensing conditions and robust performance in the face
of noise and occlusion. They are, moreover, largely inde-
pendent of the resolution used for meshing surfaces of test
objects. Considering its lower computational cost, we rec-
ommend using the maximum-likelihood classifier.

More specifically, the experiments clearly indicate that,
for best performance, high noise during recognition should
be reduced by spatial averaging, at the cost of a lower mesh
resolution.

The more invariant a classifier, the less can be recovered
from an act of classification. The present classifiers are by
design invariant to object pose. Especially for robotic ap-
plications, however, it would be most desirable to obtain
an estimate of the pose of an object, along with its iden-
tity. One direction of future research will hence be to aug-
ment the algorithm by a method for locating an object’s data
within a larger set that may comprise multiple objects. This
would imply segmentation of the data into the objects’ com-
ponents.

To more firmly establish the potential of the proposed
representation of shape, the dependence of classification
performance on various design parameters, like feature
quantization and subsampling rate, has to be investigated.
Moreover, the database of objects will be extended in the
future.

When moving to real data, we plan to use the DLR laser
range-scanner [1] or some sort of stereo processing to ac-
quire 3D-point clouds from a scene as a first processing
step.

Apart from scene analysis, potential applications of
the present shape classifiers include similarity search in a
database of 3D object-models, e.g., on the Internet. In this
context, normalization of the model dimensions will make
the classifiers invariant to object scale.
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